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Abstract 

Determining how high body-mass index (BMI) at different time points 

influences the risk of developing type two diabetes (T2D), and affects insulin 

secretion and insulin sensitivity, is critical. By estimating childhood BMI in 

441,761 individuals in the UK Biobank, we identified which genetic variants had 

larger effects on adulthood BMI than on childhood BMI, and vice-versa. All 

genome-wide significant genetic variants were then used to separate the 

independent genetic effects of high childhood BMI from high adulthood BMI on 

the risk of T2D and insulin related phenotypes using Mendelian randomisation 

and studies of T2D, and oral and intravenous measures of insulin secretion and 

sensitivity. We found that a 1.s.d. (= 1.97kg/m2) higher childhood BMI, 

corrected for the independent genetic liability to adulthood BMI, was associated 

with a protective effect for seven measures of insulin sensitivity and secretion, 

including an increased insulin sensitivity index (β = 0.15 [0.067, 0.225], p = 

2.79×10−4), and reduced fasting glucose (β = -0.053 [-0.089, -0.017], p = 

4.31×10−3). There was however little to no evidence of a direct protective effect 

on T2D (OR = 0.94 [0.85 - 1.04], p = 0.228), independently of genetic liability 

to adulthood BMI. Our results thus cumulatively provide evidence of the 

protective effect of higher childhood BMI on insulin secretion and sensitivity, 

which are crucial intermediate diabetes traits. However, we stress that our results 
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should not currently lead to any change in public health or clinical practice, 

given the uncertainty in biological pathway of these effects, and the limitations 

of this type of study. 

 

Research in Context  

• High BMI in adulthood is associated with higher risk of type two 

diabetes, coupled with lower insulin sensitivity and secretion.  

• Richardson et al [2020] used genetics to show that high BMI in 

childhood does not appear to increase the risk of type diabetes 

independently from its effect on adult BMI. 

• We asked: does high childhood BMI affect insulin related traits such as 

fasting glucose and insulin sensitivity, independently of adulthood BMI? 

• We used genetics to show that high childhood BMI has a protective 

effect on seven insulin sensitivity and secretion traits, including fasting 

glucose and measures of insulin sensitivity and secretion, independently 

of adulthood BMI.  

• Our work has the potential to turn conventional understanding on its head 

– high BMI in childhood improves insulin sensitivity (when adjusting for 
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knock on effects to high adult BMI) and opens up important questions 

about plasticity in childhood and compensatory mechanisms. 

 

Introduction 

The increasing prevalence of obesity in childhood is assumed to lead to 

increased prevalence of type 2 diabetes in adult life [1]. Previous observational 

studies have shown that changing from a relatively thin child to overweight or 

obese adult provides additional risk to type 2 diabetes, compared to current adult 

BMI [2]. However, observational studies are subject to confounding which is 

less likely to impact genetic studies [3]. For example, an un-measured factor, 

such as smoking status, could act to confound the association between observed 

BMI and diabetes status, but can not affect the genetic variants that an individual 

carries. 

A previous study that used genetics to understand the causality of higher 

BMI at different time points on T2D found that the relationship between 

childhood BMI and T2D was mediated through adulthood BMI [4]. That study 

used genetic variants with stronger effects on adulthood BMI than childhood 

BMI, and vice-versa, to separately test the effect of high BMI in childhood and 

the effects of high BMI in adulthood. However, that study was limited to 

analysis of type 2 diabetes as a binary disease trait, and did not investigate 
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potential intermediate mechanisms such as those involving insulin secretion and 

sensitivity, and their genetic analysis was limited to lower-powered categorical 

BMI phenotypes. To understand more about the relationship between higher 

childhood BMI and type 2 diabetes, we generated a continuous measure of 

childhood BMI in the UK Biobank, validated using the 1958 National Childhood 

Development Study, which can be directly compared with continuous adulthood 

BMI, resulting in a more powerful genetic approach. We then tested a wide 

range of intermediate diabetes risk factors. 

Using a combination of both previously identified and novel genetic 

instruments for childhood and adulthood BMI that resulted from our continuous 

phenotypes, we assessed the causal relationships between BMI at different life 

stages and diabetes outcomes: T2D, fasting insulin, fasting glucose and several 

measures of insulin secretion and sensitivity based on oral and intravenous tests, 

using Multivariable Mendelian Randomisation [5]. 

Methods 

Study population 

We analysed 441,761 individuals of calculated European descent within the UK 

Biobank (UKB) based on genetic principal component analysis, as previously 

described [6], with imputed genome-wide genetic variants, and both a baseline 
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(adulthood) BMI measure (UKB Field 21001) and a self-recall variable related 

to body size at age 10 (UKB Field 1687). 

1958 National Child Development Study 

The 1958 National Child Development Study (1958NCDS) is a longitudinal 

assessment of 17,415 individuals who were born within a single week in March 

1958. Beginning at the week of birth, mothers and their children were repeatedly 

assessed at irregular intervals, with a comprehensive set of measurements and 

assessments taken regarding many aspects of their lives (for more details see 

[7]). We analysed a subset of 5,847 individuals who had genome-wide array 

based genotyping and imputation, and were inferred to be of European descent 

again using genetic principal component analysis. Of these 5,847 individuals, 

4,838 had measures of BMI at age 7, 4,704 at age 11, 4,298 at age 16, 5013 at 

age 23 and 5,774 at age 44. 

 
Measures of BMI 

Individuals in the UKB were asked were asked whether they felt they were 

“thinner”, “the same size as” or “plumper” than their peers at age 10 (UKB Field 

1687). From this categorical variable, we generated a continuous simulation of 

childhood BMI in the UKB based on summary statistics for BMI at age 11 from 

the 1958 National Child Development Study - see Supp Methods for full details. 
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Briefly, the self-recall variable for each participant’s body size at age 10 was 

used as an anchor to which we assigned an individual a BMI at age 10, after sub-

sampling from a distribution which was an approximation of age 11 BMI in the 

1958 NCDS. Next, using the UK Biobank Study, a genome-wide association 

study was performed for both adulthood and childhood BMI, from which we 

generated two polygenic scores. Adulthood BMI was taken directly from UKB 

Field 21001. 

Genetic Variants associated with BMI 

We used the software regenie [8] to assess the association between each of 

65,433,624 imputed genetic variants and BMI at each of the two timepoints 

independently for n=441,762 individuals. We then excluded genetic variants 

which were not single nucleotide polymorphisms, and those which did not have 

INFO> 0.8 and minor allele frequency (MAF) of 0.01<MAF<0.99. regenie 

performs association tests with a linear mixed model approach, which takes 

account of the degree of genetic relationship between each pair of individuals. 

BMI at both time points was rank inverse normalised and residualised at run 

time: covariates adjusted for were sex, age at baseline, genotyping chip and 

UKB assessment centre. As such, effect sizes are in standard deviation units. 
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Based on the results of these GWAS, we used Plink’s (v1.9) [9] clumping 

procedure to select independent and genome-level associated genetic variants. 

We used the following criteria to define an independent genetic association: r2 
≤ 

0.001 (correlation between independent signals), dist≥ 250kb (distance between 

independent signals), p ≤ 5 × 10−8, 0.01 ≤ MAF ≤ 0.99, using an unrelated QC’d 

HapMap3 reference panel. 

Validation of Genetic Scores 

The independent genetic variants for childhood and adulthood BMI derived here 

were individually assessed against phenotypes available in 1958NCDS. A 

genetic risk score (GRS), for both adulthood and age 10 BMI was calculated 

within the 1958NCDS cohort using the variants identified from the relevant 

GWAS, and assessed against derived BMI for each individual at ages 44 and 11. 

To make a direct comparison between the predictive ability of the two GRS’s 

against the two phenotypes, we calculated the receiver-operator-curves (ROCs) 

for the accuracy in predicting one of the two phenotypes being greater than 1s.d. 

from the standardized mean of the phenotype. We additionally calculate the 

percentage of variance explained by the continuous genetic score against the 

phenotype of interest. 
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At a genome-wide level, we calculated the genetic correlation between both 

adulthood and childhood BMI against both the most recent EGG-Consortium 

meta-analysis of childhood BMI [10] and adulthood BMI measured in [11]. We 

used the software R-package LDSC to calculate genetic correlation [12]. Finally, 

we also calculated the total variance explained by the instruments for adulthood 

and childhood BMI separately under the following formula: 2 � �� ���� �

�1 	���
, where MAF is the minor allele frequency. 

Mendelian Randomization 

We used Mendelian Randomisation (MR) to assess whether there is a causal link 

[13] between our BMI exposures and T2D and insulin-related outcomes. In an 

MR study, the effect sizes of independent genetic variants that are strongly 

associated with each exposure are regressed against the effect sizes of the same 

variants with the disease/outcome from a secondary non-overlapping cohort’s 

GWAS (two sample MR). Comparison at a genetic level bypasses some 

observational confounders, as genetic variant genotypes are determined at zygote 

formation [13]. As such, an association found using MR provides stronger 

evidence of causality than that from observational data, albeit with some 

remaining confounding because of GWAS methodology. 
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We calculated the MR causal effect estimates using an inverse-variance 

weighted model, where each variant-exposure versus variant-outcome 

relationship is weighted by the inverse of the variance of the variant-outcome 

relationship. A sensitivity analysis was also performed in a lower power MR-

Egger framework, which is more robust to pleiotropy (an association between 

the variant and outcome which does not pass through the exposure, which is a 

violation of the MR assumptions). Additionally, we performed a sensitivity 

analysis with Steiger filtering applied [14]. This approach excludes genetic 

variants that have larger effects on the outcomes (insulin secretion and 

sensitivity measures) than the exposures (childhood or adult BMI) . We 

calculated effects using the formula used to compare instrument strength in the 

previous section. We also calculated an F-statistic for each of our analyses, as a 

measure of the quality of the variants as a genetic proxy for the observed 

exposure (typically F> 10 is classified as sufficient). 

Where the variant-outcome relationship was not available in the outcome 

GWAS, a variant proxy was chosen based on a high degree of correlation (r2 > 

0.8) between the index variant and its proxy, and a maximum distance between 

the index and proxy variant of 250kbp. Effect sizes between the variant and 
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outcome, and variant-exposure were then either orientated to the matching 

alleles, or matched based upon the reported allele frequencies. 

Multivariable mendelian randomisation (MVMR) is performed by 

conditioning the exposure-outcome relationship for each genetic variant upon 

that of another exposure’s genetic effect size (for example, conditioning the 

exposure-outcome relationship of childhood BMI upon that of adulthood BMI 

[15]). As such, the adjusted primary exposure-outcome relationship is 

independent of the genetic effects associated with the secondary exposure. 

 

Measures of T2D and insulin-related traits 

Genetic variant effect sizes for T2D were drawn from [16], which was a meta-

analysis of 71,124 cases and 824,006 controls of European ancestry and 

FinnGen (Freeze Six) [17] for “Type 2 diabetes, strict (exclude DM1)”, which 

included 37,002 cases and 215,160 controls. The MR results for each T2D 

outcome GWAS were then meta-analysed. 

Effect sizes relating to fasting glucose (FG) and fasting insulin (FI) were 

drawn from [18], where FG was measured in 151,188 individuals and FI in 

105,056 individuals. 
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We also analysed seven measures of insulin sensitivity and response during 

and after an oral glucose tolerance test in a meta-analysis of results from [19] (n 

= 26,037 participants without diabetes) and the METSIM study (n = 8,520). 

Specifically, we looked at the association of our BMI measures with the area 

under the insulin curve (AUC), the ratio of AUCs for insulin and glucose (AUC 

ratio), an insulin sensitivity index (ISI), insulin after 30 minutes (Ins 30), insulin 

after 30 minutes adjusted for BMI (Ins 30 adj BMI), incremental insulin relative 

to fasting insulin after 30 minutes (Incremental Ins 30) and corrected insulin 

response (CIR) - see [19] for specific definitions. 

Meta-analyses were performed, where applicable, using the ‘metafor’ R 

package, based on the assumption of a fixed effect between the exposure and 

outcome across studies. 

Results 

In our analysis of 441,762 adult individuals (of ages from 40 to 75 years) we 

identified 306 (Supp Table 1) and 1127  (Supp Table 2) independent genetic 

variants (p < 5 × 10−8, 250kb distance) associated with continuous measures of 

childhood and adulthood BMI respectively, in comparison to [4], where 295 and 

557 independent signals were reported respectively for categorical measures of 

the same outcomes. The exact parameters derived to describe the continuous 
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measure of childhood BMI are given in the Supplementary Results. The  

variance explained by the genetic variants were 11.3% and 4.03% for adulthood 

and childhood BMI, compared to 2.78% and 1.96% in Richardson et. al, 

demonstrating that our genetic instruments have been strengthened by using 

continuous variables. 

Using these variants we generated polygenic scores for childhood and 

adulthood BMI, and validated them in the 1958 dataset and independent data 

from the EGG and GIANT consortia. The adulthood BMI GRS was a better 

predictor of standardised adulthood BMI (age 44) being greater than one 

standard deivation from the mean in the 1958 dataset (OR = 1.55 [1.43-1.67] p = 

1.29×10−16, var = 4.80%),  than of standardised childhood BMI (age 11) being 

more than one standard deviation from the mean in the same dataset (OR = 1.32 

[1.20 - 1.44], p = 1.85×10−9, var = 0.995%), and explained more of the variance 

(‘var’) in the respective continuous traits - Supp Fig 4. The childhood BMI GRS 

was a better predictor of childhood BMI (OR = 1.32 [1.21 - 1.44], p = 

1.32×10−16, var = 1.62%) than of adulthood (OR = 1.16 [1.08 - 1.25], p 

=3.73×10−5, var = 0.635%). 

The genetic correlation between adulthood BMI measured in this UK 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted February 7, 2023. ; https://doi.org/10.1101/2023.02.03.23285420doi: medRxiv preprint 

https://doi.org/10.1101/2023.02.03.23285420
http://creativecommons.org/licenses/by/4.0/


 

14 

Biobank study, and childhood BMI measured directly by the EGG consortium 

(N = 35,668, ages 2 to 10 years), was 0.644 [0.582 - 0.705] (p = 3.22×10−95), 

which was less than that between our measure of childhood BMI and the EGG 

consortium, at 0.937 [0.864 - 1.01] (p = 1.29×10−145). The genetic correlation 

between adulthood BMI analysed in [11] by the GIANT consortium and 

adulthood BMI measured here was 0.943 [0.925 - 0.960], p = 1.31×10−210, 

versus the genetic correlation with childhood BMI measured here at 0.645 

[0.591 - 0.680], p = 1.28×10−173. 

Childhood BMI 

Using MR we showed that higher BMI in childhood was associated with 

protective effects on diabetes related traits after adjustment for the independent 

effects of higher adulthood BMI. The results are as follows: 

Mendelian Randomisation showed that higher Childhood BMI, corrected 

for genetic liability to adulthood BMI, has protective effects on measures on 

insulin secretion and sensitivity traits 

In a multivariable model which takes account of the independent genetic effects 

of adulthood BMI, we found that a 1s.d. (=1.97kg/m2) higher childhood BMI 

was associated with a protective effect on a range of insulin secretion and 
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sensitivity traits: lower area under the insulin curve (AUC), ratio of insulin and 

glucose curves (AUC Ratio), insulin after 30 minutes adjusted for BMI (Ins 30 

BMI adj), insulin change after 30 minutes (Incr Ins 30), and higher insulin 

sensitivity index (ISI) (Figure 2 & Supp Table 3) - see methods for precise trait 

definitions. Higher childhood BMI was also weakly associated with lower FG (β 

= -0.0528 [-0.0893, -0.0163], p = 4.21×10−3). There was no evidence of an effect 

on FI (β = -0.0109 [-0.0564, 0.0346], p = 0.638). 

These results are shown, including the comparison to univariable models 

with no adjustment for adulthood BMI, in Figs 2 and 3, and Supp Table 3.  

 

Mendelian Randomization showed that higher Childhood BMI, corrected 

for the genetic liability to adulthood BMI, was not protective for T2D 

In a multivariable model which corrects for the independent genetic liability to 

adulthood BMI, higher childhood BMI was not associated (OR = 0.941 [0.851, 

1.04], p = 0.228) with the risk of T2D, consistent across two meta-analysed 

studies [13,16]. These results are shown in comparison to the univariable model 

with no adjustment for adulthood BMI, in Fig 4, and Supp Table 3. 
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Adulthood BMI 

Using MVMR, we showed that higher BMI in adulthood leads to a higher risk of 

T2D, independently of the genetic effects childhood BMI. We observed 

consistent effects on insulin and glycaemic traits intermediate to T2D, with 

MVMR showing that higher adult BMI leads to lower insulin sensitivity and 

higher insulin secretion. The link between higher genetically derived adult BMI 

and higher insulin secretion in people without T2D is likely a response to lower 

insulin sensitivity. 

 

Mendelian Randomization showed that higher Adulthood BMI was 

associated with a damaging effect on insulin and glycaemic traits 

In a multivariable model which corrects for the independent genetic liability to 

childhood BMI, a 1s.d. (=4.77kg/m2) higher adulthood BMI was associated with 

higher levels of fasting glucose (FG) (β = 0.0941 [0.0683, 0.120], p = 

7.50×10−13) and fasting insulin (FI) (β = 0.166 [0.134, 0.199], p = 3.19×10−10). 

An increase in adulthood BMI in a multivariable model also showed evidence of 

a damaging effect on the remaining six insulin traits (Supp Table 3). These 

results, in comparison to the univariable model with no adjustment for childhood 

BMI, are shown in Figs 2 and 3, and Supp Table 3. 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted February 7, 2023. ; https://doi.org/10.1101/2023.02.03.23285420doi: medRxiv preprint 

https://doi.org/10.1101/2023.02.03.23285420
http://creativecommons.org/licenses/by/4.0/


 

17 

 

Mendelian Randomization showed that higher Adulthood BMI was 
associated with an increased risk of T2D 

In a multivariable model which corrects for the independent genetic liability to 

childhood BMI, a 1s.d. (=4.77kg/m2) higher adulthood BMI was associated with 

an increased risk of T2D (OR = 2.47 [2.31, 2.65], p = 1.23×10−142). These 

results, in comparison to the univariable model with no adjustment for childhood 

BMI, are shown in Figs 4, and Supp Table 3. 

Sensitivity Analyses 

MR-Egger intercept analyses for each of the 57 MVMR models identified 3 

statistical associations with p<0.01 in the following exposure-outcome 

relationships: fasting insulin from the MAGIC consortium (β = 1.40×10−3, p = 

9.44×10−4), and T2D from both the FinnGen and Mahajan et. al studies (β = 

(4.00×10−3, 4.00×10−3 ) and p = (5.00×10−3, 1.00×10−3) respectively) – see Supp 

Table 4. 

A Steiger filtered analysis resulted in consistently wider confidence intervals as 

compared to those without filtering – see Supp Table 5, but the two sets of effect 

sizes were highly correlated (r = 0.947) and were directionally consistent in 

101/106 analyses (MR and MVMR).  
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Discussion 

We have used genetics and Mendelian randomization to assess the independent 

causal relationships between BMI recalled from childhood and adulthood against 

the risk of developing T2D, as well as their effects on insulin-related traits using 

fasting, oral glucose tolerance test and intravenous glucose tolerance tests. Our 

measure of childhood BMI provided a more powerful genetic measure than 

previous work, based upon a combination of self-recall categories and known 

summary statistics from the 1958 National Child Development Study for 

measured childhood BMI. 

We found using genetics that higher BMI in childhood, once separated from 

higher BMI in adulthood, was protective for measures of both insulin secretion 

and sensitivity, including fasting glucose and an insulin sensitivity index. We 

note that associations with lower insulin secretion when not corrected for insulin 

sensitivity are consistent with a protective effect - because, in people without 

diabetes, a higher insulin sensitivity results in reduced need for insulin secretion. 

One possible explanation is that higher adiposity in childhood stimulates 

differentiation of cells important for insulin sensitivity and secretion - such as 

adipocytes and beta-cells. There is evidence that people with higher BMIs but 
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without diabetes have more beta cells [20], and evidence that more adipocytes 

are present in people without diabetes compared to those with diabetes but of the 

same BMI [21]. However, the evidence that higher childhood BMI leads to a 

protective effect on measures of insulin secretion and sensitivity was not 

reflected in a conclusive association with protection from T2D. This difference 

may be due to differences in power between measures of continuous traits and 

binary disease traits, although the T2D sample sizes are larger than those for the 

intermediate traits. Additionally, this effect is relative to other people who may 

have changed BMI between childhood and adulthood - for example, it may be 

that change in BMI is the true risk factor, resulting in higher BMI in childhood 

appearing less damaging than a lower BMI in childhood, the latter of which 

would lead to greater relative increases in adulthood. It is also possible that the 

genetic variants with stronger associations with childhood BMI result primarily 

in higher muscle or non-fat mass components to growth. Associations with 

higher muscle mass could result in higher insulin sensitivity and help explain our 

findings. There is, however, recent work suggesting that the childhood genetic 

variants used in [4], and that overlap strongly with the genetic variants we used, 

were good measures of fat mass in children at age 9 to 18 [22]. Crucially, they 

found that the genetic variants were more strongly associated with adiposity than 

lean mass in childhood to the beginning of adulthood. The study showed that the 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted February 7, 2023. ; https://doi.org/10.1101/2023.02.03.23285420doi: medRxiv preprint 

https://doi.org/10.1101/2023.02.03.23285420
http://creativecommons.org/licenses/by/4.0/


 

20 

variants derived from the UKB childhood BMI recall variable are more strongly 

associated with adiposity than lean mass as measured by DEXA imaging 

measures at ages 9,13,15, and 25. The data showed convincingly that the higher 

childhood BMI genetic score leads to higher adiposity consistently at several 

time points in childhood after the adiposity rebound at age 4-5 years and that 

these effects are stronger with fat mass than lean mass, although both are 

present. The associations were also consistent with trajectories of BMI in 

childhood. More precisely, the childhood BMI genetic instrument was associated 

with consistently stronger effects on the imaging-based measures than the 

adulthood genetic instrument at age 9, 13,15 and 18 years, with a 1 SD higher 

childhood BMI genetic risk score associated with ~8% higher fat mass compared 

to 1-2% higher lean mass. The adulthood genetic instrument had a stronger 

effect on fat mass than the childhood instrument by age 25 years.  It is possible 

that the likely insulin sensitizing effects of the 1-2% higher lean mass at several 

times points aged 9-18 offset the insulin resistance effects of the 8% higher fat 

mass. However, we think this is unlikely because we know that a higher fat mass 

leads to slightly higher lean mass due to the load bearing effects of the extra 

weight, as seen with the FTO variant [23]. Importantly the adult BMI genetic 

instrument is associated with a proportionally similar increase in lean mass for 

each 1 SD increase in fat mass, and we know this genetic instrument is 
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associated with lower insulin sensitivity. Whilst we cannot rule it out, we 

therefore think it unlikely that non-fat mass effects and different trajectories of 

growth are influencing our results. Because of these uncertainties, we stress that 

our work should not lead to any change in clinical practice during childhood, 

early life or adulthood, and more work is needed to identify the biological 

mechanisms that could be driving these associations.  

Adulthood BMI was found to have a consistently risk increasing/damaging 

effect on all traits studied, regardless of whether the independent genetic liability 

to childhood BMI was corrected for, acting as a positive control. 

There are a few notable limitations to this study. First, our measure for 

childhood BMI is derived from a categorical measure which was recalled many 

decades after the truth. To attempt to overcome this limitation, we performed 

validation in both the 1958 Birth Cohort, and against external GWAS of BMI 

measured in childhood, where we found that our genetic measures are more 

strongly predictive of the chronologically correct phenotypes.  

 We were unable to independently certify that the genetic variants we have 

used as a proxy of childhood BMI were associated with early-life adiposity, as 

opposed to (for example) growth and lean mass. We also acknowledge the 

limitations related to an MR study, where fully satisfying the three fundamental 
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assumptions is rarely achieved. For example, an MR analysis assumes that the 

genetic variant does not affect the outcome other than via the exposure: this is 

unlikely to be consistently the case when considering genetic variants which 

increase the odds of having T2D and BMI, if the variant (for example) raised 

insulin sensitivity independently. There was also some evidence of pleiotropy 

for 3 of our analyses using the MR-Egger test. 

In summary, our data provides initial evidence that higher fat mass in 

childhood leads to relative protective effects – improvements in insulin 

sensitivity and reduced need for insulin secretion – in adulthood. A potential 

explanation is the beneficial effects of exposure to the metabolic challenges of 

higher adiposity in early, more plastic, stages of life compared to the likely 

damaging effects of large increases in adiposity between childhood and 

adulthood.  
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Figure Legends 

 

Fig 1. Directed acyclic graph illustrating assumed causal relationship between 
childhood and adulthood. Solid red lines denote causality, unidirectional blue 
dashes represent non-causal effects, and double-ended blue dashed lines denote a 
covariance structure. 

 

Fig 2.  Univariable (MR) and multivariable (MVMR) meta-analysis results for 
childhood and adulthood BMI versus oral glucose tolerance test traits: area 
under the insulin curve (AUC), ratio of insulin and glucose curves (AUC Ratio), 
insulin after 30 minutes adjusted for BMI (Ins 30 BMI adj), insulin change after 
30 minutes (Incr Ins 30), and higher insulin sensitivity index (ISI) 
 
Fig 3. Univariable (MR) and multivariable (MVMR) results of testing the 
association between childhood and adulthood BMI against fasting insulin (FI) 
and fasting glucose (FG). 

 
Fig 4. Univariable (MR) and multivariable (MVMR) results of association 
between childhood and adulthood BMI against T2D as measured in Mahajan et. 
al 2018 and FinnGen, with meta-analysis. 
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