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A growing body of literature suggests that higher developmental exposure to individual or 
mixtures of environmental chemicals (ECs) is associated with autism spectrum disorder (ASD). 
However, the effect of interactions among these ECs is challenging to study. We introduced a 
composition of the classical exposure-mixture Weighted Quantile Sum (WQS) regression, and a 
machine-learning method called signed iterative random forest (SiRF) to discover synergistic 
interactions between ECs that are (1) associated with higher odds of ASD diagnosis, (2) mimic 
toxicological interactions, and (3) are present only in a subset of the sample whose chemical 
concentrations are higher than certain thresholds. In the case-control Childhood Autism Risks 
from Genetics and Environment study, we evaluated multi-ordered synergistic interactions 
among 62 ECs measured in the urine samples of 479 children in association with increased 
odds for ASD diagnosis (yes vs. no). WQS-SiRF discovered two synergistic two-ordered 
interactions between (1) trace-element cadmium(Cd) and alkyl-phosphate pesticide - diethyl-
phosphate(DEP); and (2) 2,4,6-trichlorophenol(TCP-246) and DEP metabolites. Both 
interactions were suggestively associated with increased odds of ASD diagnosis in a subset of 
children with urinary concentrations of Cd, DEP, and TCP-246 above the 75th percentile. This 
study demonstrates a novel method that combines the inferential power of WQS and the 
predictive accuracy of machine-learning algorithms to discover interpretable EC interactions 
associated with ASD.  
 
 
 
 
 
Synopsis 
 
 
The effect of interactions among environmental chemicals on autism spectrum disorder (ASD) 
diagnosis is challenging to study. We used a combination of Weighted Quantile Sum regression 
and machine-learning tools to study multi-ordered synergistic interactions between 
environmental chemicals associated with higher odds of ASD diagnosis.  
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Introduction 
 
Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by deficits in 
social communication and interaction and repetitive and stereotyped interests and behaviors1. 
ASD prevalence has increased drastically recently and is a public health concern worldwide. 
According to the Centers for Disease Control program Autism and Developmental Disabilities 
Monitoring (ADDM) Network, approximately 1 in 44 children have been diagnosed with ASD2, 3. 
In the past decade, a growing number of epidemiological studies have associated early-life 
environmental exposures with ASD4. These environmental exposures include air pollution5-9, 
nutrition, and environmental chemicals like volatile organic compounds, solvents, and 
endocrine-disrupting chemicals (EDCs). Among multiple EDCs, the field of metals exposure and 
ASD research is continuously evolving10, 11, suggesting a compelling link between higher 
inorganic metalloid arsenic and ASD in children12. The association between trace elements and 
other endocrine-disrupting chemicals, such as BPA, and parabens, with ASD has been 
understudied13; however, studies have shown that they are potential risk factors for child 
behavioral outcomes14-16.  
 
Although the exact cause of ASD remains unclear, research on its etiology has suggested an 
interplay of multiple genetic and early environmental contributions that differ between 
individuals4, 17, 18. Genetic and environmental factors may impact typical brain development, 
including neuron formation and migration, synapse formation, or neural connectivity, ultimately 
leading to ASD4. Environmental chemical exposures biologically interact through 
pathophysiologies, including the direct disruption of cells and structures of the nervous system, 
endocrine hormone- or immune system-mediated impacts, and epigenetic changes, to name a 
few4.  However, there is a lack of environmental epidemiology studies assessing potential 
chemical-chemical interactions in ASD. Among the very few studies, Curtin et al. examined 
whether the dynamic interaction of zinc-copper cycles, which regulate metal metabolism, are 
disrupted in ASD19. Findings showed that the interaction between cyclical co-occurrence 
between zinc and copper is disrupted in ASD19, 20.  
 
The concept of "interaction" has been construed in many ways through different scientific fields 
21. For example, in current epidemiological studies, interactions are usually reported through 
association estimates of their effect sizes or inclusion probabilities22-33. Though estimating 
associations is essential, most methods do not provide any mechanistic or biological insight, 
possibly because the reported interactions are of particular functional forms (for example,  
multiplication of exposures) rather than representing their collective activities beyond certain 
concentration thresholds34. Further, after applying certain dimension reductions, most 
interactions are reported between sets of reduced exposures, limiting interpretability. In addition, 
such interactions provide a population-level estimate, with each sample providing some 
contribution to the overall estimate.  
 
On the other hand, the toxicological representation of interactions is easier to comprehend.  
Through the collective activities of the chemicals, (1) one can identify the mechanism of 
synergistic or antagonistic behavior that might arise beyond the concentration thresholds (and 
not just the regression coefficient of multiplicative associations), and (2) the use of concentration 
thresholds reflect the toxicological underpinning of classical threshold based chemical dose-
response studies35-37. Moreover, as the number of chemical exposures increases, searching for 
multi-ordered interactions gets computationally very intensive. Most current methods, therefore, 
"hard code" or pre-specify interaction terms in models, but such strategies are limited due to 
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restrictions on sample size and are usually underpowered38, 39. In comparison, Kernel Machine 
Regression or Bayesian factorization-inspired methods discover interactions with certain 
functional forms that do not represent any collective activity or concentration thresholds30, 32, 40. 
The lack of similarity with toxicological threshold-based dose-response studies makes it difficult 
to find any biologically relevant interpretation of the recovered interactions. Note that such 
interactions can only be present in a subset of the population since not every sample will have 
chemical concentrations beyond certain thresholds.  
 
As a possible alternative to address this problem of interpretability, tree-based machine learning 
(ML) models provide a natural solution to represent collective activities of chemical exposures 
as threshold-based interactions. Nevertheless, a significant challenge was that most of these 
tree-based models were black-box, creating tension between prediction quality and meaningful 
biological insight. Moreover, a predictive machine-learning model might not be the optimal 
model for inference 41. However, in recent epidemiological studies, interpretable tree-based 
machine-learning tools were used to discover simultaneously co-occurring chemicals, similar to 
classical Weighted Quantile Sum (WQS) Regression models 42-46. Separately in computational 
biology, using a novel ML algorithm called random intersection trees47, Basu et al.34, 48 
introduced the "signed iterative random forest" (SiRF) algorithm to discover interactions through 
collective activities. Moreover, SiRF can efficiently search for the few stable and highly occurring 
interactions instead of going through each possible interaction term. Since exposure to 
environmental chemicals occurs simultaneously, we intend to use a combination of the WQS 
regression and the ML method Signed Iterative Random Forest to search for interactions that 
mimic toxicological interactions. Using data from the Childhood Autism Risks from Genetics and 
Environment (CHARGE) study, we aimed to identify multi-ordered synergistic interactions 
between environmental chemicals at specific exposure thresholds associated with higher odds 
of ASD. We further examined whether the directionality of the interactions remained unaltered 
even after adjusting for the potential effects of the overall chemical mixtures. 
 

 
Methods 
Study Design and Population 
Details about the CHARGE study have been reported in Bennett et al.13 Briefly, the Childhood 
Autism Risks from Genetics and Environment (CHARGE) is a case-control study that recruited 
between 2006 and 2017 three groups of children: (1) children with ASD (2) children with 
developmental delay (DD) but not ASD, and (3) children with typical development (TD)49. 
Children from the first two groups were mainly identified from the California Department of 
Developmental Services. The department coordinates services for individuals with 
developmental disabilities and is inclusive of all residents of California regardless of their place 
of birth, religion, or financial resources 13. The third group (controls) was sampled from 
California birth files utilizing frequency matching of ASD cases comprised of the following 
characteristics, age, sex, and broad geographic regions up to 10 counties. Children from all 
three groups were: a) aged 24-60 months at recruitment; b) living with a biological parent who 
speaks English or Spanish; c) born in California; and d) residing in the study catchment area. 
CHARGE study included all children with at least 16 mL of urine collected at their assessment 
and available for chemical analysis. In addition, detailed demographic characteristics of the 
parents and children were collected during the study visit. However, in this present study, we 
only included children with either ASD (from group 1) or typical development (from group 3), 
totaling a sample size of 479.  
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Exposure Assessment 
We collected a single urine sample from each participating child during their visit. All samples 
were frozen immediately at -20� C and remained frozen until analysis. The samples were 
shipped on dry ice to the New York State Department of Health's (NYSDOH) Wadsworth 
Center's Human Health Exposure Analysis Resource (HHEAR) Targeted Analysis Laboratory 
for analysis. Enzymatic deconjugation and liquid-liquid extraction were used to assess the 
specific phenolic compounds previously described 50, 51. A comprehensive description of the 
exposure assessment of the targeted phenolic compounds can be found in Bennett et al.13, 50-52. 
Urinary phthalate metabolites (PhMs) were analyzed using enzymatic deconjugation, solid-
phase extraction (SPE), and an isotope dilution method of quantification53. Further information 
on the analysis of the PhMs is explained elsewhere13, 53, 54. We used the SPE method and the 
HPLC-MS/MS to analyze the urine samples for six dialkyl phosphate metabolites (DAPs) 
described in Bennett et al.13, 55. Trace elements were analyzed from urine specimens using the 
biomonitoring methods based on the ICP-MS at the Laboratory of Inorganic and Nuclear 
Chemistry at the Wadsworth Center13, 56.  
 
Using the following formula, we corrected for specific gravity (SG) urinary concentrations Pc= 
Px[(SGp-1)/(SG-1)]57. Pc was the SG corrected metabolite concentration (ng/mL), and SG was 
the specific gravity of the urine sample. The median specific gravity of the CHARGE participants 
was 1.0223 ng/mL (SGp). In the event that the specific gravity correction factors were greater 
than 2, they were assigned a value of 2. For values below 0.5, they were assigned 0.513.  
 
Developmental Assessment 
During the study visit, an assessment of ASD diagnosis was conducted (to confirm the 
diagnosis of ASD  indicated during the CHARGE enrollment process) using two gold standard 
psychometric instruments: the Autism Diagnostic Interview-Revised (ADI- R)58-60 and the Autism 
Diagnostic Observation Schedules (ADOS)61. The ADI-R is a semi-structured interview 
administered to the primary caregiver to diagnose autism and to differentiate autism from other 
developmental disorders60. The ADOS is a semi-structured, standardized assessment where 
the researcher observes the social interaction, communication, play, and imaginative use of 
materials by children suspected of having ASD13, 61. We utilized the DSM-5 and followed 
standardized procedures from the ADOS and ADI-R to assign the final diagnosis of ASD62. 
Children from all three groups were administered the Mullen Scales of Early Learning (MSEL) 
and the Vineland Adaptive Behaviors Scores (VABS)13. To confirm that a child did not have 
ASD, we used the Social Communications Questionnaire to screen for ASD in children in both 
the developmental delay and general population groups63. If a child was positive, we 
administered the ADI-R and ADOS to determine if they had ASD. All other children enrolled 
because of a community diagnosis of ASD or DD, but were not confirmed for either of these two 
diagnoses, were grouped together as Other Early Concerns (OEC)13. Children were classified 
as TD and enrolled as general population controls who did not meet the criteria for either ASD 
or DD. All classification groups are mutually exclusive. All clinicians participating in the study 
spoke English and/ or Spanish. Additionally, they achieved research reliability on all of the 
instruments they administered13.  

 
Statistical Analysis 
 
We used the Weighted quantile sum (WQS)26 regression to model the adverse mixture effect of 
chemicals while simultaneously (1) accommodating the correlation structure of the chemicals 
and (2) controlling for covariates. Similar to Bennet et al., we conducted this analysis by 
focusing on the positive association (i.e., adverse directionality) between chemical exposures 
and ASD status.  
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To reduce spurious co-occurrences of chemicals, interactions were searched on top of the 
chemical-mixture effect.  A conceptual schematic of different kinds of interactions was 
presented in Figure 1. Briefly, these interactions mimic classical toxicological interactions where 
interaction occurs only if the concentration of certain chemicals is above some thresholds. 
Conceptually, a usual multiplicative interaction between two chemicals (say, A and B) can be 
mapped to four toxicological interactions, (1) the concentration of A is high, and the 
concentration of B is high, (2) the concentration of A high, and the concentration of B is low, (3) 
the concentration of A is low, and the concentration of B is high, and (4) the concentration of A 
is low, and the concentration of B is low (see Figure 1A). Note that each of the four components 
is easier to interpret and could directly imply plausible biological interpretation. Moreover, a 
positive association with multiplicative interaction does not necessarily imply synergy since the 
higher value of multiplicative interaction does not imply that the concentrations of individual 
chemicals are also high. However, such a problem of interpretability does not arise for 
toxicologically mimicked interactions (Figures 1B and 1C). Lastly, multiplicative interactions 
provide a population-level interaction estimate – where all individuals contribute, whereas the 
mimicked toxicological interactions are only present in a subset of the population. In the 
following analysis, we searched for synergistic interactions in the adverse direction, i.e., 
chemical exposures higher than certain concentration thresholds, mimicking a toxicological 
interaction.  
 

 
Figure 1: Conceptual illustration of multiplicative and toxicologically mimicked interactions.  
 
The model was controlled for the child's sex, year of birth, race/ethnicity, age at enrollment, 
maternal age at the time of childbirth, maternal metabolic conditions during pregnancy (any 
hypertensive disorder, including obesity or any diabetes), and parental homeowner status (as a 
proxy of socioeconomic status). These covariates were chosen apriori based on the previous 
analysis in Bennet et al. 13 To make the analysis robust, we implemented the random subset 
and repeated holdout 64, 65 variants of WQS. Assuming the main chemical-mixture effect and the 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted February 4, 2023. ; https://doi.org/10.1101/2023.02.02.23285222doi: medRxiv preprint 

https://doi.org/10.1101/2023.02.02.23285222


synergistic interactions are additive, we extracted the Pearson residuals from this model and 
treated the residual as the new outcome (the Pearson residual possesses asymptotic 
normality)37, 66. Therefore, we searched for synergistic interactions on the residuals after 
adjusting the first-order main mixture effect and the covariates. 
 
We searched for interactions through signed-iterated Random Forest (SiRF), where the 
Pearson residuals from WQS were the outcome, and the 62 chemicals were the exposures. The 
SiRF utilizes a combination of state-of-the-art machine-learning tools, iterative Random Forests 
(iRFs), and recently developed Random Intersection Trees (RITs) to search for interactions 
within a certain proportion of samples34, 47, 48, 67. Instead of searching through all possible 
combinations, SiRF searches for combinations of exposures prevalent on the decision paths of 
the generated iRFs. Briefly, we explain how SiRF searches for high-order chemical exposure 
interactions. First, the model begins with fitting the RF model and reweighting the important 
exposures. Using the reweighted exposures, multiple RF models are fitted iteratively to reduce 
the dimensionality of the exposure space without removing marginally unimportant exposures. 
Second, decision rules are extracted from the iterated RF and fed to a generalization of the RIT 
to efficiently discover high-order interactions from the decision paths. Last, a bagging step is 
introduced in the algorithm to assess the "stability" of the recovered interactions through a large 
number of bootstrapped iterations. Here stability implies the number of times an interaction is 
detected throughout the iterations; therefore, the higher the recovery rate, the better. Since 
SiRF searches through particular decision branches, it can incorporate meaningful directionality 
(in the current study, synergism) while recovering the interactions. The combination of WQS-
SiRF can robustly search for interactions without the need to depend on p-values.  
 
In the SiRF part, the model was trained on a subset of data, and then bagging was introduced 
on the remaining held-out testing data. Therefore, to obtain robust results against the sensitivity 
of data partitioning, we chose three different data partitions, (1) 70% for training and 30% for 
testing, (2) 75% for training and 25% for testing, and (1) 80% for training and 20% for testing. 
Finally, we chose only those interactions with (1) more than 50% stability score and were (2) 
common to all three data partitioning results. Since the discovered interactions were based on 
thresholds, they were only present in certain portions of the samples.  However, SiRF does not 
directly estimate the thresholds by itself. Therefore, we created interaction indicators based on 
their joint concentrations to denote the presence or absence of interactions. For example, if the 
specific gravity-adjusted concentrations of the chemicals were more than the 75th percentile, 
then the interaction indicator would be non-zero; else, it would be zero. We created another set 
of indicators based on the 67th percentile threshold for sensitivity analysis. For WQS analysis, 
(1) we converted all chemical exposures to deciles, and (2) we included all chemicals 
irrespective of their percentage detected above LOD. Note that the conversion in deciles for 
chemical exposures and the growing many decision trees through bootstraps protect against 
outlying and influential observations.  
 
As sensitivity analyses, (1) we repeated the WQS-SiRF algorithm with data partitioned in 75% 
for training and 25% for testing without chemicals whose % of detection above LOD was less 
than 60%, (2) we gradually increased the number of bootstraps, from 250, 500, to 1000, (3) we 
used the whole dataset to test the model trained on the 75% data, and (4) repeated SiRF to 
obtain interactions observed in the primary analysis after randomly permuting the ASD status. 
For descriptive analysis, we calculated the Pearson correlation matrices of log-transformed and 
specific gravity-corrected 62 chemicals exposures for ASD and TD children. Missing data in 
covariates was minimal (< 5%) and were imputed using the R package "mice" 68. A two-tailed p-
value less than alpha at 0.05 is considered statistically significant. All data were analyzed in R 
version 4.1.2. The detailed mathematical exposition of the algorithm can be found in48. In 
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addition, the tuning parameters in WQS-SiRF and random seeds for training and testing data 
are provided in the supplemental materials.  
 
 
 
 
Results 
 
The list of all 62 chemicals was presented in Supplemental Table S1, and their LODs (and % 
detected above LOD) were presented in Supplemental Table S2. Supplemental Table S3 
presents the log-transformed and specific-gravity-corrected urinary concentrations of all 62 
chemicals for ASD and TD children. Among 62 chemicals, 42 had more than 60% detection rate 
above LOD (Supplemental Table S2). The specific gravity-adjusted concentration levels and the 
correlation matrices of the chemicals were presented in Figure 2.  

Figure 2: Specific gravity-adjusted and log-transformed (base 2) mean concentration and correlation plot 
of urinary chemicals 
 
There were moderate to strong (0.3 to 0.7) within-group correlations among pesticides and 
phenols. The distributions of the child's sex and race/ethnicity were not significantly different 
between ASD and TD children (Table 1). Further, there was no significant difference in parental 
homeowner status. However, children with ASD were more likely to be older at their age of 
assessment, and their mothers were more likely to have any hypertensive disorder or diabetes 
for any BMI category. The chemical concentrations of Methyl Paraben, Diethyl-phosphate, and 
Propylparaben (the top three chemicals based on weights from WQS) were significantly higher 
in children with ASD. 
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Table 1: Characteristics of mothers and children included in the analysis from the CHARGE 
cohort. 

n = 479 All (mean(SD) 
or n(%)) 

TD ASD p-value 

Child sex    0.99 
Female 91 (19) 47 44  
Male 388 (81) 201 187  
Child Race/Ethnicity    0.25 
White (non-Hispanic) 246 (51.36) 135 (54.44) 111 (48.05)  
Non-White (non-Hispanic) 102 (21.29) 46 (18.55) 56 (24.24)  
Hispanic any race 131 (27.35) 67 (27.02) 64 (27.71)  
Child age at assessment (in 
years) 3.94 (0.75) 3.82 (0.75) 4.05 (0.73) <0.01 

Child Year of Birth (baseline 
2000)# 6.86 (3.08) 6.48 (2.91) 7.26 (3.21) <0.01 

Parental homeowner status    0.09 
No 137 (28.60) 62 (25) 75 (32.47)  
Yes 342 (71.40) 186 (75) 156 (67.53)  
Maternal Age child's birth 30.57 (5.56) 30.42 (5.43) 30.73 (5.71) 0.38 
Maternal Metabolic Condition##    0.01 
Healthy (BMI <25) weight and 
no metabolic conditions 230 (48.02) 124 (50.00) 106 (45.89)  

verweight (BMI: 25-29.9) and 
no metabolic conditions 

102 (21.29) 60 (24.19) 42 (18.18)  

Obese (BMI >30), no other 
metabolic conditions 68 (14.20) 36 (14.52) 32 (13.85)  

Any hypertensive disorder 
(including obesity) or diabetes  79 (16.49) 28 (11.29) 51 (22.08)  

MEPB** (in ng/ml) 5.87 (2.87) 5.47 (2.81) 6.31 (2.87) <0.01 
DEP** (in ng/ml) 2.01 (1.78) 1.76 (1.64) 2.27 (1.89) <0.01 
PRPB** (in ng/ml) 3.02 (2.96) 2.66 (2.94) 3.39 (2.95) <0.01 

*transformed to log (base 2) and corrected for specific gravity, **top three chemicals in terms of weights 
from WQS regression, #all children were born after 2000, ## the covariate maternal metabolic condition 
was created in previous studies by merging BMI categories with any hypertensive disorder and obesity 
and was shown to be associated with neuro-developmental outcomes in children69. P-values for the 
difference between ASD and TD groups were calculated using the Fisher exact test for categorical 
variables and the Wilcoxon rank-sum test for continuous variables. ASD: Autism Spectrum Discover, TD: 
Typical Development, BMI: Body Mass Index, MEPB: Methyl Paraben, DEP: Diethyl-phosphate, PRPB: 
Propylparaben 
 
 
WQS- SiRF result  
 
In the WQS model (with binary outcome ASD vs. TD and without any interaction term), the 
mixture index was significantly associated with higher odds of ASD (OR[95% CI]: 1.58[1.32, 
1.88]). There were 20 chemicals with higher than chance contribution (weight > 1/62) to the 
overall mixture effect. The top five chemicals were Methyl Paraben, Diethyl-phosphate, 
Propylparaben, trace-metal Uranium, and Bisphenol F. The estimated weights (and the 
corresponding 95% CIs) were presented in Figure 3.  
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Figure 3: Results from WQS chemical mixture regression. (A) the overall OR between the WQS chemical 
mixture with ASD vs. TD status and (B) the corresponding weights contributed to the overall OR (note that 
the weights sum up to 1).  
 
WQS-SiRF searched for interactions of multiple orders (>= 2) but eventually found two 
synergistic two-ordered interactions with more than 75% stability. The interactions were 1) 
urinary trace element Cadmium (Cd) and alkyl-phosphate pesticide – Diethyl-phosphate (DEP), 
denoted by Cd/DEP; and 2) environmental Phenol 2,4,6-Trichlorophenol (TCP-246) and DEP, 
denoted by TCP-246/DEP. However, both interactions were only observed in a subset of the 
sample whose urinary chemical concentrations of Cd, DEP, and  TCP-246 were higher than 
certain thresholds. Therefore, based on a 75th percentile threshold cutoff, we created two 
separate interaction indicators to test these discovered interactions for association analysis. For 
example, if both the specific gravity-adjusted concentrations of Cd and DEP were more than the 
75th percentile, then the interaction indicator Cd/DEP would be non-zero; else, it would be zero. 
In the sample, the estimated prevalence of these interactions was 5% and 8.4% for Cd/DEP and 
TCP-246/DEP, respectively. The results of SiRF from all three different data partitions were 
presented in Supplemental Table S4. 
 
In two separate adjusted models (after controlling for the main WQS chemical mixture and 
covariates), each interaction indicator was associated with increased odds of ASD,  2.60[0.90, 
7.50] and 1.14[0.55, 2.38] for Cd/DEP and TCP-246+/DEP respectively. Find all the ORs and 
corresponding CIs in the forest plot in Figure 4. Among the two interactions, Cd/DEP had the 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted February 4, 2023. ; https://doi.org/10.1101/2023.02.02.23285222doi: medRxiv preprint 

https://doi.org/10.1101/2023.02.02.23285222


strongest association, and in all the models, the WQS chemical mixture remained statistically 
significant, with just a slight change in the ORs.  

Figure 4: Results from nested linear models with WQS and discovered interaction indicators (cutoff set at 
75th percentile) and WQS chemical mixture. In the top three models, the WQS chemical mixture and the 
two interaction indicators were used in separate models. Both interaction indicators were adjusted with 
the WQS chemical mixture in the following two models. In the last model, interaction indicators and the 
WQS chemical mixture were put in the same model. All models were adjusted for covariates.  
 
In the sensitivity analyses, (1) the interactions Cd/DEP and TCP-246/DEP were replicated when 
the WQS-SiRF algorithm was re-fitted without chemicals whose % of detection above LOD was 
less than 60% (Supplemental Table S5). (2) Furthermore, the gradual increase in the number of 
bootstraps, from 250, 500, to 1000, did not alter the results. Both the discovered interactions 
remained unaltered when the whole dataset was used to test the model trained on 75% data 
(Supplemental Table S6). Moreover, (3) the directionality of the ORs did not alter even when the 
interaction threshold of the 75th percentile was changed to the 67th percentile (Supplemental 
Figure S1), and (4) the interactions Cd/DEP and TCP-246/DEP were not found in the 
permutation tests.   
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Discussion 
 
We leveraged data from the CHARGE study to assess the synergistic interactions between 
environmental chemicals, pesticides, phthalates, phenols, and trace elements and ASD. 
Utilizing WQS-SiRF, we found two suggestive synergistic interactions associated with increased 
odds of ASD diagnosis between (1) Cd and DEP and (2) 2,4,6-trichlorophenol and DEP among 
children with the urinary concentration of interacting chemicals over certain thresholds. When 
controlled for the main WQS mixture and the necessary covariates, cadmium/DEP and TCP-
246/DEP were associated with increased odds of ASD, respectively. Between the two 
interactions, cadmium/DEP had the strongest association and was previously shown to form 
chemical complexes. The identified interactions could be experimentally testable and, therefore, 
biologically meaningful. This paper is a continuation of the study of the main effects by Bennet 
et al.13, which concluded that many urinary chemicals were associated with increased odds of 
ASD at 2-5 years of age. The present study adds value by examining multi-ordered synergistic 
interactions between exposures to pesticides, phthalates, phenols, and trace elements and ASD 
and providing evidence for suggestive synergistic interactions observed between Cd/DEP and 
TCP-246/DEP.  
 
There are few studies on interactions associated with ASD, including gene-environment70, 
social71, and chemical4 factors. Moreover, there is a lack of studies demonstrating chemical-
chemical interactions in this context. Previous studies have shown an association between 
heavy metals, like cadmium, and ASD72, 73. Kern et al. discovered that cadmium and other trace 
elements were significantly lower in the hair of children with autism than others74. This supports 
the concept that children with autism may have issues excreting cadmium, resulting in a higher 
body burden that could contribute to symptoms of autism74, 75. Children could be exposed to 
cadmium through inhalation and ingestion. It is commonly found in the food chain, soil, cigarette 
smoke, and manufactured products73. Research on pesticide exposure during childhood, 
specifically glyphosate76, 77, chlorpyrifos77, diazinon77, and the development of ASD continues to 
emerge78-80. Potential routes of pesticide exposure in children include food contaminated with 
pesticides (ingestion), in utero or through breastmilk, and household exposures via dermal 
contact81, 82. However, there is a lack of studies showing any associations between the 
interaction of DEP and TCP-246 with ASD. Regarding possible biochemical significance, the 
cation, Cd2+ forms a complex with phosphate ester, particularly with DEP (C4H10O4P

-), forming 
cadmium diethyl phosphate, C4H10CdO4P

-83, 84. Although for the TCP-246+/DEP+ interaction, 
many details are not known, a chemical complex "2,4,6-trichlorophenyl dialkyl phosphate" was 
patented (in 1952) for use as parasiticides and control of agricultural and household pests 
through aqueous suspensions employed as sprays85. However, the activities of both chemical 
complexes in biological media are not known in detail. 
 
We acknowledge the study's limitations. (1) The urine samples were collected post-diagnosis, 
i.e.,  months and sometimes years after their symptoms emerged. In rare cases, urine samples 
were collected at the diagnosis. Therefore we cannot rule out reverse causation, with the 
associations reflecting lifestyle patterns. In addition, urinary measurements of the organic 
compounds assessed in this study represent recent exposures due to their half-lives. Ideally, 
the urine samples should have been assessed with repeated samples collected at various time 
points13, 86-88. As a result, we are uncertain whether these chemical interactions directly 
contribute to ASD diagnosis. (2) Because of the limited sample size, we did not study potential 
sex-specific associations with ASD diagnosis, although sexually dimorphic effects are well 
documented.2 (3) Additionally, we used the same confounders used in the original analysis by 
Bennet et al.13. However, these confounders were selected based on them being confounders 
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to MEPB because it has one of the strongest associations in the unadjusted model. (4) Similar 
to large case-control studies, residual confounding is possible. However, our results remained 
unaltered after adjusting for multiple confounders and covariates, negating residual confounding 
as the sole explanation. (5) The choice of cutoffs at the 75th or 67th percentile is ad-hoc and 
sample-specific and therefore needs to be replicated in a separate independent study 
population. Further, using random intersection trees within the SiRF algorithm makes it difficult 
to extract the absolute threshold cutoffs directly. Therefore given these methodological 
challenges, there lies a strong potential for further developments attuned to specific problems. 
(6) In the present analysis, the same chemicals were used in the WQS and then again in the 
SiRF, raising the possibility of over-fitting. A training, testing, and validation data split in an ideal 
large sample scenario would potentially guard against overfitting. However, in this moderate 
sample-sized study, the use of random subsets and repeated holdouts in training and testing 
samples of WQS and the drawing of a large number of bootstrapped samples with different 
training and testing splits in the SiRF could potentially induce a robust guard against overfitting. 
 
However, our study has several strengths. First, CHARGE is a well-established case-control 
study with extensive demographic and covariate data. Further, it allowed us to assess a wide 
range of environmental chemical exposures in children 2-5 years of age, along with available 
data on ASD with a moderate sample size. Second, this is the first study to combine exposure 
mixture methods and machine learning tools to discover interactions that mimic classical 
threshold-based toxicological dose-response interactions, providing a meaningful way to extract 
plausible mechanistic insight. Third, these toxicologically mimicking interactions are only present 
in a subset of the sample, therefore, can be thought of as “personalized and precision” 
interactions. Fourth, WQS-SiRF can efficiently search for high-order interactions; therefore, the 
intended order does not need to be specified beforehand. Fifth, in terms of practical 
implementation, the WQS-SiRF algorithm is relatively fast and user-friendly, with both having 
robust R packages. In conclusion, we introduced a novel way of discovering threshold-based 
interactions. To the best of our knowledge, this is the first paper that combines the inferential 
power of WQS and the predictive accuracy of a machine-learning algorithm to discover 
threshold-based personalized biologically suggestive interactions among urinary biomarkers 
associated with higher odds of ASD.  
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