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Abstract
Importance: Large volumes of unstructured text notes exist for patients in electronic health
records (EHR) that describe their state of health. Natural language processing (NLP) can
leverage this information for perioperative risk prediction.
Objective: Predict a modified American Society of Anesthesiologists Physical Status
Classification (ASA-PS) score using preoperative note text, identify which model architecture
and note sections are most useful, and interpret model predictions with Shapley values.
Design: Retrospective cohort analysis from an EHR.
Setting: Two-hospital integrated care system comprising a tertiary/quaternary academic
medical center and a level 1 trauma center with a 5-state referral catchment area.
Participants: Patients undergoing procedures requiring anesthesia care spanning across all
procedural specialties from January 1, 2016 to March 29, 2021 who were not assigned ASA VI
and also had a preoperative evaluation note filed within 90 days prior to the procedure.
Exposures: Each procedural case paired with the most recent anesthesia preoperative
evaluation note preceding the procedure.
Main Outcomes and Measures: Prediction of a modified ASA-PS from preoperative note text.
We compared 4 different text classification models for 8 different input text snippets.
Performance was compared using area under the receiver operating characteristic curve
(AUROC) and area under the precision recall curve (AUPRC). Shapley values were used to
explain model predictions.
Results: Final dataset includes 38566 patients undergoing 61503 procedures. Prevalence of
ASA-PS was 8.81% for ASA I, 31.4% for ASA II, 43.25% for ASA III, and 16.54% for ASA IV-V.
The best performing models were the BioClinicalBERT model on the truncated note task
(macro-average AUROC 0.845) and the fastText model on the full note task (macro-average
AUROC 0.865). Shapley values reveal human-interpretable model predictions.
Conclusions and Relevance: Text classification models can accurately predict a patient’s
illness severity using only free-form text descriptions of patients without any manual data
extraction. They can be an additional patient safety tool in the perioperative setting and reduce
manual chart review for medical billing. Shapley feature attributions produce explanations that
logically support model predictions and are understandable to clinicians.
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Introduction
Models to assess adverse event risk are indispensable tools in the arsenal of the perioperative
clinician; guiding decision-making with respect to prehabilitation, preoperative testing,
intraoperative management strategy, postoperative disposition, and more. These models base
risk assessments on a limited number of discrete predictor variables. Examples include the
American College of Surgeons (ACS) National Surgical Quality Improvement Program (NSQIP)
Surgical Risk Calculator,1,2 the Revised Cardiac Risk Index (RCRI),3,4 and the Gupta
Perioperative Risk for Myocardial Infarction or Cardiac Arrest (MICA).5 While well validated,
classification of these predictor variables in many cases require expert clinician chart review and
patient assessment. The use of these manually abstracted discrete data elements works well in
the context of individual patient assessment. However, without a priori discretization of these
elements, usage of these risk assessment tools for other purposes are limited. These purposes
might include automation of risk assessment for patient safety purposes, perioperative
population health assessment, benchmarking within and across health systems, or simply for
triage of patients in assessing the need for a preoperative clinic visit.

Machine learning and natural language processing (NLP) techniques, coupled with adoption of
electronic health records (EHR), and widespread availability of high-performance computational
resources offer new avenues for perioperative risk stratification whereby unstructured data
sources such as medical note free-form text may be directly input into prediction models without
abstracting data elements. Unlike historical keyword-based approaches, modern NLP
techniques using large pretrained language models are able to account for inter-word
dependencies across the entire text sequence and have been shown to achieve state of the art
performance on a variety of NLP tasks6–9 including text classification.10,11 However it is unknown
whether these techniques can be successfully applied to perioperative risk prediction. In
particular, we investigate risk prediction using only unstructured text notes written by clinicians
drawn from the EHR, which often contain narratives that richly and concisely describe a
nuanced clinical picture of the patient while simultaneously prioritizing the clinician’s pertinent
concerns.

The American Society of Anesthesiologists Physical Status (ASA-PS) score 12,13 is a categorical
clinician-driven assessment of patient periprocedural risk. ASA-PS has been shown to be an
independent predictor of mortality and patient outcomes14–19 despite well-described interrater
variability in ASA-PS classification.20,21 In this study, we investigated prediction of ASA-PS
directly from free-form text taken from an anesthesia preoperative evaluation note using four
different text classification approaches that span the spectrum of historical and modern
techniques: (1) random forest22 with n-gram and term-frequency inverse document frequency
(TFIDF) transform,23 (2) support vector machine24 with n-gram and TFIDF transform, (3)
fastText25,26 word vector model, and (4) BioClinicalBERT deep neural network language model.
We compared the model’s prediction with the ASA-PS assigned by the anesthesiologist on the
day of surgery and hypothesized that advanced NLP modeling techniques would provide
improved predictions of ASA-PS score as compared to simpler models.

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted February 14, 2023. ; https://doi.org/10.1101/2023.02.03.23285402doi: medRxiv preprint 

https://paperpile.com/c/Tlxj5Y/ep3fC+CRitm
https://paperpile.com/c/Tlxj5Y/3mYAF+OKEAK
https://paperpile.com/c/Tlxj5Y/D2Os5
https://paperpile.com/c/Tlxj5Y/TtrKA+JiitF+O7bzk+CwBC5
https://paperpile.com/c/Tlxj5Y/rMBm+kjfl
https://paperpile.com/c/Tlxj5Y/s1lb0+8za61
https://paperpile.com/c/Tlxj5Y/3dCKg+4owbo+TY5Mc+PJEQ7+sKg84+6c4ly
https://paperpile.com/c/Tlxj5Y/1hcbB+5AjHL
https://paperpile.com/c/Tlxj5Y/qNP7v
https://paperpile.com/c/Tlxj5Y/cUpuw
https://paperpile.com/c/Tlxj5Y/bA8PF
https://paperpile.com/c/Tlxj5Y/jVEp1+ER9zy
https://doi.org/10.1101/2023.02.03.23285402
http://creativecommons.org/licenses/by/4.0/


Methods
This retrospective study of routinely collected health records data was approved by the
University of Washington Human Subjects Division with a waiver of consent. This study followed
the Transparent Reporting of a Multivariable Prediction Model for Individual Prognosis or
Diagnosis (TRIPOD) guideline27 and other guidelines specific to machine learning projects.28–30

eFigure 1 depicts a flow diagram of study design.

Study Cohort
Inclusion criteria were patients who had a procedure requiring anesthesia at the University of
Washington Medical Center or Harborview Medical Center from January 1, 2016 – March 29,
2021 where the patient also had an anesthesia preoperative evaluation note filed up to 6 hours
after the anesthesia end time. This 6-hour grace period reflects the reality that in some urgent or
emergency situations or due to EHR behavior, text documentation may be time stamped out of
order.

The note must have contained the following sections: History of Present Illness (HPI), Past
Medical and Surgical History (PMSH), Review of Systems (ROS), and Medications; notes
missing at least one of these sections were excluded. Cases must have had a recorded value
for ASA-PS assigned by the anesthesiologist of record, a free-form text Procedure description,
and a free-form text Diagnosis description; cases missing at least one of these values are
excluded.

A unit of analysis is defined as a single case with an anesthesia preoperative evaluation note
filed within 90 days of the procedure. This unit was chosen because ASA-PS is typically
recorded on a per-case basis by the anesthesiologist to reflect the patient’s pre-anesthesia
medical comorbidities at the time of the procedure. Likewise, preoperative evaluation notes filed
>90 days before the case are not considered to reflect the patient’s state of health so are
excluded. Data was randomly split 70%-10%-20% into training, validation, and test datasets
respectively. Patients with multiple cases were randomized into a single data split to avoid
information leakage between the three datasets. New case number identifiers were generated
for this study and used to refer to each case.

Outcomes
The outcome variable is a modified ASA-PS with valid values of ASA I, ASA II, ASA III, ASA
IV-V. ASA V cases are extremely rare, resulting in class imbalances that affect model training
and performance. Thus ASA IV and V were combined into a compound class “IV-V”. ASA VI
organ procurement cases are excluded. The final categories retain the spirit of the ASA-PS for
perioperative risk stratification and resembles the original ASA-PS devised by Saklad in
1941.12,31 The emergency surgery modifier “E” was discarded.
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Predictors and Data Preparation
Free-form text from the anesthesia preoperative evaluation note is organized into many
sections. Regular expressions are used to extract HPI, PMSH, ROS, and medications from the
note. While diagnosis and procedure sections exist within the note, they were less frequently
documented than in the procedural case booking data from the surgeon. Therefore, free-form
text for these sections were taken from the case booking. Newline characters and whitespaces
were removed from the text. Note section headers were excluded so that only the body of text
from each section is included. We used text from each section to train models for ASA-PS
prediction, resulting in 8 prediction tasks: Diagnosis, Procedure, HPI, PMSH, ROS, Medications
(Meds), Note, Truncated Note (Note512). “Note” refers to using the whole note text as the
predictor to train a model. When BioClinicalBERT is applied to the “Note” task, the WordPiece
tokenizer32–34 truncates input text to 512 tokens. This truncation does not occur for other models.
For equitable comparison across models, we define the “Note512” task, which truncates the
note text to the first 512 tokens used by the BioClinicalBERT model.

Statistical Analysis and Modeling
Four model architectures with different conceptual underpinnings were trained: (1) Random
forest (RF),22 (2) Support vector machine (SVM),24 (3) fastText,25,26, and (4) BioClinicalBERT.35

Each model architecture was trained on each of the 8 prediction tasks for a total of 32 final
models.

Each model was trained on the training dataset. Model hyperparameters were tuned using
Tune36 with the BlendSearch37,38 algorithm to maximize Matthew’s Correlation Coefficient (MCC)
computed on the validation dataset. The number of hyperparameter tuning trials was selected to
be 20 times the number of model hyperparameters with early stopping if the MCC of the last 3
trials reaches a plateau with standard deviation <0.001. The best model was then evaluated on
the held-out test dataset. Details on the approach taken for each of the four model architectures
is available in supplemental methods.

Baseline Models
Two baseline models were created for comparison: a random classifier model and an age
classifier model. The random classifier model generates a random prediction without using any
features, thus serving as a negative control baseline. The age classifier model is a simple
multiclass logistic regression model with cross-entropy loss and L2 penalty that uses age to
directly predict the modified ASA-PS outcome variable. Defaults were used for all other model
parameters. Both baselines were implemented using Scikit-learn.

Evaluation Metrics
Final models were evaluated on the held-out test dataset by computing both class-specific and
class-aggregate performance metrics. Class-specific metrics include: receiver operator
characteristic (ROC) curve, area under receiver operator curve (AUROC), precision-recall curve,
area under precision-recall curve (AUPRC), precision (positive predictive value), recall
(sensitivity), and F1. Class-aggregate performance metrics include MCC and AUCmu,39 a
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multiclass generalization of the binary AUROC. Additionally, macro-average AUROC, AUPRC,
precision, recall and F1 were also computed.

Model Interpretability and Error Analysis
4-by-4 contingency tables were generated to visualize the distribution of model errors.
Catastrophic errors were defined as cases where the model predicts ASA IV-V but the
anesthesiologist assigned ASA I, or vice versa. For catastrophic errors made by the
BioClinicalBERT model with the Note512 task, three new anesthesiologist raters independently
assigned an ASA-PS based on only the input text from the Note512 task. These new ASA-PS
ratings were compared against the original anesthesiologist’s ASA-PS as well as the model
prediction’s ASA-PS.

The SHAP40 python package was used to train a Shapley values feature attribution model on
the test dataset to understand which words support prediction of each modified ASA-PS
outcome variable. An analysis of model errors with Shapley value feature attributions was
reviewed for each of the catastrophic error examples with representative examples included in
the manuscript.  Shapley values for predicting each ASA-PS are visualized as a heatmap over
text examples. Text examples are de-identified by replacing ages, dates, names, locations, and
entities with pseudonyms to achieve data obfuscation while preserving structural similarity to the
original passage.

Results
Our study comprised 38,566 patients undergoing 61,503 procedures with 46,275 notes.
Baseline patient, procedure, and note characteristics are described in Table 1. A flow diagram
describing dataset creation is shown in eFigure 2.

AUROC for each model architecture and task is shown in Table 2; AUPRC is shown in eTable 1;
AUCµ and MCC is shown in eTable 2. RF, SVM, and fastText perform best using the entire note
compared to note sections. Tasks with longer text snippets yielded better performance–HPI,
ROS and Meds sections result in better model performance as compared to Diagnosis,
Procedure, and PMSH. On the Note task, fastText performs the best. On the Note512 task,
BioCinicalBERT performs the best.

Direct comparison of models is most appropriate using the Note512 task since all models are
given the same information content. For this task, BioClinicalBERT has better class-aggregate
performance across AUROC, AUPRC, AUCmu, MCC, F1 ( eTable 3), recall (sensitivity) (eTable
5) metrics while the fastText model has better precision (positive predictive value) (eTable 4).
Class-specific metrics also reflect this finding and show that fastText has high recall for ASA II
and III, the most prevalent classes, but recall for ASA I and IV-V is considerably lower.
BioClinicalBERT has similar or better AUROC and AUPRC across all the ASA-PS classes. This
is also seen in the ROC curves (eFigure 4) and the precision-recall curves (eFigure 5), in which
the BioClinicalBERT model generally shows better performance across most thresholds.
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Figure 1 depicts 4-by-4 contingency tables to visualize distribution of model errors on the
Note512 task. When erroneous predictions occur, they are typically adjacent to the ASA-PS
assigned by the original anesthesiologist. For catastrophic errors made by the BioClinicalBERT
model on the Note512 task, ASA-PS ratings from the three new anesthesiologist raters show
greater concordance with the model’s predictions than the original anesthesiologist’s
assignment (Figure 2).

Shapley values in Figure 3 provide clinically plausible explanations for model explanations,
highlighting the directional probability of how specific input text contributes to predicting a
specific ASA-PS. These feature attributions often provide clinically plausible explanations for
why a model is making a wrong prediction and allows the clinician to evaluate the evidence the
model is considering. Additional examples shown in eFigure 6, eFigure 7, eFigure 8, eFigure 9.

Discussion
Text classification techniques have undergone substantial evolution over the past decade. RF
and SVM represent more rudimentary approaches that utilize bag-of-words and n-grams. These
techniques are sensitive to word misspellings, cannot easily account for word order, have
difficulty in capturing long-range references within sentences, and have difficulty in representing
different meanings of a word when the same word appears in different contexts.41–46 Modern
NLP techniques have overcome many of these challenges with: vector space representation of
words25,26,47–49 and subword components26,32,33,50 as seen in the fastText model, attention
mechanism51,52, and pretrained deep autoregressive neural networks53–55 such as transformer
neural networks56. This has resulted in successful large language models such as BERT34,57 and
the domain-specific BioClinicalBERT35.

Longer text length provides more information for the model to make an accurate prediction.
Even though text snippets such as Diagnosis or Procedure may have high relevance for the
illness severity of the patient, the better performance on longer input text sequences indicate
that more information is generally better. This is similar to what is observed in the multifaceted
practice of clinical medicine–where a patient’s overall clinical status is often better understood
as the sum of many weaker but synergistic signals rather than a single descriptor. The limited
input sequence length for BioClinicalBERT creates a performance ceiling as it limits the amount
of information available to the model. Comparing Note and Note512 tasks, all other models that
can utilize the full note have better performance when this input length is lifted with fastText
being the top performer. These findings suggest that future development of a large language
model similar to BioClinicalBERT capable of accepting a longer input context would likely have
superior performance characteristics. fastText requires significantly less compute resources for
model training and inference compared to BioClinicalBERT and remains a good option in lower
resource settings. RF and SVM were our worst performing models, confirming that modern word
vector and language model-based approaches are superior.

There is significant variability on the length and quality of clinical free-form text narrative written
in the note, especially in the HPI section which is typically a clinician’s narrative of the patient’s
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medical status and need for the procedure. In some cases, the HPI section contains one or two
words in length (eFigure 8), whereas in other cases it is a rich narrative (eFigure 6, eFigure 9).
We believe that relatively poor performance in the ASA-PS prediction using HPI alone is a
consequence of variability in documentation, as the model may have limited information for
prediction if the note text does not richly capture the clinical scenario.

Models rarely make catastrophic errors. Erroneous predictions are typically adjacent to the
ASA-PS assigned by the anesthesiologist, suggesting the model is making appropriate
associations between freeform text predictors and the outcome variable (Figure 1). Examination
of catastrophic errors from the BioClinicalBERT model on the Note512 task reveal that for both
types of catastrophic errors–model predicts ASA I and original anesthesiologist assigned ASA
IV-V, as well as the converse–we find that new anesthesiologist raters show greater
concordance with the model predictions rather than the original anesthesiologist (Figure 2).
Many of the catastrophic errors occurred with emergency cases. Shapley feature attributions for
one of these catastrophic errors in Figure 3 reveal that in some cases the original
anesthesiologist may have made the wrong assignment, or may have written a note that does
not reflect the true clinical scenario. In this example, the original anesthesiologist assigned the
case ASA IV-V, but the model predicted I. Feature attributions show the BioClinicalBERT model
correctly identifies pertinent negatives on trauma exam, normal hematocrit of 33, and normal
Glasgow Coma Scale (GCS) of 15 to all support a prediction for ASA I and against ASA IV-V. 58

In fact, all new anesthesiologist raters agree with the model rather than the original
anesthesiologist. Examples like this suggest that the model performance may be
underestimated by our evaluation metrics since our ground truth test set contains imperfect
ASA-PS assignments. It illustrates how the model is robust against potentially faulty labels and
has learned to make clinically appropriate ASA-PS predictions based on the input text

Shapley feature attributions reveal that the model is able to identify indirect indicators of a
patient’s illness severity. For example, subcutaneous heparin is often administered for
bed-bound inpatients to prevent the development of deep vein thrombosis. eFigure 8 depicts an
example where the model learns to associate mention of subcutaneous heparin in the
medication list with a higher ASA-PS, likely because hospitalized patients are generally more ill
than outpatients who present to the hospital for same-day surgery. Similarly, the model learns
the association between the broad spectrum antibiotic ertapenem with a higher ASA-PS as
compared to narrow spectrum or prophylactic antibiotics such as metronidazole or cefazolin.
These observations show that the model is able to identify and link these subtle indicators to a
patient’s illness severity. Shapley value feature attributions prove to be an effective tool that
enables clinicians to understand how a model makes its prediction from text predictors.

Limitations
Our dataset is derived from a real-world EHR used to provide clinical care and includes human
and computer generated errors. These issues include data entry and spelling, the use of
abbreviations, references to other notes and test results not available to the model, and
automatically generated/inserted text as part of a note template. The BioClinicalBERT model is
limited to an input sequence of 512 tokens; future investigation is needed to understand if
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long-context large language models can achieve better performance. We also did not explore
more advanced NLP models such as those that perform entity and relation extraction, which
may further enhance the prediction performance. Finally, the ASA-PS is known to have only
moderate interrater agreement among human anesthesiologists.20,21 Consequently, a perfect
classification on this task is not possible since the ground truth labels derived from the EHR
encapsulate this interrater variability. Further investigation is needed to explore the prediction of
other outcome variables which may be less subject to interrater variability.

Conclusions
NLP models can accurately predict a patient’s illness severity using only free-form text
descriptions of patients without any manual data extraction. They can be automatically applied
to entire panels of patients and serve as a perioperative risk stratification and clinical decision
support tool to ensure patient safety. Illness severity predictions may also be used to reduce
manual chart review overhead for medical billing. Shapley feature attributions produce
explanations that logically support model predictions and are understandable to clinicians.
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Supplemental Methods
Details on the approach taken for each of the four model architectures.

Random Forest
Text input was preprocessed into a unigram and bigram count matrix followed by TFIDF
transform.23 Random forest classifier from the Scikit-learn59 python library was used with
minimization of gini impurity objective function and weighting each outcome class by inverse
frequency to adjust for class imbalance. Hyperparameters tuned include: number of trees and
number of features when looking for best split. Defaults were used for all other model
parameters.

Support Vector Machine
Text input was preprocessed into a unigram and bigram count matrix followed by TFIDF
transform.23 LinearSVC60 from the Scikit-learn59 python library was used with minimization of
squared hinge loss with L2 penalty61 and weighting each outcome class by inverse frequency to
adjust for class imbalance. Crammer-Singer approach was used for the multiclass strategy.62

The “C” regularization strength parameter was tuned as a hyperparameter. Defaults were used
for all other model parameters.

fastText
Text was directly input into the fastText classification model, which internally combines word and
sub-word vector representations using continuous bag-of-words47 and softmax with negative
sampling loss48 objective function. Hyperparameters tuned include: learning rate, learning rate
update rate, word vector dimension size, context window size, number of negatives sampled,
number of epochs. Defaults were used for all other model parameters.

BioClinicalBERT
Text was tokenized using WordPiece tokenizer32–34 and then used as input to a pre-trained
BioClinicalBERT model35 with the addition of ASA-PS and Emergency modifier prediction heads,
each consisting of a linear and softmax layer, for our specific ASA-PS prediction task (eFigure
3). These prediction heads were jointly optimized with AdamW optimizer63 during training using
a weighted average of the cross-entropy loss from each prediction head; the weight of ASA-PS
was held constant at 1.0 and the weight of the emergency modifier head was tuned as a
hyperparameter. Cross-entropy loss is weighed by inverse class frequency to adjust for class
imbalance. Both tokenizer and model are based on the Hugging Face64 python implementation
with GPU acceleration enabled by PyTorch65 and PyTorch Lightning66. Tokenizer and model
sequence length were set to the maximum of 512 tokens for the pretrained model. Longer input
text sequences were truncated to this length. Hyperparameters tuned include: emergency head
weight, batch size, learning rate, weight decay, dropout, gradient clipping, and number of
epochs. ASHA67 with a reduction factor of 3 was used to tune up to 4 instances of the same
model with different hyperparameters in parallel.
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Tables & Figures

Table 1
Train Validation Test

Patient
Characteristics

Patient Count, no. (%
across dataset splits) 26994 (70.0%) 3858 (10.0%) 7714 (20.0%)

Number of Surgeries
per Patient, no. (%

within dataset split)

1 19107 (70.78%) 2741 (71.05%) 5475 (70.97%)

2 4528 (16.77%) 608 (15.76%) 1330 (17.24%)

3 1635 (6.06%) 249 (6.45%) 425 (5.51%)

4 715 (2.65%) 124 (3.21%) 224 (2.9%)

>=5 1009 (3.74%) 136 (3.53%) 260 (3.37%)

Age, mean (SD) 50.59 (18.16) 51.51 (18.09) 50.66 (18.0)

Gender, no. (% within
dataset split)

Female 18419 (70.62%) 2534 (9.72%) 5130 (19.67%)

Male 24720 (69.79%) 3646 (10.29%) 7053 (19.91%)

Unknown 0 (0.0%) 0 (0.0%) 1 (100.0%)

Procedural Case
Characteristics

Case Count, no. (%
across dataset splits) 43139 (70.14%) 6180 (10.05%) 12184 (19.81%)

Anesthesia Type, no.
(% within dataset split)

General 34901 (81.07%) 4961 (80.51%) 9927 (81.64%)

MAC 7063 (16.41%) 1005 (16.31%) 1905 (15.67%)

Regional 1089 (2.53%) 196 (3.18%) 327 (2.69%)

ASA Physical Status
Classification Score,
no. (% within dataset

split)

I 3734 (8.66%) 555 (8.98%) 1127 (9.25%)

II 13631 (31.6%) 1875 (30.34%) 3806 (31.24%)

III 18626 (43.18%) 2649 (42.86%) 5327 (43.72%)

IV-V 7148 (16.57%) 1101 (17.82%) 1924 (15.79%)

Time Between
Pre-Anesthesia Note
and Surgery, median

days HH:MM:SS (IQR)

0 days 17:11:48
(0 days 00:17:00, 4

days 06:04:05)

0 days 17:28:55
(0 days 00:18:00, 4

days 05:04:10)

0 days 17:29:55
(0 days 00:17:05, 4

days 01:52:53)

Note
Characteristics

Notes Count, no. (%
across dataset splits) 32444 (70.11%) 4649 (10.05%) 9182 (19.84%)

Text Word-Level
Length, median (IQR)

Full Note 727 (514, 999) 723 (514, 1010) 722 (511, 997)

Procedure 5 (4, 8) 5 (4, 8) 5 (4, 8)

Diagnosis 3 (2, 5) 3 (2, 5) 3 (2, 5)

HPI 86 (35, 162) 87 (35, 161) 88 (35, 163)

PMSH 28 (18, 42) 28 (19, 44) 28 (18, 42)

ROS 87 (53, 154) 87 (54, 155) 87 (54, 153)

Medications 145 (59, 264) 143 (59, 264) 146 (57, 262)

Table 1: Baseline patient, procedure, and note characteristics for Train, Validation, Test
datasets.
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Table 2
A. Macro-average AUROC

Baseline Diagnosis Procedure HPI PMSH ROS Meds Note Note512

Random Classifier 0.500 --- --- --- --- --- --- --- ---

Age Classifier 0.677 --- --- --- --- --- --- --- ---

Random Forest --- 0.741 0.751 0.788 0.695 0.778 0.781 0.820 0.802

Support Vector
Machine --- 0.714 0.717 0.789 0.697 0.787 0.768 0.850 0.829

fastText --- 0.757 0.758 0.791 0.720 0.793 0.789 0.865 0.844

BioClinicalBERT --- 0.767 0.755 0.814 0.737 0.806 0.784 0.843 0.845

B. Class-specific AUROC

Baseline Diagnosis Procedure HPI PMSH ROS Meds Note Note512

Random
Classifier

I 0.500 --- --- --- --- --- --- --- ---

II 0.500 --- --- --- --- --- --- --- ---

III 0.500 --- --- --- --- --- --- --- ---

IV-V 0.500 --- --- --- --- --- --- --- ---

Age Classifier I 0.842 --- --- --- --- --- --- --- ---

II 0.600 --- --- --- --- --- --- --- ---

III 0.656 --- --- --- --- --- --- --- ---

IV-V 0.611 --- --- --- --- --- --- --- ---

Random Forest I --- 0.790 0.810 0.864 0.810 0.869 0.861 0.898 0.886

II --- 0.708 0.713 0.744 0.636 0.729 0.738 0.783 0.759

III --- 0.660 0.674 0.708 0.644 0.708 0.718 0.747 0.719

IV-V --- 0.804 0.806 0.835 0.691 0.803 0.807 0.854 0.844

Support Vector
Machine

I --- 0.776 0.793 0.874 0.827 0.904 0.869 0.938 0.924

II --- 0.653 0.633 0.738 0.592 0.691 0.680 0.806 0.775

III --- 0.639 0.650 0.709 0.655 0.728 0.702 0.775 0.750

IV-V --- 0.789 0.794 0.836 0.714 0.826 0.821 0.881 0.865

fastText I --- 0.815 0.820 0.870 0.833 0.889 0.863 0.943 0.930

II --- 0.724 0.718 0.755 0.675 0.771 0.755 0.833 0.809

III --- 0.684 0.685 0.720 0.668 0.729 0.724 0.798 0.771

IV-V --- 0.805 0.811 0.819 0.702 0.782 0.815 0.884 0.867

BioClinicalBERT I --- 0.838 0.816 0.901 0.851 0.902 0.861 0.917 0.922

II --- 0.711 0.707 0.768 0.674 0.748 0.737 0.806 0.804

III --- 0.688 0.681 0.741 0.682 0.752 0.719 0.776 0.779

IV-V --- 0.830 0.818 0.848 0.741 0.823 0.818 0.874 0.874

Table 2: (A) Macro-average AUROC and (B) class-specific AUROC for each model architecture
and task on the held-out test set compared to baseline models. Random Classifier serves as a
negative control baseline. Age classifier serves as a simple clinical baseline since ASA-PS
typically increases as a patient ages and has increased medical comorbidities.
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Figure 1

Figure 1: 4-by-4 contingency tables for each model architecture on the Note512 task. The
vertical axis corresponds to modified ASA-PS recorded in the anesthetic record by the
anesthesiologist. The horizontal axis corresponds to the model predicted modified ASA-PS.
Numbers in the table represent case count from the test set and show how these cases are
distributed based on model prediction and actual ASA-PS recorded in the anesthetic record.
Cells outlined in red in the BioClinicalBERT contingency table correspond to our definition of
catastrophic errors. The 21 cases where anesthesiologist assigned ASA I and BioClinicalBERT
model predicted ASA IV-V comprise 1.7% of cases. The 19 cases where anesthesiologist
assigned ASA IV-V and BioClinicalBERT model predicted ASA I comprise 1.6% of cases.
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Figure 2

Figure 2: Rater assignments of ASA-PS for catastrophic error examples from the
BioClinicalBERT model on Note512 task. Top plot shows scenario where model prediction is
ASA IV-V, but original anesthesiologist assigned case ASA I. Bottom plot shows scenario where
model prediction is ASA I, but original anesthesiologist assigned case ASA IV-V. Three
anesthesiologist raters were asked to read the input text from the Note512 task and assign an
ASA-PS for each of the catastrophic error examples. For each case, a dot marks a rater’s
ASA-PS assignment. The model’s prediction and original anesthesiologist ASA-PS is shown as
a highlighted region overlaid on the plots. Shapley feature attribution visualizations are shown
for cases #57482 (Figure 3, eFigure 6), #41739 (eFigure 7), #11950 (eFigure 8), #29054
(eFigure 9).
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Figure 3

Figure 3: Attribution of input text features to predicting modified ASA-PS for the BioClinicalBERT
model on Note512 task. Shapley values for each text token is shown to compare feature
attributions to ASA I (top) and feature attributions to ASA IV-V (bottom). Red tokens positively
support predicting the target ASA-PS whereas blue tokens do not support predicting the target
ASA-PS. The magnitude and direction of support is overlaid on a force plot above the text. The
baseline probability of predicting each class in the test set is shown as the “base value” on the
force plot. The base value + sum of Shapley values from each token corresponds to the
probability of predicting the ASA-PS and is shown as the bolded number. For simplicity, feature
attributions to ASA II and III are omitted in this figure, but a full-visualization with all outcome
ASA-PS for this text snippet is available in eFigure 6. Text examples are de-identified by
replacing ages, dates, names, locations, and entities with pseudonyms to achieve data
obfuscation while preserving structural similarity to the original passage.
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Supplemental Figures

eFigure 1

eFigure 1: Flowchart of study design: dataset creation, model development, evaluation, and
interpretation.
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eFigure 2

eFigure 2: CONSORT Flow Diagram for Dataset Creation. If a patient has multiple procedural
cases and pre-anesthesia notes, all of a patient’s cases and notes are allocated to the same
data split.
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eFigure 3

eFigure 3: BioClinicalBERT Model Architecture with additional prediction heads for fine-tuning
and prediction of modified ASA-PS
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eFigure4

eFigure 4: ROC performance of each model architecture on the Note512 task compared to
baseline models. Each plot depicts model performance for predicting a specific ASA-PS.
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eFigure 5

eFigure 5: Precision-recall curve performance of each model architecture on the Note512 task
compared to baseline models. Each plot depicts model performance for predicting a specific
ASA-PS.
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eFigure 6

eFigure 6: Attribution of input text features to predicting modified ASA-PS for the
BioClinicalBERT model on Note512 task. Model prediction is ASA I, Anesthesiologist assigned
case ASA IV-V. Notable findings include the model focusing on pertinent negatives on trauma
exam and imaging findings and a normal hematocrit of 33 all of which support predicting a
ASA-PS I. The same pertinent negatives as well as a Glasgow Coma Scale (GCS) of 15 are
negatively Shapley values for ASA-PS IV-V, which reduce the probability of predicting ASA IV-V.
Despite the anesthesiologist’s assignment of ASA IV-V, the text description does not suggest
the patient has severe systemic disease with constant threat to life (ASA IV) or is moribund and
requires the operation to survive (ASA V). Text examples are de-identified by replacing ages,
dates, names, locations, and entities with pseudonyms to achieve data obfuscation while
preserving structural similarity to the original passage.
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eFigure 7

eFigure 7: Attribution of input text features to predicting modified ASA-PS for the
BioClinicalBERT model on Note512 task. Model prediction is ASA I, Anesthesiologist assigned
case ASA IV-V. Notable findings include the model associating chest tube with ASA IV-V. The
model has trouble with consistently attributing the multiple mentions of eyelid laceration with a
specific ASA-PS. The model may be inappropriately assigning mention of left pneumothorax to
ASAI. This example depicts a challenge for the model in which a relatively minor injury (eyelid
laceration) is simultaneously present with a potentially severe injury (pneumothorax), though the
severity of the pneumothorax is not mentioned and thus the text predominantly supports ASA I
(healthy) or ASA II (mild systemic disease). This kind of mixed illness/injury example coupled
with a narrative that does not clearly describe disease severity may be a struggle for the model.
Text examples are de-identified by replacing ages, dates, names, locations, and entities with
pseudonyms to achieve data obfuscation while preserving structural similarity to the original
passage.
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eFigure 8

eFigure 8: Attribution of input text features to predicting modified ASA-PS for the
BioClinicalBERT model on Note512 task. Model prediction is ASA IV-V, Anesthesiologist
assigned case ASA I. Notable findings include: young age associated with ASA I and ASA IV-V,
but negatively associated with ASA II and III; diagnosis of perforated appendix and procedure of
laparoscopic appendectomy negatively associated with ASA I and positively associated with
higher ASA-PS; model identifying broad-spectrum antibiotics such as ertapenem to be
associated with ASA IV-V, but narrower-spectrum antibiotics such as metronidazole, cefazolin to
be heavily associated with ASA I; inpatient medications such as subcutaneous heparin and
ondansetron negatively associated with lower ASA-PS and positively associated with higher
ASA-PS. Text examples are de-identified by replacing ages, dates, names, locations, and
entities with pseudonyms to achieve data obfuscation while preserving structural similarity to the
original passage.
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eFigure 9

eFigure 9: Attribution of input text features to predicting modified ASA-PS for the
BioClinicalBERT model on Note512 task. Model prediction is ASA IV-V, Anesthesiologist
assigned case ASA I. Notable findings include medical conditions and interventions associated
with higher ASA-PS such as cardiomyopathy, internal cardiac defibrillator (ICD) generator
change, paroxysmal ventricular tachycardia, left ventricular assist device (LVAD), heart failure,
possible transplantation, tricuspid valve repair, and patent foramen ovale (PFO) closure; history
of chronic cigarette smoking and snoring associated with ASA IV-V. The text description is at
least ASA III (severe systemic illness), and can be argued to be ASA IV (severe systemic
disease with constant threat to life) if heart failure is progressively worsening. In this example
the model appears to make a more appropriate ASA-PS prediction than the anesthesiologist.
Text examples are de-identified by replacing ages, dates, names, locations, and entities with
pseudonyms to achieve data obfuscation while preserving structural similarity to the original
passage.
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eTable 1
A. Macro-average AUPRC

Baseline Diagnosis Procedure HPI PMSH ROS Meds Note Note512

Random Classifier 0.250 --- --- --- --- --- --- --- ---

Age Classifier 0.375 --- --- --- --- --- --- --- ---

Random Forest --- 0.457 0.462 0.510 0.392 0.484 0.489 0.567 0.534

Support Vector
Machine --- 0.443 0.451 0.525 0.413 0.514 0.490 0.627 0.593

fastText --- 0.478 0.473 0.518 0.421 0.512 0.495 0.642 0.607

BioClinicalBERT --- 0.486 0.473 0.570 0.446 0.536 0.499 0.616 0.619

B. Class-specific AUPRC

Baseline Diagnosis Procedure HPI PMSH ROS Meds Note Note512

Random
Classifier

I 0.091 --- --- --- --- --- --- --- ---

II 0.316 --- --- --- --- --- --- --- ---

III 0.429 --- --- --- --- --- --- --- ---

IV-V 0.163 --- --- --- --- --- --- --- ---

Age Classifier I 0.343 --- --- --- --- --- --- --- ---

II 0.383 --- --- --- --- --- --- --- ---

III 0.546 --- --- --- --- --- --- --- ---

IV-V 0.227 --- --- --- --- --- --- --- ---

Random Forest I --- 0.285 0.285 0.394 0.295 0.374 0.327 0.488 0.455

II --- 0.490 0.487 0.518 0.425 0.515 0.498 0.580 0.550

III --- 0.565 0.576 0.614 0.551 0.610 0.621 0.650 0.625

IV-V --- 0.488 0.500 0.514 0.299 0.437 0.510 0.550 0.508

Support Vector
Machine

I --- 0.272 0.305 0.436 0.323 0.433 0.345 0.606 0.575

II --- 0.460 0.441 0.519 0.392 0.493 0.477 0.614 0.574

III --- 0.568 0.567 0.618 0.570 0.639 0.618 0.684 0.655

IV-V --- 0.473 0.492 0.527 0.367 0.491 0.519 0.605 0.568

fastText I --- 0.317 0.308 0.428 0.316 0.429 0.340 0.617 0.575

II --- 0.507 0.491 0.531 0.453 0.559 0.517 0.645 0.605

III --- 0.590 0.583 0.620 0.568 0.617 0.622 0.705 0.675

IV-V --- 0.495 0.510 0.491 0.349 0.444 0.502 0.601 0.575

BioClinicalBERT I --- 0.330 0.301 0.529 0.354 0.445 0.337 0.582 0.591

II --- 0.499 0.487 0.562 0.454 0.553 0.521 0.616 0.612

III --- 0.599 0.585 0.641 0.588 0.655 0.628 0.679 0.690

IV-V --- 0.517 0.519 0.546 0.388 0.492 0.509 0.588 0.585

eTable 1: (A) Macro-average AUPRC and (B) class-specific AUPRC for each model architecture
and task on the held-out test set compared to baseline models. Random Classifier serves as a
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negative control baseline. Age classifier serves as a simple clinical baseline since ASA-PS
typically increases as a patient ages and has increased medical comorbidities.

eTable 2
A. Matthew's Correlation Coefficient (MCC)

Baseline Diagnosis Procedure HPI PMSH ROS Meds Note Note512

Random Classifier 0.000 --- --- --- --- --- --- --- ---

Age Classifier 0.161 --- --- --- --- --- --- --- ---

Random Forest --- 0.264 0.265 0.280 0.197 0.293 0.314 0.370 0.317

Support Vector
Machine --- 0.252 0.247 0.332 0.194 0.326 0.299 0.431 0.398

fastText --- 0.280 0.278 0.336 0.230 0.360 0.324 0.461 0.425

BioClinicalBERT --- 0.280 0.267 0.369 0.226 0.364 0.321 0.439 0.430

B. AUCµ

Baseline Diagnosis Procedure HPI PMSH ROS Meds Note Note512

Random Classifier 0.500 --- --- --- --- --- --- --- ---

Age Classifier 0.726 --- --- --- --- --- --- --- ---

Random Forest --- 0.772 0.781 0.821 0.727 0.809 0.806 0.852 0.836

Support Vector
Machine --- 0.767 0.778 0.830 0.755 0.849 0.827 0.889 0.872

fastText --- 0.777 0.776 0.812 0.745 0.825 0.809 0.882 0.865

BioClinicalBERT --- 0.830 0.816 0.871 0.798 0.865 0.838 0.884 0.891

eTable 2: (A) Matthew's correlation coefficient (MCC) and (B) AUCµ for each model architecture
and task on the held-out test set compared to baseline models. MCC is a categorical analog of
Pearson’s correlation coefficient. AUCµ is a multiclass generalization of AUROC and U statistic
and is more theoretically grounded than macro-average AUROC, but less commonly reported.

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted February 14, 2023. ; https://doi.org/10.1101/2023.02.03.23285402doi: medRxiv preprint 

https://doi.org/10.1101/2023.02.03.23285402
http://creativecommons.org/licenses/by/4.0/


eTable 3
A. Macro-average F1

Baseline Diagnosis Procedure HPI PMSH ROS Meds Note Note512

Random Classifier 0.231 --- --- --- --- --- --- --- ---

Age Classifier 0.337 --- --- --- --- --- --- --- ---

Random Forest --- 0.456 0.445 0.394 0.391 0.448 0.474 0.509 0.457

Support Vector
Machine --- 0.436 0.420 0.509 0.382 0.483 0.463 0.588 0.566

fastText --- 0.439 0.450 0.491 0.416 0.510 0.476 0.606 0.580

BioClinicalBERT --- 0.441 0.454 0.545 0.400 0.530 0.496 0.600 0.590

B. Class-specific F1

Baseline Diagnosis Procedure HPI PMSH ROS Meds Note Note512

Random
Classifier

I 0.133 --- --- --- --- --- --- --- ---

II 0.278 --- --- --- --- --- --- --- ---

III 0.314 --- --- --- --- --- --- --- ---

IV-V 0.199 --- --- --- --- --- --- --- ---

Age Classifier I 0.377 --- --- --- --- --- --- --- ---

II 0.301 --- --- --- --- --- --- --- ---

III 0.553 --- --- --- --- --- --- --- ---

IV-V 0.117 --- --- --- --- --- --- --- ---

Random Forest I --- 0.293 0.242 0.160 0.335 0.341 0.303 0.353 0.290

II --- 0.489 0.507 0.530 0.390 0.536 0.537 0.601 0.533

III --- 0.560 0.581 0.644 0.593 0.629 0.628 0.647 0.656

IV-V --- 0.480 0.451 0.244 0.247 0.285 0.428 0.437 0.349

Support Vector
Machine

I --- 0.337 0.354 0.422 0.355 0.458 0.422 0.565 0.540

II --- 0.405 0.390 0.537 0.343 0.445 0.427 0.608 0.574

III --- 0.499 0.456 0.559 0.441 0.528 0.490 0.612 0.591

IV-V --- 0.503 0.479 0.519 0.388 0.503 0.512 0.567 0.558

fastText I --- 0.195 0.253 0.333 0.312 0.395 0.283 0.560 0.530

II --- 0.525 0.509 0.558 0.473 0.584 0.543 0.633 0.613

III --- 0.606 0.608 0.641 0.600 0.650 0.640 0.692 0.671

IV-V --- 0.429 0.431 0.432 0.280 0.412 0.437 0.540 0.504

BioClinicalBERT I --- 0.365 0.348 0.530 0.398 0.506 0.416 0.578 0.577

II --- 0.422 0.475 0.561 0.384 0.532 0.507 0.607 0.611

III --- 0.459 0.498 0.560 0.410 0.594 0.560 0.644 0.594

IV-V --- 0.519 0.493 0.530 0.408 0.488 0.501 0.570 0.577

eTable 3: (A) Macro-average F1 and (B) class-specific F1 for each model architecture and task
on the held-out test set compared to baseline models.
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eTable 4
A. Macro-average Precision

Baseline Diagnosis Procedure HPI PMSH ROS Meds Note Note512

Random Classifier 0.250 --- --- --- --- --- --- --- ---

Age Classifier 0.339 --- --- --- --- --- --- --- ---

Random Forest --- 0.460 0.468 0.581 0.401 0.507 0.511 0.604 0.579

Support Vector
Machine --- 0.430 0.426 0.500 0.389 0.483 0.462 0.573 0.550

fastText --- 0.524 0.509 0.558 0.478 0.557 0.516 0.631 0.616

BioClinicalBERT --- 0.451 0.444 0.531 0.412 0.516 0.484 0.591 0.576

B. Class-specific Precision

Baseline Diagnosis Procedure HPI PMSH ROS Meds Note Note512

Random
Classifier

I 0.090 --- --- --- --- --- --- --- ---

II 0.313 --- --- --- --- --- --- --- ---

III 0.431 --- --- --- --- --- --- --- ---

IV-V 0.165 --- --- --- --- --- --- --- ---

Age Classifier I 0.251 --- --- --- --- --- --- --- ---

II 0.377 --- --- --- --- --- --- --- ---

III 0.548 --- --- --- --- --- --- --- ---

IV-V 0.180 --- --- --- --- --- --- --- ---

Random Forest I --- 0.318 0.300 0.550 0.299 0.414 0.355 0.643 0.580

II --- 0.493 0.487 0.512 0.457 0.498 0.509 0.534 0.529

III --- 0.550 0.553 0.548 0.530 0.581 0.592 0.619 0.568

IV-V --- 0.478 0.532 0.713 0.319 0.533 0.586 0.619 0.638

Support Vector
Machine

I --- 0.249 0.239 0.394 0.234 0.315 0.294 0.508 0.471

II --- 0.485 0.475 0.517 0.401 0.545 0.511 0.602 0.569

III --- 0.570 0.597 0.625 0.578 0.654 0.634 0.683 0.661

IV-V --- 0.418 0.394 0.465 0.343 0.416 0.411 0.499 0.498

fastText I --- 0.474 0.414 0.543 0.427 0.511 0.379 0.625 0.625

II --- 0.489 0.492 0.535 0.452 0.550 0.526 0.633 0.597

III --- 0.557 0.553 0.587 0.540 0.610 0.591 0.656 0.632

IV-V --- 0.576 0.576 0.568 0.492 0.556 0.569 0.609 0.611

BioClinicalBERT I --- 0.243 0.289 0.469 0.274 0.382 0.328 0.547 0.521

II --- 0.488 0.472 0.546 0.462 0.556 0.520 0.613 0.582

III --- 0.642 0.595 0.646 0.601 0.655 0.631 0.665 0.690

IV-V --- 0.432 0.419 0.462 0.311 0.472 0.456 0.537 0.511

eTable 4: (A) Macro-average precision and (B) class-specific precision for each model
architecture and task on the held-out test set compared to baseline models.
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eTable 5
A. Macro-average Recall

Baseline Diagnosis Procedure HPI PMSH ROS Meds Note Note512

Random Classifier 0.250 --- --- --- --- --- --- --- ---

Age Classifier 0.413 --- --- --- --- --- --- --- ---

Random Forest --- 0.453 0.434 0.393 0.399 0.438 0.460 0.486 0.437

Support Vector
Machine --- 0.486 0.498 0.526 0.459 0.572 0.548 0.615 0.596

fastText --- 0.424 0.432 0.469 0.403 0.491 0.460 0.590 0.558

BioClinicalBERT --- 0.527 0.485 0.575 0.489 0.577 0.530 0.611 0.619

B. Class-specific Recall

Baseline Diagnosis Procedure HPI PMSH ROS Meds Note Note512

Random
Classifier

I 0.251 --- --- --- --- --- --- --- ---

II 0.249 --- --- --- --- --- --- --- ---

III 0.247 --- --- --- --- --- --- --- ---

IV-V 0.251 --- --- --- --- --- --- --- ---

Age Classifier I 0.757 --- --- --- --- --- --- --- ---

II 0.250 --- --- --- --- --- --- --- ---

III 0.557 --- --- --- --- --- --- --- ---

IV-V 0.086 --- --- --- --- --- --- --- ---

Random Forest I --- 0.271 0.203 0.094 0.380 0.290 0.264 0.243 0.193

II --- 0.486 0.528 0.550 0.340 0.581 0.569 0.687 0.537

III --- 0.571 0.612 0.780 0.674 0.687 0.669 0.677 0.777

IV-V --- 0.483 0.391 0.147 0.201 0.195 0.337 0.337 0.240

Support Vector
Machine

I --- 0.521 0.682 0.454 0.736 0.834 0.747 0.637 0.633

II --- 0.348 0.331 0.557 0.299 0.375 0.367 0.613 0.578

III --- 0.445 0.369 0.506 0.357 0.443 0.399 0.555 0.535

IV-V --- 0.631 0.612 0.588 0.446 0.637 0.679 0.657 0.636

fastText I --- 0.123 0.182 0.240 0.246 0.322 0.226 0.508 0.461

II --- 0.567 0.527 0.582 0.495 0.622 0.561 0.634 0.630

III --- 0.665 0.676 0.705 0.675 0.694 0.698 0.732 0.715

IV-V --- 0.342 0.344 0.349 0.195 0.327 0.355 0.485 0.429

BioClinicalBERT I --- 0.729 0.436 0.610 0.724 0.748 0.568 0.611 0.647

II --- 0.372 0.479 0.577 0.328 0.510 0.493 0.601 0.643

III --- 0.357 0.428 0.494 0.312 0.544 0.504 0.625 0.522

IV-V --- 0.651 0.599 0.621 0.593 0.505 0.555 0.607 0.664

eTable 5: (A) Macro-average recall and (B) class-specific recall for each model architecture and
task on the held-out test set compared to baseline models.
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