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Abstract: 
 
In 1953, Morton Levin introduced a simple approach to estimating population attributable fractions (PAF) depending 

only on risk factor prevalence and relative risk.  This formula and its extensions are still in widespread use today, 

particularly to estimate PAF in populations where individual data is unavailable.  Unfortunately, Levin’s approach is 

known to be asymptotically biased for the PAF when the risk factor-disease relationship is confounded even if relative 

risks that are correctly adjusted for confounding are used in the estimator.   

  

An alternative estimator, first introduced by Miettinen in 1972, is unbiased for the PAF provided the true relative risk is 

invariant across confounder strata.  However, despite its statistical superiority, Miettinen’s estimator is seldom used in 

practice, as its direct application requires an estimate of risk factor prevalence within disease cases rather than an 

estimate of risk factor prevalence in the general population. 

 

Here we describe a simple re-expression of Miettinen’s estimand that depends on the causal relative risk, the unadjusted 

relative risk and the population risk factor prevalence.   While this re-expression is not new, it has been 

underappreciated in the literature, and the associated estimator may be useful in estimating PAF in populations when 

individual data is unavailable provided estimated adjusted and unadjusted relative risks can be transported to the 

population of interest.  Using the re-expressed estimand, we develop novel analytic formulae for the relative and 

absolute asymptotic bias in Levin’s formula, solidifying earlier work by Darrow and Steenland that used simulations to 

investigate this bias.  We extend all results to settings with non-binary valued risk factors and continuous exposures and 

discuss the utility of these results in estimating PAF in practice. 
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Introduction 

 

The Population Attributable Fraction (PAF), sometimes also referred to as the Population Attributable Risk and the 

Excess Fraction, is a central metric in epidemiology.  It is useful both to ascertain the importance of a risk factor in 

causing disease as well as to identify the best risk factors to target in a health intervention.  

 

Applications of attributable fractions abound in the literature starting with Richard Doll’s work in estimating the burden 

of lung cancer due to smoking [1], with recent examples relating to modifiable risk factors of gout in the US [2], risk 

factors for depression in Brazil [3] and modifiable risk factors for cancer in Denmark [4], with these studies 

representing only a very small sampling of recent literature. 

 

Intuitively, PAF represents the fraction of prevalent disease cases that might have been avoided in some population if a 

risk factor were not present.   If we express disease prevalence in the current population as 𝑃(𝑌 = 1), 𝑌 being a binary 

indicator for disease, and the prevalence of disease that would have been observed in the target population had the risk 

factor been removed as 𝑃(𝑌! = 1), PAF can be expressed as: 

 

(1)  𝑃𝐴𝐹 = !(#$%)'!(#"$%)
!(#$%)

.   

         

Here, we are restricting our usage of the term risk factor to apply to environmental, physiological or behavioural 

determinants of a particular disease; that is we do not view variables that have non-causal associations with disease as 

risk factors.  Such factors might be binary, multi-level or continuously distributed.  As an example, depending on the 

resolution of data capture, smoking might be coded as a binary indicator for current smoking, separate indicators for 

whether an individual is currently smoking, has given up smoking or has never smoked, or perhaps as total nicotine 

intake via smoking. Definition (1) and its interpretation, in terms of a comparison between the current population and 

the population had the risk factor been removed, when this is possible at least hypothetically, is valid for any type of 

exposure distribution.  However, the details of the estimation process will differ between these three situations.  We first 

will discuss the simplest case where the risk factor is binary before extending to more general situations.   

 

In the binary risk factor setting, a vast literature has evolved on methods to estimate (1) with individual-level data [5].  

However, it is sometimes necessary to derive estimates of PAF in scenarios where the collection of individual-level data 

is impossible.   As an example, the Global Burden of Disease project [6] estimate population attributable fractions at a 

country level for differing risk factor/disease combinations.  For certain countries, no individual-level data linking risk 

factors of interest to disease may be available.   The most common approach in this situation is to substitute the 

estimated risk factor prevalence in the population, π(, and estimated relative risk of disease (adjusted for confounders), 

𝑅𝑅#* , into equation (2) below.  Equation (2) was introduced by Morton Levin [7], also in the context of estimating the 

PAF for smoking as a cause of lung cancer: 

 

(2)  𝑃𝐴𝐹( =
)(**$'%)
%+)(**$'%)

. 

 

(2) is prominent throughout the literature on PAF estimation.  However, as recognised by multiple authors [8],[9, 

10],[11] , (2) will usually differ from (1) as a quantity.  In particular (2) will equal the true PAF only under the unlikely 
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condition that the association between risk factor and outcome is unconfounded, or more technically exhibits marginal 

exchangeability [12].  Marginal exchangeability implies that the causal relative risk, 𝑅𝑅# =
%('!())
%('"())

, defined as the ratio 

of disease prevalence comparing scenarios where the entire population was exposed and the entire population was 

unexposed to the risk factor in question equals the unadjusted relative risk, 𝑅𝑅+.  See Supplementary Material Section 

1B for more discussion. 

 

Miettenen’s definition of PAF 

 

While (2) does not equal PAF in the absence of this ‘no confounding’ assumption, an alternative expression introduced 

by Miettinen [13], which involves the prevalence of the exposure within cases, 𝜋, , as opposed to the overall population 

prevalence equals equal (1) irrespective of the degree of confounding.  Miettinen’s expression is given by 

 

(3)  𝑃𝐴𝐹 = 𝜋,
**$'%
**$

, 

 

where 𝜋, is now the proportion of disease cases that have the risk factor.   

 

Equation (3) is correct provided the causal relative risk, 𝑅𝑅#, is constant in differing joint strata of the confounder 

variables.  Otherwise, a similar formula holds, replacing the causal relative risk in the overall population with the causal 

relative risk in individuals exposed to the risk factor (See supplementary section S2).  The usual advice is to use (3) 

when possible [9] and not (2) as a basis for estimating PAF.  However, estimates for 𝜋 are more likely to be found in 

the published literature than estimates for 𝜋, and as a result, researchers are more likely to use (2) in practice.  For 

example, the Global Burden of Disease project utilise (2) rather than (3) to estimate PAF.    

 

A re-expression of Miettenen’s PAF 

 

A fact that has been underappreciated in the literature is that equation (3) can be re-expressed to be a function of three 

quantities: the prevalence of the risk factor in the population, 𝜋, the causal relative risk, 𝑅𝑅# , and the unadjusted 

relative risk, 𝑅𝑅+ in the population: 

 

(4)  𝑃𝐴𝐹 = [ )**-
%+)(**-'%)

] **$'%
**$

 

 

The proof that (4) equals the PAF is a relatively simple application of Bayes’ rule (supplementary section S3).  This 

formula was known to Miettinen (see equation 8 in his 1974 pape), but has received little attention in the literature, 

although an equivalent formula was recently described by Susuki and Yamamoto [14].  While a somewhat simple re-

expression of (3), (4) may be practically useful in estimating PAF with summary data as unadjusted relative risks are 

often reported together with adjusted relative risks.  It is useful to notice that under no confounding, which implies 

𝑅𝑅+ = 𝑅𝑅# , the expression (4) simplifies to Levin’s formula.  This observation implies that in addition to Levin’s 

formula being correct under marginal exchangeability as mentioned previously, it is also correct under a slightly weaker 

assumption of no-confounding in risk ratio (𝑅𝑅+ = 𝑅𝑅#), together with an assumption of no effect modification across 

confounder strata. However, formulae (2) and (4) will otherwise differ. 
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Analysis of bias in Levin’s estimate 

 

For illustration regarding both the biases at play from Levin’s approach and the potential of (4) to provide better 

estimates of PAF than (2) when individual-level data is unavailable, we will consider results from [15] who conducted 

meta-analyses to estimate the causal effect of physical inactivity on depression.   Their analyses estimated both 

unadjusted relative risks, RR.-=1.69 95%CI (1.18-1.96)], and adjusted relative risks,  RR/* =1.20 95%CI (1.10, 1.32), 

for physical inactivity.  The percentage of physical inactivity (according to a certain definition) may vary greatly over 

differing populations, depending on factors such as culture and age structure.  Let’s say that for a particular population, 

an estimate of the percentage of physical inactivity is 𝜋 = 0.5.  Plugging in the estimated adjusted relative risk into 

Levin’s formula results in an estimated PAF of 9.1%, whereas using (4), the correctly estimated PAF is 10.5%.  

Suppose we wish instead to estimate the PAF in a more active population with an estimate of physical inactivity: 𝜋 =

0.2.  In this case, the bias is smaller but the relative bias is larger: Levin’s formula gives an estimate of 3.8% whereas 

(4) generates an estimate of 5.0%.  These are examples of the general behaviour we would expect of the bias as we will 

show below.   

 

[ 10] investigated the bias of Levin’s formula using simulation, and showed that as the degree of confounding, specified 

by max{𝐶, 1/𝐶} where 𝐶 = 00#
00$

  gets larger, with no confounding in risk ratio being represented by 𝐶 = 1, the 

magnitude of relative bias in Levin’s formula will increase.  When 𝐶 < 1, one would expect that 𝑃𝐴𝐹1 < 𝑃𝐴𝐹 (as is 

the case in the effect of physical inactivity on depression).  Their simulations also indicate that this relative bias will be 

larger for smaller risk factor prevalences, as again observed in the previous example.  However, having an explicit 

formula for relative bias allows a more rigorous analysis of limiting behaviour for extreme values of 𝐶 than was 

possible in [ 10].   

 

Given the formula (4), an expression for the relative asymptotic bias can be trivially derived by simply taking the ratio 

of (3) and (4). After some simplification (supplementary section S4) this results in: 

 

(5)  
!-.2
!-.

= %+)(**-'%)
%+)(/×**-'%)

× 𝐶1 

 

Observing that the partial derivative 3
3#

)45(00$6))
)45(#×00$6))

× 𝐶 is strictly positive when fixing 𝑅𝑅+ and 𝜋 (Supplementary 

Section S8) it follows that (5) is an increasing function of 𝐶, fixing values of these variables.  Given that (5) equals 1 at 

𝐶 = 1 (that is Levin’s formula is unbiased when there is no confounding in risk ratio) this indicates that the degree of 

relative bias gets larger as the degree of confounding increases in either direction 𝐶 > 1: 𝐶 ↑ ∞ or 𝐶 < 1: 𝐶 ↓ 0.  It is 

useful to analyse the relative (and absolute bias) separately in these two scenarios 𝐶 > 1 and 𝐶 < 1.  See 

Supplementary Section S8 for more detail regarding these analyses.  A graphical representation of the associated biases 

 
1 Note that (5) is technically the relative difference (or error) between the estimands 𝑃𝐴𝐹1 and 𝑃𝐴𝐹.  However, if 
statistically consistent estimates of  𝑅𝑅# and 𝜋 are plugged in to Levin’s formula, (5) will represent the asymptotic bias 
of the resulting estimator.  As a result, we will (somewhat informally) refer to (5) and comparable quantities as biases 
throughout the manuscript. 
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(similar to the plots in [10], but with identification of limiting biases and behaviour of Levin’s formula using 𝑅𝑅+ in 

place of 𝑅𝑅#  is given by Figure 1). 

        

Bias in 𝑷𝑨𝑭𝑳 when 𝐶 > 1 

 

For values of 𝐶 > 1, Levin’s formula is biased above with the relative bias increasing toward a limit of 1 + )65
500$

 as 

𝐶 → ∞ (note again that this analysis assumes 𝜋 and 𝑅𝑅+ are fixed).  As one would expect under no confounding in risk 

ratio: 𝐶 = 1,%9:%
%9:

= 1 (that is the Levin estimand and true PAF are equal).  Provided 𝑅𝑅+ > 1, the absolute bias: 

𝑃𝐴𝐹1 − 𝑃𝐴𝐹 also increases as 𝐶 increases (from 𝑃𝐴𝐹1 − 𝑃𝐴𝐹 = 0 when 𝐶 = 1 to 1 − 500$
)45(00$6))

 as 𝐶 → ∞).  Note 

that Levin’s formula, (2), converges to 1 as 𝐶 → ∞ irrespective of the values of 𝜋 and 𝑅𝑅+, whereas the true 𝑃𝐴𝐹 

converges to 500$
)45(00$6))

 as 𝐶 gets very large.   In practice, imagining what the bias might be for extremely large values 

of 𝐶 is interesting theoretically in it demonstrates the maximum possible bias in Levin’s approach; but whether one 

would see such extreme confounding in a real example is debatable.  For instance, a scenario where extreme values of 𝐶 

are possible is if there is a second risk factor, 𝑋∗ that acts as a confounder for the relationship 𝑋 → 𝑌, with a strong 

causal influence on 𝑋 so much so that 𝑋∗ ∼ 𝑋 in the population, and such that the direct effect of 𝑋∗ not mediated 

through 𝑋 is to strongly reduce the likelihood of disease (by a factor of )
#
), but the effect of 𝑋 on Y is to strongly 

increase the likelihood of disease by a factor of 𝐶.  Such scenarios are likely implausible in practical situations. 

 

When 𝐶 > 1, 3
35

)45(00&6))
)45(#×00&6))

× 𝐶 < 0 (fixing 𝑅𝑅+ and 𝐶), indicating that as risk factor prevalence, 𝜋, decreases 

relative bias, (5), increases.  Given that relative bias is larger than 1 when 𝐶 > 1, this indicates that relative bias 

worsens as risk factor prevalence gets smaller, although the situation for the degree of absolute bias is more complicated 

(absolute bias will converge to 0 as 𝜋 ↓ 0 and as 𝜋 ↑ 1). 

 

Bias in 𝑷𝑨𝑭𝑳 when 𝐶 ≤ 1 

 

For 𝐶 < 1, Levin’s formula is biased below and the relative bias becomes progressively worse, eventually converging 

towards 0 as 𝐶 ↓ 0 (a realm in which risk factors are protective and attributable fractions are negative). However, we 

usually are more interested in risk factor codings where 𝑅𝑅# ≥ 1.  Assuming that 𝑅𝑅+ > 1, the absolute bias 𝑃𝐴𝐹1 −

𝑃𝐴𝐹 is 0 under no causal effect, 𝑅𝑅# = 1, (or equivalently for 𝐶 = )
00$

) in addition to being 0 when 𝐶 = 1 (that is 

under no confounding).  By continuity of the expressions (2), (3) and (4) as functions of 𝐶 we can argue that when the 

true causal effect is very small, 𝑅𝑅# ≈ 1, the absolute bias in Levin’s formula will be negligible, while the relative bias 

will be approximately )45(00$6))
00$

< 1, although arguably the relative bias is not so important in this case.  These results 

imply that Levin’s formula will be appropriate in scenarios where the true causal effect is very small or where there is 

very little confounding.  

 

When 𝐶 < 1, 3
35

)45(00$6))
)45(#×00$6))

× 𝐶 > 0 (fixing 𝑅𝑅+ and 𝐶), indicating that as risk factor prevalence decreases, the 

relative bias function decreases.  Given that the relative bias function is smaller than 1 when 𝐶 < 1, this indicates again 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted August 15, 2023. ; https://doi.org/10.1101/2023.02.02.23284941doi: medRxiv preprint 

https://doi.org/10.1101/2023.02.02.23284941
http://creativecommons.org/licenses/by-nc-nd/4.0/


 6 

that relative bias gets worse as risk factor prevalence gets smaller, although as in the situation where 𝐶 > 1 absolute 

bias converges to 0 as 𝜋 converges to 0 or as 𝜋 converges to 1. 

 
Figure 1:    
 
Plots for absolute and relative error in Levin’s formula when 𝑅𝑅+ = 1.5 and 𝜋 = 0.5 over a range for the confounding 
ratio 𝐶.  A: absolute bias, 𝑅𝑅# ≥ 1, B: absolute bias, no restriction on 𝑅𝑅#, C: relative bias, 𝑅𝑅# ≥ 1, D: relative bias, 
no restriction on 𝑅𝑅# .  In the attached plots, the bias for the adjusted version, 𝑃𝐴𝐹1 =

5(00#6))
)45(00#6))

 of Levin’s formula is 

given in blue, while biases for the unadjusted version,𝑃𝐴𝐹1,+ =
5(00$6))
)45(00$6))

 are given in red.  The upper blue horizontal 

lines are the limiting absolute bias: 1 − 500$
)45(00$6))

 and relative bias: 1 + )65
500$

 for 𝑃𝐴𝐹1 as 𝐶 → ∞.  Note that the 

absolute bias of 𝑃𝐴𝐹1 is 0 at both 𝐶 = 1/𝑅𝑅+ and 𝐶 = 1,while the relative bias converges to )45(00$6))
00$

 as 𝐶 
approaches 1/𝑅𝑅+ (as tagged on the y-axis of plot C).   The absolute and relative biases of the unadjusted version of 
Levin’s formula are more erratic.  In particular, the relative bias function is negative when 𝑅𝑅# < 1 or equivalently 𝐶 <
)

00$
 indicating that the 𝑃𝐴𝐹1,+ is suggesting an incorrect direction of association, 𝑃𝐴𝐹1 is always larger than 0 for all 

𝐶 > 0 and converges to 0 as 𝐶 → 0. 
 

 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted August 15, 2023. ; https://doi.org/10.1101/2023.02.02.23284941doi: medRxiv preprint 

https://doi.org/10.1101/2023.02.02.23284941
http://creativecommons.org/licenses/by-nc-nd/4.0/


 7 

 

 

PAF for exposures with more general distributions. 

 

When the distribution of exposure is multi-category or continuous, PAF can be defined as the fraction of prevalent (or 

incident) disease cases that would have been avoided in a population where the value of the exposure was fixed at a 

particular value (or within a range of values) that minimises the probability of disease (this value is known as the 

minimum risk exposure value or MREV). While with individual-level data it is possible to estimate the MREV [16], 

when deriving estimates of PAF from summary estimates one usually assumes a pre-determined MREV [6])  For 

example, in the simple case of an exposure such as air pollution which can be eliminated, the MREV would be 

presumed to be 0 (that is elimination), with non-zero values being appropriate for exposures like blood pressure or 

sodium consumption.  The causal relative risk is now a function, 𝑅𝑅#(𝑥) comparing the increased prevalence of disease 

if the population were all exposed to exposure level 𝑥 relative to disease prevalence if the same were all exposed to the 

MREV.   Under the assumption that for each possible exposure value, 𝑥, 𝑅𝑅#(𝑥) is constant within confounder strata, 

Miettinen’s formula (4) can be extended as follows: 

 

(6) 𝑃𝐴𝐹 = !(#$%)'!(#=>?@$1)
!(#$%)

= 𝐸2|#$%[
**$(2)'%
**$(2)

] 

where 𝐸A|'()[𝑓(𝑋)] denotes the average of a function, 𝑓(𝑋), of the exposure, 𝑋 within the population of individuals 

with disease (supplementary section S5).  Note that this formula is valid for both continuous exposures (such as air 

pollution) and multi-category exposures (such as a three-level coding of smoking in terms of current smokers/former 

smokers and never-smokers), and simplifies to (3) in the setting of a binary exposure. 

 

As shown in supplementary section S7, (6) can be re-expressed using Bayes’ Rule as follows: 

 

(7) 𝑃𝐴𝐹 =
4C(**-(2)

>>$(C)DE
>>$(C)

)

4C(**-(2))
=

∫ **-(6)
>>$(F)DE
>>$(F)

)(6)76

∫ **-(6))(6)76
, 

 

with 𝑅+(𝑥) representing the unadjusted relative risk function that compares the prevalence of disease in the strata of the 

population exposed to the value 𝑥 of the risk factor with the prevalence in the strata exposed to the MREV, and 𝐸A is 

the population expectation operator.  The right-hand side of (7) indicates that one can calculate PAF by numerical 

integration of the quantities 𝑅𝑅+(𝑥)
00#(G)6)
00#(G)

𝜋(𝑥) and 𝑅𝑅+(𝑥)𝜋(𝑥)  (here we are assuming that the exposure 

distribution is absolutely continuous with density 𝜋(𝑥)  ).  In the special case that the exposure is discrete, but with 

more than two levels: 𝑋 ∈ {0,1, . . . , 𝐿}, with the population prevalences of each level: 𝜋(0), . . . , 𝜋(𝐿), and MREV=0, 

equation (7) can be re-expressed as: 

 

(8) 𝑃𝐴𝐹 =
∑FHEFH2)(6)**-(6)

>>$(F)DE
>>$(F)

)(1)+∑FHEFHI )(6)**-(6)
. 

 
 

Bias from Levin’s approach for more general exposure distributions 
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The generalisation of Levin’s formula to continuous exposure distributions is given by: 

 

(9) ⬚ 𝑃𝐴𝐹( =
4C(**$(2))'%
4C(**$(2))

= ∫ **$(6))(6)76'%
∫ **$(6))(6)76

. 

 

The formula for multi-category exposures is very almost identical, apart from replacing the integral in 9 with a 

summation over the values, 𝑥, that the exposure can take. See Table 1 for a comparison of Levin’s and Miettinen’s 

approach for the binary, multi-category and continuous exposures.  Comparing equations (7) and (9), it follows 

immediately that under no confounding, that is 𝑅𝑅+(𝑥) = 𝑅𝑅#(𝑥) for every exposure value 𝑥, Levin’s formula is again 

unbiased.  However, analysis of bias in Levin’s formula is more complicated when the distribution of the exposure is 

non-binary, although under certain special settings, one can analyse bias in the same way as in the binary exposure case.  

For instance, suppose that the 𝑀𝑅𝐸𝑉 = 0 and the prevalence of the minimum risk exposure level in the general 

population is 1 − 𝜋 where 1 > 1 − 𝜋 > 0.  Assuming that the confounding ratio 𝐶(𝑋) = 0#(A)
0$(A)

= 𝐶 at all exposure 

levels not equal to the MREV, the relative bias in the Levin estimate is: 

 

(10)   !-.2
!-.

= %+)(4C|CJ"**-(2)'%)
%+)(/×4C|CJ"**-(2)'%)

× 𝐶, 

 

, an expression very similar to (5) and which indicates that larger relative biases are expected under larger levels of 

confounding (that is 𝐶 << 1 or 𝐶 >> 1).    For continuous exposures, the assumption that a non-zero proportion of the 

population is exposed to the minimum exposure level may well be implausible.  However, a similar equation to (10) 

will hold appropriately if there is a range of exposure values, 𝑅, having non zero probability in the population which 

approximately minimise counterfactual risk:  𝑚𝑎𝑥
G∈0

𝑅𝑅#(𝑥) ≈ 1, where 0 < 𝜋 = 𝑃(𝑋 ∉ 𝑅) < 1 and 𝐶(𝑥) = 0#(G)
0$(G)

= 𝐶 

when 𝑥 ∉ 𝑅.  The modified equation then would be: 

 

(11)   !-.2
!-.

∼ %+)(4C|C∉>**-(2)'%)
%+)(/×4C|C∉>**-(2)'%)

× 𝐶.   

 

The proofs of equations (10) and (11) are given as supplementary section S9. 

 

Discussion 

 

We use this final section mostly to discuss caveats and limitations to our suggested approaches.  First, we have 

suggested that where possible equation (4) should be used instead of Levin’s formula, (2), to estimate PAF when 

individual-level data is unavailable.  Equation (4) requires estimates 𝑅𝑅+ and 𝑅𝑅#  of the unadjusted and causal relative 

risks.  To correctly estimate PAF these estimates need to be transportable to the target population.  While 

transportability of the causal relative risk is an issue both for equation (4) and Levin’s approach, (2), transportability of 

the unadjusted relative risk is an additional assumption and there is no good reason to expect it to hold.   Fortunately, 

often plugging in an incorrect estimated unadjusted relative risk into (4) will represent an improvement over Levin’s 
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formula (3): provided the patterns of confounding in the source and target population are reasonably similar, one might 

expect 𝑅𝑅+ and 𝑅𝑅+ to be reasonably similar and equation (4) to be more accurate than equation (2).   

 

As noted by other authors, the bias using an adjusted relative risk with Levin’s formula is generally quite small [10] and 

likely insubstantial compared to other biases involved in estimating a PAF.  For instance, in the example regarding the 

relationship between physical inactivity and depression, there are additional questions about the consistency of 

ascertainment and measurement of both the exposure (inactivity) and outcome (depression).  The prevalence of defined 

inactivity (and the associated relative risk) will change depending on what the investigator considers to constitute 

inactivity, and the definition may differ across different studies.  Similar issues arise in the consistency of ascertainment 

and measurement of depression.  These issues reduce the real-world meaning and actionability of any estimated PAF.  

On a related point, physical activity should really be measured on a continuum; a binary definition of inactivity will 

likely underestimate associated disease burden.  For instance, a better approach to calculating PAF might determine an 

optimal level of physical activity (that perhaps differs dependent on age and other characteristics of a person) and 

estimate disease prevalence in a hypothetical population where everybody had at least this optimal level of activity;  

however, implementation of such an estimator may be practically challenging.  Finally, the assumption that the causal 

relative risk is constant across differing confounding strata will usually be dubious (individuals exposed or not exposed 

to differing patterns of confounding variables have differing baseline probabilities of disease making the same relative 

effect of a risk factor unlikely).   If the causal relative risk varies over differing strata of confounders, formulae for 𝑃𝐴𝐹 

for binary and general exposure distributions are as follows: 

  

(12) 𝑃𝐴𝐹 = 𝐸/|#$%[𝑃(𝑋 = 1|𝐶, 𝑌 = 1) **$(/)'%
**$(/)

] 

 

(13) 𝑃𝐴𝐹 = 𝐸/|#$% 4𝐸2|/,#$% 5
**$(2,/)'%
**$(2,/)

67, 

 

where 𝑅𝑅#(𝑐) is regarded as the causal relative risk within confounder stratum 𝐶 = 𝑐 in (12) and 𝑅𝑅#(𝑥, 𝑐) as the 

causal relative risk comparing exposure levels 𝑥 and the MREV in confounder stratum 𝐶 = 𝑐 in (13).  Note that (12) 

can be re-expressed as: 𝑃𝐴𝐹 = 𝑃(𝑋 = 1|𝑌 = 1) 00'6)
00'

, where 𝑅𝑅M =
%('!()|A())
%('"()|A())

 is the causal relative risk restricted to 

the population exposed to the risk factor, as Miettinen originally showed in 1972.   These formulae are derived in 

supplementary sections S2 and S6 and are equivalent to, and extend of in the case of (13),  the formulae suggested in 

[17], and without a no-effect modification assumption require individual-level data (incorporating effect modification 

between risk factors and confounders) to estimate.  When relative risks vary over confounder strata, the marginal causal 

relative risk, 𝑅𝑅#  (defined as the ratio of disease probabilities if everyone was exposed and everyone was exposed to 

the risk factor), and the causal relative risk in exposed individuals are both weighted average of confounder-strata 

specific causal relative risks, 𝑅𝑅#(𝑐) (see Supplementary Appendix S10).  As a result, one would not expect large 

differences between (4) and (12) under moderate levels of effect modification.  

 

While equivalent results to equation (4) exist for multi-category and continuous exposures (equations (7)-(8)) these may 

be not as useful in practice as equation (4) as they require specification of unadjusted relative risks comparing many 

levels of exposure to baseline.  As a result, Levin’s formula (despite its bias) may forever be the method of choice for 
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estimating PAFs and impact fractions for continuous exposures with summary data.  However, the biases in Levin’s 

formulae are often dismissed in this setting.  If the formula is to be used it is important to recognise its bias and have 

some awareness of the likely extent of the bias.  In this regard, if there is a range of values of the exposure which 

approximately minimises risk and it’s plausible that the confounding parameter: 𝐶(𝑋) = 00#(A)
00$(A)

 is approximately 

constant outside of this range, equation (11) may be useful in determining the likely error from using Levin’s approach. 

 

Here we advocate that authors use equation (4) when estimates of unadjusted and adjusted relative risks are available.  

In contrast, in the literature we’ve noticed several examples of Levin’s formula being applied with unadjusted relative 

risks in observational settings [18], [19].  While this will generate correct results under no confounding, we would not 

advise this practice.  First, if there is no confounding, either an adjusted or unadjusted relative risk would be appropriate 

to use in Levin’s approach, that is both should generate statistically consistent estimates of the true causal relative risk, 

provided no effect modifiers are included in the set of variables that are adjusted for in the adjusted relative risk.   

Second, in observational settings, there usually will be some degree of confounding in which case substituting 

unadjusted relative risks into Levin’s formula will often result in more egregious bias than if appropriately adjusted 

relative risks were instead used in the same formula.  For example, using Levin’s formula with an unadjusted relative 

will ‘flip’ the direction of the putative PAF when 𝑅𝑅+ < 1 and 𝑅𝑅# > 1, so that while 𝑃𝐴𝐹 > 0 (the risk factor causes 

disease), 𝑃𝐴𝐹1,+ =
5(00$6))
)45(00$6))

< 0, that is the risk factor would seem to be protective when using an unadjusted 

relative risk in Levin’s approach.  In contrast, this problem does not happen with the true causal relative risk: 𝑃𝐴𝐹1 =
5(00#6))
)45(00#6))

> 0.  Plots B and D in Figure 1 show that, as one might expect, Levin’s formula also flips the direction of 

the causal effect if 𝑅𝑅+ > 1 and 𝑅𝑅# < 1.  In addition, for very small causal effects with 𝑅𝑅# ≈ 1, 𝑃𝐴𝐹1 ≈ 0 

irrespective of the value of the confounding ratio 𝐶, however in the same scenario 𝑃𝐴𝐹1,+ can be quite biased if 𝐶 is 

very large or very small.   Going back to the example involving physical inactivity and depression discussed earlier, 

using the unadjusted relative risk estimate, RR.-=1.69, in Levin’s formula generates an estimated PAF of 25.7% which 

is likely a huge overestimate compared to the estimate of 9.0% from using the adjusted estimate, RR/* =1.2.  Note that 

using equation (4) results in an estimate of 10.5% in that example. 
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Table 1: 
 
 Below, we show the identification formulae for	PAF  and PAFN, for binary, multicategory and continuous exposure distributions, under the assumption of no effect modification.   
π	represents the population prevalence of a binary risk/ factor and πO the prevalence within disease cases, with similar notation representing probability mass functions and density  
functions when the exposure is multi-category or continuously distributed.  An implicit assumption for the multicategory and continuous formulae is that the MREV (minimum risk  
exposure value) is equal to 0.  In all settings,  PAF is expressed using the traditional Miettinen formula (in terms of πO and RR/) and the 3 variable formula advocated in this  
manuscript which can be used if estimates of both the unadjusted and adjusted relative risks are available.  
 

 𝑃𝐴𝐹( 𝑃𝐴𝐹 𝑃𝐴𝐹  

  (in terms of 𝜋𝑐 and 𝑅𝑅/ ) (in terms of 𝜋, 𝑅𝑅; and 𝑅𝑅/ ) 

Binary risk factor 𝜋(𝑅𝑅] − 1)
1 + 𝜋(𝑅𝑅] − 1)

 𝜋𝑐
𝑅𝑅𝐶−1
𝑅𝑅𝐶

 [
𝜋𝑅𝑅^

1 + 𝜋(𝑅𝑅^ − 1)
]
𝑅𝑅] − 1
𝑅𝑅]

 

Multicategory risk factor ∑6$%( 𝜋(𝑥)(𝑅𝑅/(𝑥) − 1)
1 + ∑6$%( 𝜋(𝑥)(𝑅𝑅/(𝑥) − 1)

 ∑
𝑙=1

𝐿
𝜋𝑐(𝑥)

𝑅𝑅𝐶(𝑥) − 1
𝑅𝑅𝐶(𝑥)

 ∑6$%6$(𝜋(𝑥)𝑅𝑅;(𝑥)
𝑅𝑅/(𝑥) − 1
𝑅𝑅/(𝑥)

𝜋(0) + ∑6$%6$(𝜋(𝑥)𝑅𝑅;(𝑥)
 

Continuous risk factor ∫ 𝑅𝑅/(𝑥)𝜋(𝑥)𝑑𝑥 − 1
∫ 𝑅𝑅/(𝑥)𝜋(𝑥)𝑑𝑥

 ∫
𝑅𝑅/(𝑥) − 1
𝑅𝑅/(𝑥)

𝜋,(𝑥)𝑑𝑥 ∫ 𝑅𝑅;(𝑥)
𝑅𝑅/(𝑥) − 1
𝑅𝑅/(𝑥)

𝜋(𝑥)𝑑𝑥

∫ 𝑅𝑅;(𝑥)𝜋(𝑥)𝑑𝑥
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