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Abstract

Paranoid delusions or unfounded beliefs that others intend to deliberately
cause harm are a frequent and burdensome symptom in early psychosis,
but their emergence and consolidation still remains opaque. Recent theories
suggest that aberrant prediction errors lead to a brittle model of the world
providing a breeding ground for delusions. Here, we employ a Bayesian
approach to test for a more unstable model of the world and investigate the
computational mechanisms underlying emerging paranoia.

We modelled behaviour of 18 first-episode psychosis patients (FEP), 19
individuals at clinical high-risk for psychosis (CHR-P), and 19 healthy con-
trols (HC) during an advice-taking task, designed to probe learning about
others’ changing intentions. We formulated competing hypotheses compar-
ing the standard Hierarchical Gaussian Filter (HGF), a Bayesian belief up-
dating scheme, with a mean-reverting HGF to model an altered perception
of volatility.

There was a significant group-by-volatility interaction on advice-taking
suggesting that CHR-P and FEP displayed reduced adaptability to envi-
ronmental volatility. Model comparison favored the standard HGF in HC,
but the mean-reverting HGF in CHR-P and FEP in line with perceiving
increased volatility, although model attributions in CHR-P were heteroge-
neous. We observed correlations between shifts in perceived volatility and
positive symptoms generally as well as with frequency of paranoid delusions
specifically.

Our results suggest that FEP are characterised by a different computa-
tional mechanism – perceiving the environment as increasingly volatile – in
line with Bayesian accounts of psychosis. This approach may prove useful to
investigate heterogeneity in CHR-P and identify vulnerability for transition
to psychosis.

Keywords: first-episode psychosis, clinical high risk for psychosis, paranoid
delusions, Hierarchical Gaussian Filter, volatility, prediction errors
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1 Introduction

Paranoid delusions are commonly defined as unfounded beliefs that others
intend to deliberately cause harm (Freeman and Garety, 2000) and they
are a frequent symptom in early psychosis occurring in about 50-70% of
first-episode-psychosis patients (FEP) (Freeman, 2007; Freeman and Garety,
2014; Sartorius et al., 1986). While paranoid delusions are a key symptom
of schizophrenia, they are also present in the general population (Freeman
et al., 2005; Wellstein et al., 2020) and are frequently reported in other
psychotic disorders and affective disorders, such as bipolar disorder and
depression (Appelbaum et al., 1999). Importantly, paranoid delusions are a
heavy burden for those afflicted by them as they are associated with more
frequent suicidal ideation in the general population (Freeman et al., 2011)
and higher suicide risk in patients (Fenton et al., 1997; Saarinen et al., 1999).

Despite an urgent clinical need to address these symptoms, the emer-
gence and consolidation of paranoid delusions remain a subject of debate.
Recent cognitive theories suggest that aberrant salience caused by overly
precise prediction errors (PEs) – possibly mediated through dopaminergic
signaling – lead to a brittle model of the world providing a breeding ground
for delusions to form (Kapur, 2003; Howes and Kapur, 2009; Corlett et al.,
2010; Winton-Brown et al., 2014; Diaconescu et al., 2019). It has been
proposed that these aberrantly salient PEs could then be explained away
by adopting more abstract higher order beliefs that may take the form of
delusions (Kapur, 2003; Corlett et al., 2010; Sterzer et al., 2018).

Here, we pursue a Bayesian approach that enables us to formalize the
concept of aberrant salience. We will first discuss aberrant salience in a
non-hierarchical framework and then proceed to a hierarchical framework
using a hierarchical Bayesian model of learning (Mathys et al., 2011, 2014)
to derive competing computational mechanisms that are tested in this study.

When adopting a Bayesian framework, aberrant salience can be under-
stood as reduced uncertainty (i.e., variance) or increased precision (inverse
of uncertainty) that up-weighs incoming sensory information (Stephan et al.,
2006; Fletcher and Frith, 2009; Corlett et al., 2009, 2010; Adams et al., 2013;
Diaconescu et al., 2019). In a non-hierarchical model, aberrant salience
would be expressed in relatively increased precision associated with the like-
lihood or reduced precision associated with the prior distribution (e.g., see
Sterzer et al. (2018)).

However, for example Fletcher and Frith (2009) have argued that beliefs
may better be conceptualised in a hierarchical manner. Assuming a hierar-
chical structure of beliefs where the lower level corresponds to beliefs about
sensory information and the higher level to beliefs about the volatility of the
environment and further assuming that beliefs can be expressed as Gaussian
distributions, aberrant salience can be viewed as a ratio of precisions associ-
ated with beliefs about sensory inputs and high-level beliefs (Mathys et al.,

3

 . CC-BY-NC 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted February 6, 2023. ; https://doi.org/10.1101/2023.02.02.23285371doi: medRxiv preprint 

https://doi.org/10.1101/2023.02.02.23285371
http://creativecommons.org/licenses/by-nc/4.0/


2011, 2014; Diaconescu et al., 2019). An increase in this precision ratio will
result in exaggerated belief updates or aberrantly salient PEs. From here on
out we will refer to beliefs about volatility when we speak about high-level
beliefs.

In line with this literature, we have recently derived different hypotheses
about the emergence of delusions based on simulations (Diaconescu et al.,
2019) using the Hierarchical Gaussian Filter (HGF; (Mathys et al., 2011,
2014)). Specifically, we hypothesised that prodromal stages of psychosis may
be characterized by either (1) increased precision associated with incoming
sensory prediction errors (2) reduced precision of high-level beliefs about the
volatility of the environment or (3) a combination of the two. Furthermore,
we speculated that delusional conviction during later stages of psychosis may
be accompanied by a compensatory increase of precision associated with
high-level beliefs about volatility that functions to explain away aberrantly
salient prediction errors. Here, we test these hypotheses and investigate the
computational mechanisms of emerging paranoia in early psychosis.

2 Methods

2.1 Participants

The sample comprised 19 individuals at clinical high risk for psychosis
(CHR-P), 19 healthy controls (HC) that were group-matched to CHR-P
with respect to age, gender, handedness, and cannabis consumption, and 18
short term medicated FEP (5.44 ± 2.79 days, median: 6, range: [0, 10])
resulting in a total sample of N = 56 participants. FEP were recruited
from both inpatient care and the outpatient departments of the University
Psychiatric Hospital (UPK) Basel, CHR-P were recruited from the Basel
Early Treatment Service (BEATS) and HC via online advertisements and
advertisements in public places (supermarkets, dentist clinics). All partici-
pants provided written informed consent. The study was approved by the
local ethics committee (Ethikkommission Nordwest- und Zentralschweiz, no.
2017-01149) and conducted in accordance with the latest version of the Dec-
laration of Helsinki.

2.2 In- and exclusion criteria

All participants were required to be at least 15 years old. Specific inclu-
sion criteria for FEP were the diagnosis of a first psychotic episode of a
schizophrenia spectrum disorder, which was assessed by the treating clini-
cians, and a treatment recommendation to begin antipsychotic medication
issued independently of the study.

We included CHR-P who fulfilled either ultra-high risk for psychosis cri-
teria, i.e. one or more of the following (1) attenuated psychotic symptoms
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(APS), (2) brief and limited intermittent psychotic symptoms (BLIP), (3)
a trait vulnerability in addition to a marked decline in psychosocial func-
tioning also referred to as genetic risk and deterioration syndrome (GRD),
assessed with the Structured Interview for Prodromal Symptoms (SIPS;
Miller et al. (2003)); or basic symptom criteria, (Klosterkötter et al., 2001;
Schultze-Lutter, 2009) i.e., cognitive-perceptive basic symptoms (COPER)
or cognitive disturbances (COGIDS) (assessed with the Schizophrenia Prone-
ness Instrument, adult version (SPI-A; Schultze-Lutter et al. (2007)) or
the Schizophrenia Proneness Instrument, child and youth version (SPI-CY;
Schultze-Lutter and Koch (2010)), assessed by experienced clinical raters.

Exclusion criteria for all three groups were previous psychotic episodes,
psychotic symptomatology secondary to an organic disorder, any neuro-
logical disorder (past or present), premorbid IQ < 70 (assessed with the
Mehrfachwahl-Wortschatz-Test, Version A; Lehrl et al. (1995)), colour blind-
ness, substance use disorders according to ICD-10 criteria (except cannabis),
alcohol or cannabis consumption within 24 hours prior to measurements, and
regular drug consumption (except alcohol, nicotine, and cannabis), which
was assessed during the admission interview and confirmed with a drug
screening before the initial measurement (assessments were postponed fol-
lowing a positive test until a negative test result was obtained).

FEPs whose psychotic symptoms were associated with an affective psy-
chosis or a borderline personality disorder at the time of the measurement
were excluded. Since data was collected as part of a larger study that in-
cluded neuroimaging assessments, additional exclusion criteria for CHR-P
and HC were contraindications for fMRI and contraindications for EEG
measurements for all three groups. However, we only present behavioural
results here.

2.3 Clinical assessment

Demographic and clinical information were assessed during an interview
conducted within five days of the social learning task. This interview com-
prised assessment of clinical symptoms using the Positive and Negative Syn-
drome Scale (PANSS; Kay et al. (1987)) administered through trained clin-
ical raters and self-assessment of paranoid thoughts (frequency, conviction
and distress) using the Paranoia Checklist (PCL) (Freeman et al., 2005).

2.4 Task

All participants were asked to perform a deception-free and ecologically
valid social learning task (Figure 1A) (Diaconescu et al., 2014, 2017), which
required them to learn about the intentions of an adviser that changed over
time. The task comprised two phases. In the first phase participants received
stable helpful advice, whereas advisers intentions were changing more rapidly
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during a second phase, the volatile phase (see volatility schedule in Figure
1B). Participants were asked to predict the outcome of a binary lottery on
each trial. To this end, they received information from two sources, a non-
social cue displaying the true winning probabilities of the lottery, and a
recommendation of an adviser (social cue) presented in form of prerecorded
videos that were extracted from trials in which a human adviser either tried
to help or deceive a player in a previous human-human interaction (see
Diaconescu et al. (2014, 2017) for more details).

Participants were truthfully informed that the adviser received privileged
– but not complete – information about the upcoming outcome and that
inaccurate advice could be due to mistakes or that the adviser could pursuit
a different agenda than the player and that the adviser’s intentions could
change during the course of the experiment. We expected patients to be
more sensitive to the increasing volatility of the task compared to HC.

Figure 1: Social learning task and volatility schedule. A Social learning task. B Volatility
schedule.

2.5 Computational modelling

2.5.1 Hierarchical Gaussian Filter

We modelled participants’ behaviour during the social learning task with a
3-level HGF (Mathys et al., 2011, 2014). The model comprises a perceptual
model and a response model, which will be detailed below.

Perceptual model The standard 3-level HGF assumes that participants
infer on a hierarchy of hidden states in the world x1, x2, and x3 that cause
the sensory inputs that participants perceive (Mathys et al., 2011, 2014).

Participants’ inference on the true hidden states of the world x
(k)
i at level i

of the hierarchy on trial k are denoted µ
(k)
i . In the context of this task, the

states that participants need to infer on based on the experimental inputs on
each trial (non-social cue and advice) are structured as follows: The lowest
level state corresponds to the advice accuracy. On each trial k an advice
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can either be accurate (x
(k)
1 = 1) or inaccurate (x

(k)
1 = 0). This state can

be described by a Bernoulli distribution that is linked to the state at the

second level x
(k)
2 through the unit sigmoid transformation:

p(x
(k)
1 |x

(k)
2 ) = s(x

(k)
2 )x

(k)
1 (1− s(x(k)

2 ))1−x(k)1 ∼ Bernoulli(x
(k)
1 ; s(x

(k)
2 )), (1)

with

s(z) =
1

1 + e−z
. (2)

x
(k)
2 represents the unbounded tendency towards helpful advice (−∞,+∞)

or the adviser’s fidelity and is specified by a normal distribution:

p(x
(k)
2 |x

(k−1)
2 , x

(k)
3 , κ2, ω2) ∼ N (x

(k)
2 ;x

(k−1)
2 , exp(κ2x

(k)
3 + ω2)) (3)

The state at the third level x
(k)
3 expresses the (log) volatility of the

adviser’s intentions over time and is also specified by a normal distribution:

p(x(k)
x |x

(k−1)
3 , ϑ) ∼ N (x

(k)
3 ;x

(k−1)
3 , ϑ) (4)

The dynamics of these states are governed by a number of subject-specific
parameters, i.e., the evolution rate at the second level ω2, the coupling
strength between the second and third level κ2, which determines the im-
pact of the volatility of the adviser’s intentions on the belief update at the
level below, and the evolution rate at the third level or the meta-volatility
ϑ, which we fixed to a value of 0.5 to reduce the number of free parameters.
Additional subject-specific, free parameters were the prior expectations be-

fore seeing any input about the adviser’s fidelity µ
(0)
2 and the volatility of the

adviser’s intentions µ
(0)
3 (see Table 1 for priors on all free parameters). These

parameters can be understood as an individual’s approximation to Bayesian
inference and provide a concise summary of a participant’s learning profile.
Using a variational approximation, efficient one step update equations can
be derived (see Mathys et al. (2011, 2014) for more details), which take the
following form:

∆µ
(k)
i ∝

π̂
(k)
i−1

π
(k)
i

δ
(k)
i−1, (5)

where µ
(k)
i is the expectation or belief at trial k and level i of the hierarchy,

π̂
(k)
i−1 is the precision (inverse of the variance) from the level below (the

hat symbol denotes that this precision has not been updated yet and is

associated with the prediction before observing a new input), π
(k)
i is the

updated precision at the current level, and δ
(k)
i−1 is a PE expressing the

discrepancy between the expected and the observed outcome.
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We also employed a second, modified version of the HGF (Cole et al.,
2020) that assumed that learning about an adviser’s intentions was not
only driven by hierarchical PE updates, but also included a mean-reverting
process at the third level formalising the idea that an altered perception
of volatility may underlie learning about others’ intentions. In this mean-
reverting HGF, the third level can again be described by a normal distribu-
tion:

p(x(k)
x |x

(k−1)
3 , ϑ, φ3,m3) ∼ N (x

(k)
3 ;x

(k−1)
3 + φ3(m3 − x(k−1)

3 ), ϑ), (6)

where φ3 represents a drift rate and m3 the equilibrium point towards which
the state moves over time.

In this model, we fixed the drift rate φ3 to a value of 0.1 and estimated
the equilibrium point m3 as a subject-specific, free parameter. Note, that
changing m3 to values that are lower than the prior about the volatility

of the adviser’s intentions µ
(0)
3 translates into reduced belief updates at all

three levels of the hierarchy corresponding to perceiving the environment

as increasingly stable over time (Figure 2). Conversely, if m3 > µ
(0)
3 , the

magnitude of belief updates increases in line with a perception that the
environment is increasingly volatile over time and beliefs should thus be

adjusted more rapidly. Lastly, if m3 = µ
(0)
3 , agents would revert back to

their prior beliefs about environmental volatility over time (i.e., ”forget”
about the observed inputs). For this reason, we refer to the model as mean-
reverting HGF analogous to an Ornstein-Uhlenbeck process in discrete time
(Uhlenbeck and Ornstein, 1930). Note, that introducing this drift allows to
model an altered perception of volatility that manifest not only during the

first trials as changes in prior uncertainty µ
(0)
3 would induce (see simulations

in the Supplement), but rather enables a more nuanced characterization of
changes that occur within the experimental session. Its effect also impacts
belief formation at lower levels and simulated responses more strongly (see
Supplement).

Response model The response model specifies how participants’ infer-
ence on the hidden states translates into decisions, i.e., to go with or against
the advice. In our case the response model assumes that participants’ in-
tegrate the non-social cue c(k) (the outcome probability indicated by the

pie chart) and their belief that the adviser is providing accurate advice µ̂
(k)
1

before seeing the outcome on the current trial k:

b(k) = ζµ̂
(k)
1 + (1− ζ)c(k), (7)

where ζ is a weight associated with the advice that expresses how much
participants rely on the social information compared to the non-social cue.
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The probability that a participant follows the advice (y = 1) can then
be described by a sigmoid transformation of the integrated belief b:

p(y = 1|b) =
bβ

bβ + (1− b)β
, (8)

with

β = exp(−µ̂(k)
3 + ν). (9)

This relationship can be understood as a noisy mapping from the in-
tegrated beliefs to participants’ decisions, where the noise level is deter-
mined by the current prediction of the volatility of the advisers’ intentions

µ̂
(k)
3 , such that decisions become more deterministic (i.e., exploitative), if

the environment is currently perceived as stable or more stochastic (i.e.,
exploratory), if the environment is perceived as volatile. Modelling the
exploration-exploitation trade-off as a function of participants’ perception
of volatility was favoured in previous model selection results using the same
task (Diaconescu et al., 2014, 2017). Parameter ν is another subject-specific
parameter that captures decision noise that is independent of the perception
of volatility (lower values indicate larger decision noise). The prior mean and
variance of this parameter was set based on previous studies that modelled
learning about intentions (Diaconescu et al., 2020).

The models were implemented in Matlab (version: 2017a;
https://mathworks.com) using the HGF toolbox (version: 3.0),
which is made available as open-source code as part of the TAPAS
(Frässle et al., 2021) software collection (https://github.com/
translationalneuromodeling/tapas/releases/tag/v3.0.0). Per-
ceptual models were implemented using the ’tapas hgf binary’ function for
the standard 3-level HGF and the ’tapas hgf ar1 binary’ function for the
mean-reverting HGF.
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Figure 2: Simulating an altered perception of environmental volatility. Simulations
showing the effect of changing the equilibrium point m3. Increasing m3 (colder colours) results
in larger precision-weighted prediction errors leading to stronger belief updates across all levels
of the hierarchy. Note, that high values of m3 also increase susceptibility to noisy inputs (e.g.,
trials 120-136). For the simulations, all other parameter values were fixed to the values of an ideal
observer given the input.

Equilibrium point Coupling strength Evolution rate Prior expectations Advice weight Decision noise

Hypothesis I κ2(logit(0.5), 1), 1 ω2(−2, 4) µ
(0)
2 (0, 1) µ

(0)
3 (1, 1) ζ(logit(0.5), 1), 1 ν(log(48), 1)

Hypothesis II m3(1, 1) κ2(logit(0.5), 1), 1 ω2(−2, 4) µ
(0)
2 (0, 1) µ

(0)
3 (1, 1) ζ(logit(0.5), 1), 1 ν(log(48), 1)

Table 1: Priors on free model parameters. Prior means and their respective variances are
denoted in brackets, followed by upper bounds for parameters that were estimated in logit space:
(Mean, Variance), upper bound.

2.5.2 Bayesian model selection

Based on our a simulation analysis (Diaconescu et al., 2019) and previ-
ous findings (Cole et al., 2020; Diaconescu et al., 2014, 2020; Reed et al.,
2020), we formulated competing hypotheses about the computational mech-
anisms that could underlie emerging paranoid behaviour (Figure 3). A stan-
dard 3-level HGF (Hypothesis I) was compared to the mean-reverting
HGF that assumed that learning about an adviser’s intentions was not
only driven by hierarchical PE updates, but also included a drift pro-
cess at the third level formalising the idea, that an altered perception of
volatility underlies learning about others’ intentions in emerging psychosis
(Hypothesis II; see also Figure 2). To arbitrate between the two hypothe-
ses we performed random-effects Bayesian model selection (Rigoux et al.,
2014; Stephan et al., 2009). Two additional control models were included,
in which all parameters of the perceptual model were fixed to parameter
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values of an ideal Bayesian observer optimised based on the inputs alone
using the ’tapas bayes optimal binary’ function to assess whether percep-
tual model parameters needed to be estimated for either of the two main
models. These ”null” models assume that any variation in advice-taking
behavior can be attributed solely to the response model parameters, i.e. the
social bias and the decision noise.

We report protected exceedance probabilities φ, which measure the prob-
ability that a model is more likely than any other model in the model
space (Stephan et al., 2009), protected against the risk that differences
between models arise due to chance alone (Rigoux et al., 2014). We
also computed relative model frequencies f as a measure of effect size,
which can be understood as the probability that a randomly sampled par-
ticipant would be best explained by a given model. The model selec-
tion was implemented using the VBA toolbox (Daunizeau et al., 2014)
(https://mbb-team.github.io/VBA-toolbox/).

Figure 3: Model space. Left: Standard 3-level Hierarchical Gaussian Filter (HGF).(Mathys
et al., 2011, 2014) Right: Mean-reverting HGF with a drift at the third level, which captures
learning about the volatility of the adviser’s intentions. This model expresses the notion that
early psychosis may be characterised by an altered perception of environmental volatility.

2.5.3 Model recovery

To assess whether models were recoverable, we conducted a series of simu-
lations as done previously (Hauke et al., 2022). In brief, our model recovery
analysis comprised simulating 20 synthetic datasets based on the empirical
parameter estimates obtained from fitting all models to the empirical data
of every participant. The sample size of each synthetic dataset was chosen
to be equivalent to the empirical sample size (N = 56). The noise level was
set based on the empirically estimated decision noise νest. Each simulation
was initialised using different random seeds to account for the stochasticity
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of the simulation. This led to a total of 4 (models) x 56 (participants) x 20
(simulation seeds) = 4,480 simulations. Subsequently, we re-inverted each of
the proposed models on the synthetic data to determine, whether we could
recover the true model under which synthetic data was generated. To assess
model recovery, we then performed random-effects Bayesian model selection
on each of the datasets with a sample size of N = 56 as in the empirical data
and averaged the resulting protected exceedance probabilities across the 20
simulation seeds to obtain a model confusion matrix.

2.5.4 Parameter recovery

In line with our previous work (Hauke et al., 2022), we also performed a
parameter recovery analysis to determine whether model parameter esti-
mates were reliable. Using the simulation and model inversion results from
the model recovery analysis (see preceding section), we assessed how accu-
rately the parameters generating the data (’simulated’) corresponded to the
parameters that were estimated when re-inverting the same model on that
data (’recovered’). We report Pearson correlations and their associated p-
values to quantify our ability to recover the model parameters. Since, the
significance of these correlations is influenced by sample size, we also com-
puted Cohen’s f 2, where an f 2 ≥ 0.35 can be considered a large effect size
(Cohen, 1988) and was interpreted as evidence for good parameter recovery.

2.6 Statistical analysis

We tested for differences in behaviour using a linear mixed-effects model
with advice taking (#trials, in which participant went with the advice /#
total trials) as the dependent variable and fixed effects for group and task
phase (stable vs volatile), as well as a group-by-task-phase interaction as
predictors of interest and age, working memory performance as covariates
of no interest. Additionally, the model included a random intercept per
participant.

Note, that including medication as a covariate is not recommended when
comparing HC and patient groups. For completeness, however, we also
report the results of mixed-effects model with current antipsychotic dose
(100mg/day chlorpromazine equivalents) and current antidepressant dose
(40mg/day fluoxetine equivalents) as covariates. Chlorpromazine equiva-
lents were derived from The Maudsley® prescribing guidelines in Psychia-
try (Taylor et al., 2021) which is based on the literature and clinical con-
sensus. Since paliperidone was not listed, equivalent estimates for paliperi-
done were based on Leucht et al. (2014). Fluoxetine equivalents were based
on Hayasaka et al. (2015), with the exception of vorioxetin and citalopram
which were not listed. For these, equivalents doses were assumed to be 10mg
vortioxetin and 30mg citalopram, respectively, based on clinical practice.
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Differences in model parameters were assessed using non-parametric
Kruskal-Wallis tests. All statistical analyses were conducted in R
(version: 4.04; https://www.r-project.org/) using R-Studio (version:
1.4.1106; https://www.rstudio.com/). We report both uncorrected p-
values (puncorr) and Bonferroni-corrected p-values adjusted for the number
of free parameters (n = 7). Based on previous findings, we hypothesised that
groups would differ with respect to coupling strength between the second
and third level κ2 (Diaconescu et al., 2014; Reed et al., 2020), the evolution
rate ω2 (Diaconescu et al., 2020; Reed et al., 2020), or parameters that are
associated with the perception of volatility, i.e., the prior expectation about

environmental volatility µ
(0)
3 (Reed et al., 2020) or the equilibrium point of

the drift at the third level m3 (Cole et al., 2020; Diaconescu et al., 2019).

3 Results

3.1 Sociodemographic and clinical characteristics

Sociodemographic and clinical characteristics are presented in Table 2.

3.2 Behavioural results

We identified a significant group-by-task-phase interaction on the frequency
of advice-taking (F = 5.275, p = 0.008; Figure 4A). To unpack this effect
we repeated the analysis with three two-group models. We found significant
group-by-task-phase interactions when comparing HC vs FEP (F = 8.520,
puncorr = 0.006, p = 0.018 Bonferroni-corrected for the number of compar-
isons, i.e. n = 3) and HC vs CHR-P (F = 7.745, puncorr = 0.009, p = 0.026),
but not when comparing CHR-P vs FEP (F = 0.047, puncorr = 0.830,
p = 1.000), suggesting that both CHR-P and FEP showed reduced flexibil-
ity to take environmental volatility into account as the difference between
stable and volatile phase was reduced compared to HC. None of the covari-
ates significantly impacted advice taking.

The group-by-task-phase interaction remained significant after including
antipsychotic and antidepressant dose as covariates (F = 4.900, p = 0.011).
Neither the effect of antipsychotic dose (F = 0.006, p = 0.939) or antide-
pressant dose (F = 0.112, p = 0.739) were significant. Unpacking this model
again revealed significant group-by-task-phase interactions when comparing
HC vs FEP (F = 8.520, puncorr = 0.006, p = 0.018), but not when com-
paring CHR-P vs FEP (F = 0.671, puncorr = 0.419, p = 1.00). The group-
by-task-phase interaction effect in HC vs CHR-P did not survive Bonferroni
correction (F = 5.154, puncorr = 0.030, p = 0.089).
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3.3 Modelling results

3.3.1 Bayesian model selection and model recovery

The model recovery analysis (Figure 6) indicated that the control models
(CI and CII) could not be well-distinguished. This was likely due to the
fact that the equilibrium point m3 in CII was optimised based on the input
alone, which resulted in a value for m3 that was close to the prior, rendering
the predictions of the two control models very similar. Most importantly,
however, the two main models associated with Hypothesis I and II could be
well-distinguished.

After confirming that the two hypotheses were distinguishable, we first
performed Bayesian model selection including participants from all groups.
The results were inconclusive (φ = 74.03%, f = 53.80% in favour of Hy-
pothesis II) possibly suggesting that different groups were best explained by
different models (i.e., different computational mechanisms). To assess this
possibility, we repeated the model selection for each group separately (Figure
5A). In HC, the winning model was the standard 3-level HGF (Hypothe-
sis I; φ = 96.63%, f = 95.93%). Conversely, in FEP the mean-reverting
HGF that included a drift at the third level was selected (Hypothesis II;
φ = 99.95%, f = 95.92%). For CHR-P, we observed a more heteroge-
neous results: While the mean-reverting model was favoured (Hypothesis II;
φ = 84.50%, f = 60.24%), there was also evidence for the standard HGF,
albeit to a much lesser extent (Hypothesis I; φ = 14.41%, f = 37.19%).
Further inspection of the model attributions for all individual participants
revealed an interesting pattern (Figure 5B). All HC were attributed to the
standard HGF with over 97% probability, whereas FEP were attributed
to the mean-reverting model with over 99%. Interestingly, model attribu-
tions for CHR-P were more heterogeneous ranging from 0 to 100% probabil-
ity, suggesting that some individuals were better explained by the standard
HGF, but others by the mean-reverting model.

3.3.2 Posterior predictive checks and parameter recovery

To assess whether the mean-reverting model (Hypothesis II) captured the
behavioural effects of interest, we conducted posterior predictive checks by
repeating the behavioural analysis on this model’s predictions. This analysis
confirmed that the mean-reverting model recapitulated the group-by-task-
phase interaction effect on advice-taking frequency (F = 4.343, p = 0.018;
Figure 4B). We also repeated all three two-group models on the model pre-
dictions and found a significant group-by-task-phase interaction when com-
paring HC vs FEP (F = 8.337, puncorr = 0.007, p = 0.020) and no significant
interaction when comparing CHR-P vs FEP (F = 1.106, puncorr = 0.300,
p = 0.900) as before in the empirical data. The group-by-task-phase interac-
tion did not reach significance for HC vs CHR-P (F = 3.662, puncorr = 0.064,
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p = 0.191).
Our parameter analysis indicated good recovery (i.e., Cohen’s f 2 ≥ 0.35)

for four out of the seven model parameters including the drift equilibrium

point m3 (Figure 6). However, recovery for µ
(0)
3 , µ

(0)
2 , and κ2 fulfilled this

criterion only in 55%, 65%, and 55% of the simulations respectively.

Figure 4: Behavioural results and parameter group effects. A Behavioural results (ground
truth). Black dashed lines indicate the average accuracy of advice for each of the two phases.
B Model prediction. C Parameter effect for drift equilibrium point m3. D Parameter effect for
coupling strength κ2. E Correlation between model parameters and either Positive and Negative
Syndrome Scale (Kay et al., 1987) (PANSS) or Paranoia Checklist (Freeman et al., 2005) (PCL).
Note, that raw scores are displayed for illustration purposes only. Statistical analyses were con-
ducted using nonparametric Kendall rank correlations. Displayed regression lines were computed
using a linear model based on the raw scores. Note, that one outlier (κ2 = 0.006) was removed
for displaying the effect on κ2 in D and E. This outlier was outside of 7× the interquartile range.
Excluding this participant did not affect the significance of the results. P: Positive symptoms.
N: Negative symptoms. G: General symptoms. F - and p-values indicate results of ANCOVAs
corrected for working memory performance, antipsychotic medication, antidepressant medication,
and age. Boxes span the 25th to 75th quartiles and whiskers extend from hinges to the largest
and smallest value that lies within 1.5× interquartile range. Asterisks indicate significance of
non-parametric Kruskal-Wallis tests at: * p < 0.05, using Bonferroni correction.
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HC CHR-P FEP Test Post hoc
n = 19 n = 19 n = 18 statistic contrasts

Age 21.37 21.05 33.44 F = 18.182 FEP > HC
mean [SD] [2.52] [3.52] [11.70] p < 0.001 FEP > CHR-P
IQ 108.11 105.95 112.29 F = 1.015
mean [SD] [9.85] [12.28] [16.25] p = 0.370
Working memorya 6.42 6.74 5.83 F = 1.011
mean [SD] [1.71] [2.16] [1.98] p = 0.371

Sex [f/m] 11/8 11/8 7/11 χ2 = 1.767
p = 0.413

Cannabis [y/n] 7/12 8/11 5/13 χ2 = 0.842
p = 0.656

High risk typeb

APS 15
BLIP 1
GRD 0
COGDIS 4
COOPER 2
Psychotic disorder diagnosis
F20 Schizophrenia 3
F22 Delusional disorder 6
F23 Brief psychotic disorder 9

Antipsychotics [y/n] 0/19 2/17 14/4 χ2 = 31.987 FEP > CHR-P
p < 0.001 FEP > HC

Aripiprazole 4
Brexpiprazole 1
Lurasidone 1
Olanzapine 5
Paliperidone 1
Quetiapine 2
Risperidone 1
Haloperidol & Aripiprazol 1

Antidepressants [y/n] 0/19 9/10 1/17 χ2 = 17.268 CHR-P > FEP
p < 0.001 CHR-P > HC

Buproprion 1
Citalopram 1
Escitalopram 1
Fluoxetine 1
Sertraline 1
Vortioxetin 2
Trazodon & Citalopram 1
Trazodon & Sertralin 1
Unknown 1

Cpz100mg/day 0n=19 0n=18 83n=18 η2 = 0.592 FEP > CHR-P

median [25th, 75th] [0, 0] [0, 0] [33, 188] p < 0.001 FEP > HC

Flu40mg/day 0n=19 0n=17 0n=18 η2 = 0.246 CHR-P > HC

median [25th, 75th] [0, 0] [0, 30] [0, 0] p = 0.001

PANSS Positive 8n=19 11n=19 16n=16 η2 = 0.514 FEP > CHR-P > HC

median [25th, 75th] [7, 8] [10, 14] [11, 23] p < 0.001

PANSS Negative 7n=19 9n=19 12n=16 η2 = 0.364 FEP > CHR-P > HC

median [25th, 75th] [7, 8] [8, 10] [9, 15] p < 0.001

PANSS General 18n=19 29n=19 34n=16 η2 = 0.674 FEP > CHR-P > HC

median [25th, 75th] [16, 19] [22, 32] [32, 40] p < 0.001

PCL Frequency 23n=19 30n=19 36n=17 η2 = 0.202 FEP > HC

median [25th, 75th] [19, 25] [24, 33] [23, 44] p = 0.004 CHR-P > HC

PCL Conviction 26n=19 33n=19 30n=17 η2 = 0.086

median [25th, 75th] [22, 31] [28, 39] [22, 55] p = 0.099

PCL Distress 26n=19 29n=19 30n=17 η2 = 0.008

median [25th, 75th] [20, 37] [23, 38] [21, 46] p = 0.799

Table 2: Demographic and clinical characteristics. All p-values are uncorrected. HC:
Healthy controls. CHR-P: Individuals at clinical high risk for psychosis. FEP: First-episode
psychosis patients. APS: Attenuated psychotic symptoms. BLIP: Brief and limited intermittent
psychotic symptoms. GRD: Genetic risk and deterioration syndrome. COGDIS: Cognitive
disturbances. COPER: Cognitive-perceptive basic symptoms. Cpz100mg/day: Antipsychotic
equivalent dose for 100mg chlorpromazine per day. Flu40mg/day: Antidepressant equivalent
dose for 40mg fluoxetine per day. PANSS: Positive and Negative Syndrome Scale.(Kay et al.,
1987) PCL: Paranoia Checklist (Freeman et al., 2005). Bold print highlights p-values significant
at: p < 0.05, uncorrected. a Assessed with the digit span backwards task from the Wechsler Adult
Intelligence Scale–Revised (Wechsler, 1981). bHigh risk types are not mutually exclusive.

When inspecting parameter identifiability, we observed unconcerning
correlations between all pairs of parameters (r ≤ |0.39|) except for the cor-
relation between m3 and ν (r = 0.93). To assess, whether we could address

16

 . CC-BY-NC 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted February 6, 2023. ; https://doi.org/10.1101/2023.02.02.23285371doi: medRxiv preprint 

https://doi.org/10.1101/2023.02.02.23285371
http://creativecommons.org/licenses/by-nc/4.0/


this colinearity by removing one of the parameters from the response model,
we formulated two alternative model families in which either decision noise
parameter ν or state mu

(k)
3 was removed from the response model and com-

pared them to the original model family (cf. Eq. 9). These alternative model
families assumed either that the estimated volatility was solely driving the
mapping of beliefs to decisions (response model family two without decision
noise parameter) or the decision noise alone determined belief-to-response
mapping (response model family three that excluded the estimated volatil-
ity from the response model). Family-level inference (Penny et al., 2010)

indicated that the original model family that included both state mu
(k)
3 and

parameter ν was the winning family compared to family two without mu
(k)
3

(exceedance probability: 100.00%, f = 99.12%) and family three without
ν (exceedance probability: 99.54%, f = 66.66%). We thus concluded that

both mu
(k)
3 and ν should be included in the response model as they re-

flect two important mechanisms determining the exploration-exploitation
trade-off. First, the estimated volatility captures the impact of learning
on belief-to-response mapping, i.e., more exploration when the adviser’s in-
tentions are perceived as volatile and more exploitation when the adviser’s
intentions are perceived to be stable. Second, the decision noise captures
non-inference related sources of noise, for example, due to distractions or
incorrect button presses. However, the interpretation of m3-effects reported
below should be taken as preliminary and needs to be confirmed in another
study with a volatility schedule that is optimised for decorrelating of these
parameters.

3.3.3 Parameter group effects

The model selection indicated that the mean-reverting model was a bet-
ter explanation for behaviour of FEP, but not of HC. In this situation,
it is generally recommended to investigate parameter group effects using
Bayesian model averaging (Stephan et al., 2010). However, we were in-
terested in assessing why this model was selected for FEP. Specifically, we
wanted to investigate whether the perception of volatility in FEP increased
or decreased over time (see also simulations illustrating these two possi-
bilities in Figure 2), because our a priori hypothesis was that individuals
with emerging psychosis should perceive the environment as increasingly
volatile (increased m3 compared to controls; Diaconescu et al. (2019)). To
distinguish between these two possibilities, we compared the drift equilib-
rium point m3 across the three groups and found that m3 was significantly
different across the groups (η2 = 0.142, puncorr = 0.020). Post hoc tests
revealed that m3 was significantly increased in FEP compared to HC sug-
gesting that FEP perceived the intentions of the adviser as increasingly
more volatile over time (η2 = 0.212, p = 0.017, Bonferroni-corrected for
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the number of comparisons across groups, i.e., n = 3; Figure 4C). We
also performed an exploratory analysis including all other free model pa-
rameters. This analysis revealed an additional effect on coupling strength
κ2 (η2 = 0.138, puncorr = 0.022), which was driven by reduced coupling
strength between the second and third level of the perceptual hierarchy in
FEP compared to HC (η2 = 0.217, p = 0.016, Bonferroni-corrected for the
number of comparisons across groups, i.e., n = 3; Figure 4D). However, nei-
ther the effect on m3 nor κ2 survived Bonferroni correction for the number
of parameters, i.e. n = 7 (p = 0.140 and p = 0.157, respectively).

Figure 5: Bayesian model selection results. A Protected exceedance probabilities for within-
group random-effects Bayesian model selection(Stephan et al., 2009; Rigoux et al., 2014) to arbi-
trate between Hypothesis I (HI; standard 3-level HGF) and Hypothesis II (HII; mean-reverting
HGF with drift at 3rd level in line with an altered perception of volatility). Two corresponding
control models were included (CI and CII), for which the perceptual model parameters were fixed.
Model selection was performed separately in healthy controls (HC), individuals at clinical high
risk for psychosis (CHR-P), or first-episode psychosis patients (FEP). The dashed line indicates
95% exceedance probability. B Model attributions for each participant.
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Figure 6: Model and parameter recovery analyses. A-G Parameter recovery result for one
random seed for the mean-reverting HGF with drift at the 3rd level (Hypothesis II; Figure 3).
H Model recovery analysis. The grey scale indicates protected exceedance probability averaged
across all 20 random seeds.

3.3.4 Symptom-parameter correlations

Some authors (e.g., Esterberg and Compton (2009)) have argued that psy-
chosis may be better conceptualised on a continuum rather than categori-
cally, based on evidence that a significant percentage of the general popu-
lations reports some psychosis symptoms (Kendler et al., 1996; Tien, 1991).
In line with this proposal, we assumed a continuum perspective and inves-
tigated whether the equilibrium point m3 and coupling strength κ2 were
correlated with specific symptom subscales of the Positive and Negative
Syndrome Scale (PANSS) (Kay et al., 1987) across all three groups with
non-parametric Kendall rank correlations (see Figure 4E).

We found a positive correlation between m3 and PANSS positive symp-
toms (τ = 0.203, puncorr = 0.038) and negative correlations between κ2

and PANSS negative and general symptoms (τ = −0.253, puncorr = 0.011
and τ = −0.219, puncorr = 0.022 respectively). Firstly, this suggest that
individuals who perceived the adviser’s intentions to be increasingly volatile
over time also experienced more severe positive psychosis symptoms. Sec-
ondly, the negative correlation between κ2 and PANSS negative and general
symptoms implies that individuals with more severe negative and general
symptoms displayed lower κ2 values or a decoupling between the third and
the second levels of the hierarchy. These correlations, however, did not sur-
vive Bonferroni correction (p = 0.228, p = 0.068, and p = 0.132 respectively,
adjusted for 2 (#parameters) x 3 (#PANSS subscales) = 6 comparisons).
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Since the PANSS (Kay et al., 1987) was specifically designed to assess
symptom expression in clinical populations, we also calculated correlations
with the Paranoia Checklist (PCL) (Freeman et al., 2005), an instrument
more sensitive to expressions of paranoia in healthy or subclinical popula-
tions. We found a correlation between m3 and the PCL frequency subscale
(τ = 0.201, puncorr = 0.034), indicating that individuals who perceived
the adviser’s intentions to be increasingly volatile over time also reported a
higher frequency of paranoid beliefs. Again, this correlation did not survive
Bonferroni correction (p = 0.204, adjusted for 2 (#parameters) x 3 (#PCL
subscales) = 6 comparisons).

4 Discussion

In this study, we investigated the computational mechanisms underlying
emerging psychosis. Our model selection results suggest that FEP may
operate under a different computational mechanism compared to HC that
is characterised by perceiving the environment as increasingly volatile. A
strength of our study is that this effect is unlikely due to long term medica-
tion effects as FEP were only briefly medicated. Furthermore, we observed
more heterogeneity in CHR-P, possibly indicating that this modelling ap-
proach may be useful to stratify the CHR-P population and identify individ-
uals that are more likely to transition to psychosis. Assuming a psychosis
continuum perspective, we also found tentative evidence suggesting that the
drift equilibrium point m3 and the coupling strength between hierarchical
levels κ2 may be affected in emerging psychosis and that these parame-
ters provide a clinically relevant description of individuals’ learning profiles.
However, due to the small sample size, these results should be interpreted
with caution.

4.1 Related modelling work

Bayesian accounts of psychosis (Fletcher and Frith, 2009; Sterzer et al., 2018;
Adams et al., 2022) propose that psychosis may be characterised by aber-
rant PEs that provide the breeding ground for delusions to form. Our results
are in line with these proposals and the predictions of increased precision-
weighted PE-learning in early psychosis derived through simulations (Dia-
conescu et al., 2019). Moreover, our results enable a more nuanced character-
isation and point towards an altered perception of environmental volatility
as a possible consequence of aberrant PE learning. Specifically, perceiving
the intentions of another person as increasingly volatile over time translates
to reduced precision of beliefs about environmental volatility. This, in turn,
results in larger precision-weighted PEs through decreasing the denominator
of the precision ratio that weighs PEs (see Equation 5). This finding is in
line with Bayesian accounts, although we cannot say whether changes in the
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perception of volatility are caused by aberrant PEs or vice versa without
longitudinal assessment of changes within the same participants. However,
we note that the mean-reverting model was only conclusively selected in
the FEP group and not already in the CHR-P group, although the mean-
reverting model was favoured in the model attributions for some CHR-P
individuals (Figure 5B). In contrast to our a priori hypothesis (Diaconescu
et al., 2019), we did not find evidence for a compensatory increase in the
precision of high-level priors or reduced learning (e.g., reduced evolution rate
ω2) in patients who have strong conviction in their delusional beliefs. This
was also proposed as a cognitive mechanism to make sense of aberrant PEs
by Kapur (2003) and observed empirically by others in healthy participants
with paranoid ideations (Diaconescu et al., 2020; Wellstein et al., 2020) as
well as patients with schizophrenia, (Baker et al., 2019), although Baker
et al. (2019) used a non-social probabilistic reasoning task.

Reed et al. (2020) employed the HGF to investigate the computational
mechanisms underlying paranoia in a subclinical population and schizophre-
nia patients using a non-social reversal learning task. They found increased

expected volatility (µ
(0)
3 ) in participants with higher levels of paranoia using

the standard 3-level HGF. Our model selection suggested that this model
explains behaviour better in HC, whereas FEP were better characterised by
a mean-reverting HGF that included a drift at the third level. It should

be noted that increasing µ
(0)
3 and including a drift at the third level, which

increases over time, can both be interpreted as expecting the environment
to be more volatile, but the drift provides a more nuanced description of
changes that occur during the learning session. Our results are thus in line
with previous results, but possibly provide a perspective that takes within-
task dynamics more explicitly into account (see simulations in the Supple-
ment). An interesting observation based on simulations is that artificial
agents with increased m3 are quicker to adapt to volatile changes between
very helpful and very misleading advice (trials 68-119), but increasing m3

also leads to more susceptibility to noisy inputs following this period of
rapid, but meaningful changes (trials 120-136; Supplement).

Moreover and in contrast to our results, Reed et al. (2020) found in-
creased and not reduced coupling strength κ2. This discrepancy may be
related to differences in the tasks employed (non-social three-option rever-
sal learning task vs our social learning task), but we also note that κ2 was
not always well-recoverable in our simulation analysis. Therefore, we do not
wish to draw strong conclusions based on the κ2 effect in our study, although
we found effects suggesting that κ2 may be related to negative and general
symptoms.
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4.2 Is the perception of environmental volatility altered
specifically in social contexts?

Here, we employed an ecologically valid social learning task (Diaconescu
et al., 2014, 2017) to study changes in learning about other’s intentions.
Some authors (Reed et al., 2020; Suthaharan et al., 2021) have raised the
question of whether changes in learning like the ones observed in this study
are reflective of a specifically social or rather a domain-general learning
deficit. Here, we did not assess whether differences with respect to the
perception of environmental volatility were specific to a social context since
we did not include a non-social control task. However, it will be important
to address this question in future studies.

Interestingly, recent studies also identified a mean-reverting HGF with
a drift towards larger volatility estimates as the winning model in a sample
of CHR-P participants (Cole et al., 2020) and changes in m3 to be associ-
ated with a schizophrenia diagnosis (Fromm et al., 2022) in non-social, two-
option reversal learning tasks. Others found changes in model parameters
related to the perception of environmental volatility in healthy, subclinical,
and schizophrenia patient populations (Reed et al., 2020; Suthaharan et al.,
2021). Reed et al. (2020) also included a social control task, which did not
affect the parameter effects. Therefore, this mechanism may not be specif-
ically tied to social contexts, but instead may be related to a more general
deficit in learning under uncertainty (Reed et al., 2020; Suthaharan et al.,
2021). However, we do note that the social control task employed by Sutha-
haran et al. (2021) was not as ecologically valid as other tasks that were used
to study paranoia such as the dictator game (Raihani and Bell, 2017; Barnby
et al., 2020, 2022) or our task which was adapted from empirically-observed
human-human interactions in a previous study using videos of human ad-
visers intending to either help or deceive players (Diaconescu et al., 2014).
Finally, it is also possible that there are both domain-general and domain-
specific changes, but that these can only be studied at the neuronal level
and converge on the same behavioural model parameters.

4.3 What causes an altered perception of volatility?

Interestingly, there may be at least two possibly interacting pathways that
can lead to an altered perception of environmental volatility. First, abnor-
malities in monoamine systems may lead to aberrant PEs that are unpre-
dictable and lead to the expectation that the environment is very volatile
(Diaconescu et al., 2019; Kapur, 2003). In line with this pathway, Reed
et al. (2020) found that methamphetamine administration induced changes
in model parameters that impacted learning about environmental volatility
in rats. Moreover, Diaconescu et al. (2017) found activation in dopaminocep-
tive regions such as the dopaminergic midbrain during the same social learn-
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ing task that was used in the current study. Similarly, unstable dynamics in
cortical circuits (related to synaptic dysfunction, or indeed abnormal neuro-
modulation) may also increase updating to unexpected evidence and thus in-
crease the perception of environmental volatility (Adams et al., 2018; Hauke
et al., 2022). Secondly, external shifts in the volatility of the environment,
like for example the global health crisis of the COVID-19 pandemic, may
also result in an altered perception of volatility and emergence of paranoid
thoughts or endorsement of conspiracy theories (Suthaharan et al., 2021).
This second (environmental) pathway may also be relevant for understand-
ing increased incidence of schizophrenia in individuals that experience mi-
gration (Selten et al., 2020) and those living in urban environments (Vassos
et al., 2012) as individuals exposed to both of these risk factors may be
confronted with – in some cases drastically – changing environments. In
summary, there are likely multiple possibly interacting pathways that could
give rise to an altered perception of environmental volatility.

4.4 Clinical implications

We identified trend-correlations between the drift equilibrium point m3 and
PANSS positive symptoms and the frequency of paranoid thoughts and be-
tween the coupling strength κ2 and PANSS negative and general symptoms.
While the evidence was not conclusive in this study since these correlations
were not significant after multiple testing correction, we note that the ef-
fects were in the expected direction, such that perceiving the environment
as increasingly volatile (higher m3) was associated with higher frequency of
paranoid thoughts and more severe positive symptoms in general. Addition-
ally, increased decoupling of the third level from the second level of the HGF,
which leads to aberrant learning under uncertainty, correlated with more se-
vere negative symptoms. Future well-powered studies are needed to assess
whether these effects can be confirmed in larger samples. Interestingly, we
observed heterogeneous model attributions specifically in CHR-P, whereas
the model selection clearly favoured the standard 3-level HGF in HC and
the mean-reverting model in FEP. This finding suggests that this model may
be helpful to identify CHR-P patients that will more likely transition to a
psychotic disorder.

4.5 Limitations

Several limitations of this study merit attention. First, the sample size of
this study was small due to very selective inclusion criteria with respect to
medication, which, however, enabled us to minimise the impact of long term
medication effects. Larger studies with a volatility structure optimised to
decorrelate m3 and ν are needed to replicate our results and increase statisti-
cal power to identify correlations between model parameters and symptoms.
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Secondly, we cannot assess the specificity of our results with respect to the
social domain since we did not include a non-social control task. Lastly, we
also cannot speak to the specificity with respect to other diagnoses, because
we did not include a clinical control group, which is an important avenue
for future research.

4.6 Future directions

While we found evidence for increased uncertainty associated with higher-
level beliefs about the volatility of others’ intentions, future studies will have
to examine whether a compensatory increase in the precision of higher-level
beliefs occurs during later stages of schizophrenia, possibly also fluctuating
with the severity of psychosis, or whether other models are better suited
to capture the conviction associated with delusory beliefs during acute psy-
chotic states (e.g., Baker et al. (2019); Erdmann and Mathys (2021); Adams
et al. (2022)). Furthermore, the neural correlates of belief updating in emerg-
ing psychosis during social learning should be examined to identify neural
pathways that may underlie the changes in perception that were suggested
by the model. Lastly, longitudinal studies are needed to assess whether
model parameters can be leveraged as predictors for transition to psychosis
or treatment response in individual patients with psychosis.

4.7 Conclusions

In conclusion, our results suggest that emerging psychosis is characterised by
an altered perception of environmental volatility. Furthermore, we observed
heterogeneity in model attributions in individuals at high risk for psychosis
suggesting that this computational approach may be useful to stratify the
high risk state and for predicting transition to psychosis in clinical high risk
populations.
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