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Abstract 

In 1953, Morton Levin introduced a simple approach to es:mate popula:on 

a;ributable frac:ons (PAF) depending only on popula:on risk factor prevalence and 

rela:ve risk.  This formula and its extensions are s:ll in widespread use today, 

par:cularly to es:mate PAF in popula:ons where individual data is unavailable.  

Unfortunately, Levin’s approach is known to be asympto:cally biased for the PAF 

when the risk factor-disease rela:onship is confounded even if rela:ve risks that are 

correctly adjusted for confounding are used in the es:mator.   

  

An alterna:ve es:mator, first introduced by MieOnen in 1972, is unbiased for the 

PAF provided the true rela:ve risk is invariant across confounder strata.  However, 

despite its sta:s:cal superiority, MieOnen’s es:mator is seldom used in prac:ce 

since it requires an es:mate of risk factor prevalence within disease cases, a quan:ty 

that appears harder to es:mate than popula:on risk factor prevalence.  

  

Here we introduce a simple re-expression of MieOnen’s es:mand that depends on 

the causal rela:ve risk, the unadjusted rela:ve risk and the popula:on risk factor 

prevalence.   The associated es:mator may be useful in es:ma:ng PAF in 

popula:ons when individual data is unavailable provided es:mated adjusted and 

unadjusted rela:ve risks can be transported to the popula:on of interest.  The re-

expression also generates novel analy:c formulae for the rela:ve and absolute bias 

in Levin’s formula, solidifying earlier work by Darrow and Steenland that used 

simula:ons to inves:gate this bias.  We extend all results to seOngs with non binary 
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valued risk factors and con:nuous exposures, and discuss the u:lity of our results in 

es:ma:ng PAF in prac:ce. 
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Introduction 

The Population Attributable Fraction (PAF), sometimes also referred to as the Population 
Attributable Risk and the Excess Fraction, is a central metric in epidemiology.  It is useful 
both in ascertaining the importance of a risk factor in causing disease, as well as to 
identify the best risk factors to target in a health intervention.  Applications of attributable 
fractions abound in the literature starting with Richard Doll’s work estimating the burden 
of lung cancer due to smoking (Doll 1951), with recent examples including modifiable risk 
factors of gout in the US (Liu, Yao et al. 2022), depression risk factors in Brazil (Borelli, 
Leotti et al. 2022) and modifiable lifestyle risk factors of cancer in Denmark (Tybjerg, Friis 
et al. 2022), with these studies representing only a very small sampling of recent literature.


In its most basic formulation, PAF represents the fraction of prevalent disease cases that 
might have been avoided in some population if a risk factor were not present.   If we 

express disease prevalence in the current population as ,  being a binary 

indicator for disease, and the prevalence of disease in a population where the risk factor 

were removed as , the PAF is simply:


(1)	 	 		 	 	 	 	 	 	

	  


A vast literature has evolved on methods to estimate (1) in situations where individual 
level data exists on risk factors, disease outcomes and confounders.  See (Ferguson 
2022) for a recent review of methods for PAF estimation in the context of data at the 
individual level.  However, it is sometimes necessary to derive estimates of attributable 
fractions in scenarios where collection of individual level data is impossible.   As an 
example, the Global Burden of Disease project (Tran, Lang et al. 2022) estimates 
population attributable fractions at a country level for differing risk factor / disease 
combinations.  For certain countries, no individual level data linking risk factors of interest 
to disease may be  available.   The most common approach in this situation is to 

substitute an estimated risk factor prevalence  and estimated relative risk of disease 

P(Y = 1) Y

P(Y0 = 1)

PAF =
P(Y = 1) − P(Y0 = 1)

P(Y = 1)

̂π
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(adjusted for confounders),  into equation (2) below.  Equation (2) was introduced by 

(Levin 1953), also in the context of estimating the PAF for smoking as a cause of lung 
cancer:


(2)	 	 .


(2) is prominent throughout the literature on PAF estimation.  However, as recognised by 
multiple authors (Khosravi and Mansournia 2019),(Rockhill, Newman et al. 1998, Darrow 
and Steenland 2011),(Hanley 2001) (2) will usually differ from (1) as a quantity.  In 
particular (2) will equal the true PAF only under the unrealistic condition that the risk 
factor/outcome relationship is subject to no confounding (or alternatively competing 
sources of confounding ‘cancel out’, (Hernan and Robins 2023)).  This condition implies 

that the relative risk unadjusted for covariates, , is identical to the ‘causal’ relative 

risk .  Here the causal relative risk can be defined as the ratio of disease 

prevalence comparing scenarios where the entire population was exposed and the entire 
population was unexposed to the risk factor in question.


Mittenen’s definition of PAF 

While (2) does not equal PAF in the absence of this ‘no confounding’ assumption, an 
alternative expression introduced by (Miettinen 1974) (3), which involves the prevalence of 

the exposure within cases, , as opposed to the overall population prevalence and the 

causal relative risk, , does equal (1) irrespective of the degree of confounding 

provided the causal relative risk, , is constant in differing strata of the confounders.  

Miettinen’s expression is given by


(3)	 	 


̂RRC

PAFL =
π(RRC − 1)

1 + π(RRC − 1)

RRU

RRU = RRC

πc

RRC

RRC

PAF = πc
RRC − 1

RRC
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where  is now the proportion of disease cases that have the risk factor.  


The usual advice is to use (3) when possible (Rockhill, Newman et al. 1998) and not (2) as 

a basis for estimating PAF.  However, estimating  directly might be problematic for rare 

diseases, particularly in jurisdictions with undeveloped data-capture systems.  For 
example the Global Burden of Disease project utilise (2) rather than (3) to estimate PAF 

most likely as a result of the difficulty in estimating .  This difficulty to estimate  is 

likely the reason for the popularity of Levin’s formula.   


A re-expression of Miettenen’s PAF 

A fact that has been under appreciated in the literature is that equation (3) can be re-
expressed to be a function of three quantities: the prevalence of the risk factor in the 

population, , the causal relative risk, , and the unadjusted relative risk,  in the 

population:


(4)	 	 


The proof that (4) equals the PAF is a relatively simple application of Bayes’ rule (as given 
in the Supplementary material).  Despite this, the only reference for (4) in the context of 
PAF that we could find in the literature was (Khosravi, Nazemipour et al. 2021), based on 
a similar observation in (Strain, Brage et al. 2020) for the prevented fraction.  However, the 
expression in (Khosravi, Nazemipour et al. 2021) is incomplete in that it doesn’t 

distinguish between  and  and as a result may mislead researchers.  While a 

somewhat simple re-expression of (3), (4) may be practically useful in estimating PAF with 
summary data as unadjusted relative risks are often reported together with adjusted 

relative risks.  It is useful to notice that under no confounding ( ), the 

expression (4) simplifies to Levin’s formula (a fact which can be used to show that Levin’s 
formula does recover the true PAF under confounding).  However, formulae (2) and (4) will 
otherwise differ.


πc

πc

πc πC

π RRC RRU

PAF = [
πRRU

1 + π(RRU − 1)
]
RRC − 1

RRC

RRU RRC

RRU = RRC

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted February 7, 2023. ; https://doi.org/10.1101/2023.02.02.23284941doi: medRxiv preprint 

https://doi.org/10.1101/2023.02.02.23284941
http://creativecommons.org/licenses/by-nc-nd/4.0/


Analysis of bias in Levin’s estimate 

For illustration regarding both the biases at play from Levin’s approach and the potential 
of (4) to provide better estimates of PAF than (2) when individual-level data is unavailable, 
we will consider results from (Schuch, Vancampfort et al. 2018) who conducted meta 
analyses to estimate the causal effect of physical inactivity on depression.   Their 

analyses estimated both unadjusted  [1.69 95%CI (1.18-1.96)] and adjusted  

1.20 95%CI (1.10, 1.32) risk ratios for physical inactivity.  The percentage of physical 
inactivity (according to a certain definition) may vary greatly over differing populations, 
depending on factors such as culture and age structure.  Let’s say that for a particular 

population an estimate of the percentage of physical inactivity was .  Plugging in 

the estimated adjusted relative risk into Levin’s formula results in an estimated PAF of 
9.1%, whereas using (4), the (correctly) estimated PAF is actually 10.5%.  Suppose we 
wish instead to estimate the PAF in a more active population with an estimate of physical 

inactivity: .  In this case, the bias is smaller but the relative bias is larger: Levin’s 

formula gives an estimate of 3.8% whereas (4) generates an estimate of 5.0%.  These are 
examples of the general behaviour we would expect of the bias as we will show below.  


( Darrow and Steenland 2011) investigated the bias of Levin’s formula using simulation, 

and showed that as the degree of confounding, specified by  where 

  gets larger (with no confounding being represented by ), the magnitude 

of relative bias in Levin’s formula will increase.  When , one would expect that 

 (as is the case in the effect of physical inactivity on depression)   Their 

simulations also indicate that this relative bias will be larger for smaller risk factor 
prevalences (as again observed in the previous example).  However, having an explicit 
formula for relative bias allows more rigorous analysis of limiting behaviour (and 
subsequent maximum extent of bias) than was possible in ( Darrow and Steenland 2011).  
Given the formula (4), an expression for the relative bias can be trivially derived by simply 
taking the ratio of (3) and (4). After some simplification this results in:


̂RRU ̂RRC

̂π = 0.5

̂π = 0.2

max{C,
1
C

)

C =
RRC

RRU
C = 1

C < 1

PAFL < PAF
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(5)	 	 


Observing that the partial derivative  is strictly positive 

(fixing  and  it follows that (5) is an increasing function of .  Given that (5) equals 1 

at  (that is Levin’s formula is unbiased when there is no confounding) this indicates 

that the degree of relative bias gets larger as the degree of confounding increases in 

either direction  or .  It is useful to analyse the relative (and 

absolute bias) separately in these two scenarios  and .   See the 

supplementary material for more detail on these analyses).


Bias in Levin’s formula when  

For values of , Levin’s formula is biased above with the relative bias increasing 

toward a limit of  as  (note that this analysis assumes  and  

are fixed).  As one would expect under no confounding ,  (that is the 

Levin estimand and true PAF are equal).  Provided , the absolute bias: 

 also increases as  increases (from  when  to 

 as ).  Note that Levin’s formula, (2), converges to  as 

 irrespective of the values of  and , whereas the true  converges to 

 as  gets very large.   In practice, imagining what the bias might be for 

extremely large values of  is interesting theoretically in it demonstrates the maximum 

possible bias in Levin’s approach; but whether one would see such extreme confounding 

PAFL

PAF
=

1 + π(RRu − 1)
1 + π(C × RRu − 1)

× C

δ
δC

1 + π(RRu − 1)
1 + π(C × RRu − 1)

× C

RRu π) C

C = 1

C > 1 : C ↑ ∞ C < 1 : C ↓ 0

C > 1 C < 1

C > 1

C > 1

1 +
1 − π

π
RRU C → ∞ π RRU

C = 1
PAFL

PAF
= 1

RRU > 1

PAFL − PAF C PAFL − PAF = 0 C = 1

1 −
πRRU

1 + π(RRU − 1)
C → ∞ 1

C → ∞ π RRU PAF
πRRU

1 + π(RRU − 1)
C

C
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in a real example is debatable.  For instance, a scenario where extreme values of  is 

possible is if there is a second risk factor  that acts as a confounder for , with a  

strong causal influence on  (so much so that  in the population), and such that 

the direct effect of  (not mediated through  is to strongly reduce the likelihood of 

disease (by a factor of ) but the effect of  on Y is to strongly increase the likelihood of 

disease by factor of .  Such scenarios are likely implausible in practical situations.


When   (fixing  and , indicating that as  

risk factor prevalence, , decreases risk factor relative bias, (5), increases.  Given that 

relative bias is larger than 1 when , this indicates that relative bias worsens as risk 

factor prevalence gets smaller, although the situation for the degree of absolute bias is 

more complicated (absolute bias will converge to 0 as  and as ).


Bias in Levin’s formula when  

For , Levin’s formula is biased below and the relative bias becomes progressively 

worse, eventually converging towards 0 as  (a realm in which risk factors are 

protective and attributable fractions are negative). However, usually we imagine a risk 

factor coding such that .  Assuming that , the absolute bias 

 is 0 under no causal effect, , (or equivalently for ) in 

addition to being 0 when  (that is under no confounding).  By continuity of the 

expressions (2), (3) and (4) as functions of  we can argue that when the true causal 

effect is very small, , the absolute bias in Levin’s formula will be negligible, while 

the relative bias will be approximately , although arguably the 

relative bias is not so unimportant in this case.  The lesson here is that Levin’s formula 

C

X* X → Y

X X* ∼ X

X* X )
1
C

X

C

C > 1,
δ

δπ
1 + π(RRu − 1)

1 + π(C × RRu − 1)
× C < 0 RRU C )

π

C > 1

π ↓ 0 π ↑ 1

C ≤ 1

C < 1

C ↓ 0

RRC ≥ 1 RRU > 1

PAFL − PAF RRC = 1 C =
1

RRU

C = 1

C

RRC ≈ 1
1 + π(RRU − 1)

(1 − π)RRU
< 1
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can be appropriate to use in the scenario that the true causal effect is very small or when 
there is no confounding). 


When   (fixing  and , indicating that as 

risk prevalence decreases, relative bias decreases.  Given that the relative bias function is 

smaller than 1 when , this indicates again that relative bias gets worse as risk factor 

prevalence gets smaller, although as in the situation where  absolute bias 

converges to 0 as  converges to 0 or as  converges to 1.


PAF for exposures with more general distributions. 

When the distribution of exposure is multi-category or continuous, PAF can be defined as 
the fraction of prevalent (or incident) disease cases that would have been avoided in a 
population where the value of the exposure was fixed at a particular value (or within a 
range of values) that is known to minimise the likelihood of disease (this value is known as 
the minimum risk exposure value or MREV). While with individual level data it is possible 
to estimate the MREV (Ferguson, Maturo et al. 2020), when deriving estimates of PAF 
from summary estimates one usually assumes a pre-determined MREV (Tran, Lang et al. 
2022))  For example, in the simple case of an exposure such as air pollution which can be 
eliminated, the MREV would be presumed to be 0 (that is elimination), with non-zero 
values being appropriate for exposures like blood pressure or sodium consumption.  The 

causal relative risk is now a function,  comparing the increased prevalence of 

disease if the population were all exposed to exposure level  relative to disease 

prevalence if the same were all exposed to the MREV.   Under the assumption that for 

each possible exposure value,   is constant within confounder strata, 

Miettinen’s formula (4) can be extended as follows:


(6)	 


C < 1,
δ

δπ
1 + π(RRu − 1)

1 + π(C × RRu − 1)
× C > 0 RRU C )

C < 1

C > 1

π π

RRC(x)

x

x, RRC(x)

PAF =
P(Y = 1) − P(YMREV = 0)

P(Y = 1)
= EX|Y=1[

RRC(X ) − 1
RRC(X )

]
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where  denotes the average of a function, , of the exposure,  within 

the population of individuals with disease (see the Supplmentary material for a proof).  
Note that this formula is valid for both continuous exposures (such as air pollution) and 
multi-category exposures (such as a three level coding of smoking in terms of current 
smokers/former smokers and never-smokers), and simplifies to (3) in the setting of a 
binary exposure.


As shown in the supplementary material, (6) can be re-expressed using Bayes’ Rule as 
the follows:


(7)	 


, with  representing the unadjusted relative risk function that compares prevalence 

of disease in the strata of the population exposed to the value  of the risk factor with the 

the prevalence in the strata exposed to the MREV, and  is the population expectation 

operator.  The right hand side of (7) indicates that one can calculate PAF by numerical 

integration of the quantities  and  with respect to the 

population distribution, , of the exposure.  In the special case that the exposure is 

discrete, but with more than two levels: , with the population prevalences 

of each level: , and MREV=0, equation (7) can be re-expressed in a more 

palatable form:


(8)	 


EX|Y=1[ f (X )] f (X ) X

PAF =
EX(RRU(X )

RRC(X ) − 1
RRC(X ) )

EX(RRU(X ))
=

∫ RRU(x)
RRC(x) − 1

RRC(x) dF(x)

∫ RRU(x)dF(x)

RU(x)

x

EX

RRU(x)
RRC(x) − 1

RRC(x)
RRU(x)

F(x)

X ∈ {0,1,...,l}

π(0), . . . , π(l )

PAF =
∑x=l

x=1 p(x)RRU(x)
RRC(x) − 1

RRC(x)

π(0) + ∑x=l
x=1 p(x)RRU(x)
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Bias from Levin’s approach for more general exposure distributions 

The generalisation of Levin’s formula is to multi-category and continuous exposure is 
given by:


(9)	 


Comparing equations (7) and (9), it follows immediately that under no confounding, that is 

 for every exposure value , Levin’s formula is again unbiased.  

However, analysis of bias in Levin’s formula is more complicated when the distribution of 
the exposure is non-binary, although under certain special settings, one can analyse bias 
in the same way as in the binary exposure case.  For instance, suppose that the 

 and the prevalence of the minimum risk exposure level in the general 

population is  where .  Assuming that the confounding ratio 

 at all exposure levels not equal to the MREV, the relative bias in the 

Levin estimate is:


(10)  ,


, an expression very similar to (5) and which indicates that larger relative biases are 

expected under larger levels of confounding (that is  or ).    For 

continuous exposures, the assumption that a non-zero proportion of the population is 
exposed to the minimum exposure level may well be implausible.  However a similar 

equation to (10) will hold appropriately if there is a range of exposure values, , having 

non zero probability in the population which approximately minimise counterfactual risk:  

, where  and  when .  

The modified equation then would be:


PAFL =
EX(RRC(X )) − 1

EX(RRC(X ))
=

∫ RRC(x)dF(x) − 1
∫ RRC(x)dF(x)

RRU(x) = RRC(x) x

MREV = 0

1 − π 1 > 1 − π > 0

C(X ) =
RC(X )
RU(X )

= C

PAFL

PAF
=

1 + π(EX|X>0RRU(X ) − 1)
1 + π(C × EX|X>0RRU(X ) − 1)

× C

C < < 1 C > > 1

R

max
x∈R

RRC(x) ≈ 1 0 < π = P(X ∉ R) < 1 C(x) =
RC(x)
RU(x)

= C x ∉ R
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 (11)  .  The proofs of equations (10) and 

(11) are given as supplementary material


Discussion 

We use this final section mostly to discuss caveats and limitations to our suggested 
approaches.  First, we have suggested that where possible equation (4) should be used 	
instead of Levin’s formula, (2), to estimate PAF when individual level data is unavailable.  

Equation (4) requires estimates  and   of the unadjusted and causal relative 

risks.  To correctly estimate PAF these estimates need to be transportable to the target 
population.  While transportability of the causal relative risk is an issue both for equation 
(4) and Levin’s approach, (2), transportability of the unadjusted relative risk is an 
additional assumption and there is no good reason to expect it to hold.


Fortunately, often plugging in an incorrect estimated unadjusted relative risk into (4) will 
represent an improvement over Levin’s formula (3), provided that confounding results in 
the same direction of bias in the source population (where the unadjusted and adjusted 
relative risks are estimated) and the target population (where these estimates are 
transported to derive an estimate of PAF).  For instance, if the true population relative 

risks are  and  and we plug in any incorrect unadjusted estimate,  such 

that:  if (or such that  if  into (4), 

so that:


, the absolute error in estimating PAF is guaranteed 

to improve compared to applying Levin’s formula directly, that is: 

.   In more general, provided the patterns of 

confounding in the source and target population are reasonably similar, one might expect 

 and  to be reasonably similar and equation (4) to be more accurate than 

equation (2).  After applying equation (4), one also perform sensitivity analyses to 
determine the range of true unadjusted relative risks (in the population of interest) where 

PAFL

PAF
∼

1 + π(EX|X∉RRRU(X ) − 1)
1 + π(C × EX|X∉RRRU(X ) − 1)

× C

̂RRU ̂RRC

RRU RRC
̂RRU

RRU ≥ ̂RRU < RRC C > 1 RRC < ̂RRU ≤ RRU C < 1)

̂PAF = [
π ̂RRU

1 + π( ̂RRU − 1)
]
RRC − 1

RRC

| ̂PAF − PAF | < |PAFL − PAF |

̂RRU RRU
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the derived estimate would represent an improvement of the Levin estimate (in absolute 
value error). As an example, in the example with physical inactivity and depression 

described earlier, we estimated 1.69, which leads to an estimated PAF of 10.5% 

(assuming the correct prevalence  and the correct causal relative risk  

are known).   Substituting  into equation (4)  in this context leads to a smaller 

absolute error in PAF provided the true unadjusted relative risk in the target population 

1.42.  


As noted by other authors, the bias from Levin’s formula is generally quite small (Darrow 
and Steenland 2011) and likely insubstantial compared to other biases involved in 
estimating a PAF.  For instance, in the example regarding the relationship between 
physical inactivity and depression, there are additional questions about consistency of 
ascertainment and measurement of both the exposure (inactivity) and outcome 
(depression).  The prevalence of defined inactivity (and the associated relative risk) will 
change depending on what the investigator considers to constitute inactivity, and the 
definition may differ across different studies.  Similar issues arise in consistency of 
ascertainment and measurement of depression.  These issues reduce the real world 
meaning and actionability of any estimated PAF.  On a related point, physical activity 
should really be measured on a continuum; a binary definition of inactivity will likely 
underestimate associated disease burden.  For instance, a better approach to calculating 
PAF might determine an optimal level of physical activity (that perhaps differs dependent 
on age and other characteristics of a person) and estimate disease prevalence in a 
hypothetical population where everybody had at least this optimal level of activity;  
however, implementation of such an estimator may be practically challenging.  Finally, the 
assumption that the causal relative risk is constant across differing confounding strata will 
usually be dubious (individuals exposed or not exposed to differing patterns of 
confounding variables have differing baseline probabilities of disease making the same 
relative effect of a risk factor unlikely).   This assumption is necessary to prove the 
equality of Miettinen’s formula (3) and true PAF.  If (as expected) the causal relative risk 
varies over differing strata of confounders, the correct extensions of Miettinen’s formulae 
for binary and general exposure distributions are as follows:


	 


̂RRU =

π = 0.5 RRC = 1.2
̂RRU

RRU >
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(12)	 


(13)	 


where  is regarded as the causal relative risk within confounder stratum  in 

(12) and  as the causal relative risk comparing exposure levels  and the MREV 

in confounder stratum  in (13).  These formulae (proven in the Supplmentary 

Material) are equivalent to (and represent extensions of in the case of (13)) the formulae 
suggested in (Bruzzi, Green et al. 1985), and require individual level data (incorporating 
effect modification between risk factors and confounders) to implement.  When relative 

risks vary over confounder strata, the marginal causal relative risk,  (defined as the 

ratio of disease probabilities if everyone were exposed and everyone were exposed to the 

risk factor) will be a weighted average of the causal relative risks,  in confounder 

strata (this follows since the relative risk is a collapsible risk measure).  As a result, one 
would not expect large differences between (4) and (12), at least under moderate levels of 
effect modification. 


While equivalent results to equation (4) exist for multi-category and continuous exposures 
(equations (7)-(8)) these may be not as useful in practice as equation (4) as they require 
specification of unadjusted relative risks comparing many levels of exposure to baseline.  
As a result, Levin’s formula (despite its bias) may forever be the method of choice for 
estimating PAFs and impact fractions for continuous exposures with summary data.  
However, the biases in Levin’s formulae are often dismissed in this setting.  If the formula 
is to be used it is important to recognise its bias and have some awareness of the likely 
extent of the bias.  In this regard, if there is a range of values of the exposure which 
approximately minimise risk and it’s plausible that the confounding parameter: 

is approximately constant outside of this range, equation (11) may be 

useful in determining the likely error from using Levin’s approach.


EC|Y=1[P(X = 1 |C, Y = 1)
RRC(C ) − 1

RRC(C )
]

EC|Y=1[EX|C,Y=1[
RRC(X, C ) − 1

RRC(X, C )
]]

RRC(c) C = c

RRC(x, c) x

C = c

RRC

RRC(c)

C(X ) =
RRC(X )
RRU(X )
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Finally, we’d like to make some comments regarding Levin’s formula itself that may be 
causing some confusion in the literature.  Some authors have stated that Levin’s formula 
is only valid when relative risks are unadjusted (Khosravi and Mansournia 2019), (Rockhill, 
Newman et al. 1998), (Flegal, Panagiotou et al. 2015).   This may give an erroneous 
impression that Levin’s formula should be applied to unadjusted relative risks, which has 
perhaps encouraged some researchers to apply Levin’s formula with unadjusted relative 
risks or odds ratios (Abreo, Gebretsadik et al. 2018), (Lee, Whitsel et al. 2022).    However, 
substituting unadjusted relative risks into Levin’s formula is not recommended and is 
likely to lead to a more egregious error than using relative risks appropriately adjusted for 
confounding in the same formula (particularly when the true causal relative risk is close to 
1).  For example in the example regarding physical inactivity and depression we 
discussed earlier this leads to an estimated PAF of 25.7%, likely a huge overestimate for 
the true PAF.  A second more technical point is that Levin’s formula does not require an 
assumption of no effect modification as some authors have stated (Khosravi and 
Mansournia 2019).  The sole assumption for Levin’s formula to exactly represent PAF is 
that there is no confounding (see the Supplementary material).  In the unlikely 
circumstance that there is no confounding, the correct relative risk to use in Levins’ 
formula would be the marginal unadjusted relative risk over the population: 

, but this marginal relative risk will be a weighted average of 

covariate specific relative risks that may well differ for differing covariate strata.  However, 
we reiterate our advice from earlier in the paragraph: if Levin’s formula is to be used in 
situations where adjusted and unadjusted relative risks differ substantially, the version 
using the adjusted relative risk is likely to be less biased and should be preferred to the 
version with the unadjusted relative.


RRU =
P(Y = 1 |X = 1)
P(Y = 1 |X = 0)
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Supplementary Material 

1.  Proof that Miettinen’s formula is unbiased for PAF if 

 is constant over confounder strata  

 

Proof when there are no confounders (but possible effect modification) 

When there are no confounders, the proof is much simpler:


RRC =
P(Y = 1 |X = 1,C = c)
P(Y = 1 |X = 0,C = c)

C = c

PAF =
P(Y = 1) − P(Y0 = 1)

P(Y = 1)

=
P(Y = 1) − EC(P(Y = 1 |X = 0,C ))

P(Y = 1)

=
EX,C(P(Y = 1 |X, C )) − EC(P(Y = 1 |X = 0,C ))

P(Y = 1)

=
EC(P(X = 1 |C )P(Y = 1 |X = 1,C ) + P(X = 0 |C )P(Y = 1 |X = 0,C )) − EC(P(Y = 1 |X = 0,C ))

P(Y = 1)

=
EC(P(X = 1 |C )P(Y = 1 |X = 1,C ) + P(X = 0 |C )P(Y = 1 |X = 0,C ) − P(Y = 1 |X = 0,C ))

P(Y = 1)

=
EC(P(X = 1 |C )P(Y = 1 |X = 1,C ) − P(X = 1 |C )P(Y = 1 |X = 0,C )) *

P(Y = 1)

= (RRC − 1)
EC(P(X = 1 |C )P(Y = 1 |X = 0,C ))

P(Y = 1)
 since RRC =

P(Y = 1 |X = 1,C )
P(Y = 1 |X = 0,C )

=
(RRC − 1)

RRC

EC(P(X = 1 |C )P(Y = 1 |X = 1,C ))
P(Y = 1)

 since RR−1
C =

P(Y = 1 |X = 0,C )
P(Y = 1 |X = 1,C )

=
P(X = 1,Y = 1)

P(Y = 1)
×

RRC − 1
RRC

 (since P(X = 1,Y = 1) = EC(P(X = 1,Y = 1 |C ))

= P(X = 1 |Y = 1) ×
RRC − 1

RRC
= πc

RRC − 1
RRC
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Where  is the marginal unadjusted relative risk (which has a 

causal interpretation due to the lack of confounders).  However, note that the causal 
relative risk might still differ when stratified by particular covariate patterns - that is this 
proof still holds true under general patterns of effect modification. An application of 
Bayes’ Rule shows this is also Levin’s formula which indicates Levin’s formula does not 
require an assumption of no effect modification.


PAF =
P(Y = 1) − P(Y0 = 1)

P(Y = 1)
=

P(Y = 1) − P(Y = 1 |X = 0)
P(Y = 1)

=
P(Y = 1 |X = 0)P(X = 0) + P(Y = 1 |X = 1)P(X = 1) − P(Y = 1 |X = 0)

P(Y = 1)

=
P(X = 1)(P(Y = 1 |X = 1) − P(Y = 1 |X = 0))

P(Y = 1)

=
P(X = 1)P(Y = 1 |X = 1)(1 − RR−1

C )
P(Y = 1)

= πc(1 − RR−1
C )

RRC =
P(Y = 1 |X = 1)
P(Y = 1 |X = 0)
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2.  Proof of generalisation of Miettinen’s formula when the causal relative risk 

 varies over covariate strata:  

If  is not constant the result follows from the line with the 

asterix in (1) using similar algebra:


After the asterix, the proof proceeds as:





Where the last line follows since if  is the density of the confounders  

 is the density of the confounders given 


RRC(c)

RRC(C ) =
P(Y = 1 |X = 1,C )
P(Y = 1 |X = 0,C )

EC(P(Y = 1,X = 1 |C )
RRC(C) − 1

RRC(C) )

P(Y = 1)

=
EC(P(Y = 1 |C )P(X = 1 |Y = 1,C )

RRC(C) − 1
RRC(C) )

P(Y = 1)

= EC|Y=1(P(X = 1 |Y = 1,C )
RRC(C ) − 1

RRC(C )
)

f (c) C

f (c |Y = 1) = f (c)P(Y = 1 |c)/P(Y = 1) Y = 1
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3.  Proof that Miettinen’s formula can be re-expressed as  

The result will be true if ; this can be proven using Bayes’ Rule.


Proof: 

	 


	 


This implies that:





πRRu

1 + π(RRu − 1)
RRC − 1

RRC

πc =
πRRu

1 + π(RRu − 1)

πC = P(X = 1 |Y = 1)

=
P(X = 1,Y = 1)

P(Y = 1)

= π
P(Y = 1 |X = 1)

πP(Y = 1 |X = 1) + (1 − π)P(Y = 1 |X = 0)

= π
1

π + (1 − π)RR−1
U

=
πRRU

1 + π(RRU − 1)

PAF = [
πRRU

1 + π(RRU − 1)
]
RRC − 1

RRC
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4.  Derivation of Formula (5) in the main manuscript for relative bias 




B =
PAFL

PAF

=
(RRC − 1)(1 + π(RRU − 1))

RRU(1 + π(RRC − 1))
×

RRC

RRC − 1

=
1 + π(RRU − 1)
1 + π(RRC − 1)

×
RRC

RRU

=
1 + π(RRU − 1)

1 + π(C × RRU − 1)
× C
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5.  Proof of generalisations of Miettinen’s formula for continuous (or multi-category) 

exposure distributions 

First for a strata of confounders,  we will assume that 

 is constant over all confounder strata 

 for each exposure value   We without loss of generality, that the Minimum risk 

exposure value is 0 (MREV = 0)


Then defining





The second last line follows by expanding out the integral into a double integral over 

values of  and  and noting that: 




C = c

RRC(x, c) =
P(Y = 1 |X = x, C = c)
P(Y = 1 |X = 0,C = c)

= RRC(x)

C = c x .

PAF =
P(Y = 1) − P(Y0 = 1)

P(Y = 1)

=
P(Y = 1) − EC(P(Y = 1 |X = 0,C ))

P(Y = 1)

=
EX,C(P(Y = 1 |X, C )) − EC(P(Y = 1 |X = 0,C ))

P(Y = 1)

=
EC( ∫ f (x |C )(P(Y = 1 |X = x, C ) − P(Y = 1 |X = 0,C ))d x)

P(Y = 1)

=
EC( ∫ f (x |C )

RRC(x, C) − 1
RC(x, C) P(Y = 1 |X = x, C )d x)

P(Y = 1)

= EC|Y=1(∫ f (x |C, Y = 1)
RRC(x, c) − 1

RRC(x, c)
d x)

= ∫ f (x |Y = 1)
RRC(x) − 1

RRC(x)
d x

x c

f (x |C, Y = 1) =
P(Y = 1 |C, X = x)f (C )f (x |C )

f (C )P(Y = 1 |C )
=

P(Y = 1 |C, X = x)f (x |C )
P(Y = 1 |C )
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so that  and 

, with the symbol  denotes a generic density function, with its 

arguments determining the precise density specified.  


The last line follows by again expanding out the expression into a double integral over the 

values  and , using Fubini’s theorem to reverse the order of integration (so the inner 

integral is a function of c) and then noting that  and 

. 

f (x |C, Y = 1)P(C |Y = 1) = f (x |C = c)P(Y = 1 |X = x, C = c)

f (C |Y = 1) =
f (C )

p(Y = 1)
f

x c

EC|Y=1 f (x |C, Y = 1) = f (x |Y = 1)

RR(x, C ) = RR(x)
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6.  Proof of generalisation of Miettinen’s formula for continuous (or multi-category) 

exposure distributions when causal relative risks vary over confounder strata: 

The proof is essentially the same as the preceding proof.  Note the penultimate line can 
be re-expressed as:


	




which is the formula in question.


EC|Y=1(∫ f (x |C, Y = 1)
RRC(x, c) − 1

RRC(x, c)
d x = EC|Y=1[E(X |C, Y = 1)[

RRC(X, C )
RRC(X, C )

]]
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7.  Proof of formula (7) 




Implying that:


 

f (x |Y = 1)

=
f (x)P(Y = 1 |x)

∫
t

f (t)P(Y = 1 | t)
 (Bayes' Rule)

=
f (x)RRu(x)

∫ f (t)RRu(t)dt
 (Divide above and below by P(Y = 1 |0))

=
f (x)RRu(x)

EX(RRu(X ))

PAF = ∫
f (x)RRU(x)

EX(RRU(X ))
RRC(x) − 1

RRC(x)
d x =

EX(RRU(X )
RRC(X ) − 1

RRC(X ) )

EX(RRU(X ))
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8.  Analysis of the derivatives of the Relative Bias equation (4) 

 


= 


= 


=    for all C


Derivative with respect to :








 


This derivative is negative for  and positive for 


(In each case, smaller prevalences increase relative biases - but should decrease absolute 
biases)


d
dC

1 + π(RRu − 1)
1 + π(C × RRu − 1)

× C

(1 + π(RRU − 1))(1 + π(C × RRU − 1)) − CπRRU(1 + π(RRU − 1))
(1 + π(C × RRU − 1))2

(1 + π(RRU − 1))(1 + π(C × RRU − 1) − CπRRU)
(1 + π(C × RRU − 1))2

(1 + π(RRU − 1))(1 − π)
(1 + π(C × RRU − 1))2

>
(1 − π)2

(1 + π(C × RRU − 1))2
> 0

π

d
dπ

1 + π(RRU − 1)
1 + π(C × RRU − 1)

× C

=
−(1 + π(RRu − 1))(C × RRU − 1)) + (1 + π(C × RRu − 1))(RRU − 1)

(1 + π(C × RRu − 1))2
× C

=
RRU(1 − C )

(1 + π(C × RRu − 1))2
× C

C > 1 C < 1
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As , 


As ,  

C → ∞
1 + π(RRu − 1)

1 + π(C × RRu − 1)
× C → 1 +

(1 − π)
πRRU

C → 0
1 + π(RRu − 1)

1 + π(C × RRu − 1)
× C → 0
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9.   Proof of Equation (10) - Relative bias for a positive continuous exposure with 

, where  and  is constant for 

 

 

 

 

 

 

where the second last and last lines follow from the assumption that 

 when .  The proof of equation (11) is almost identical.


MREV = 0 0 < 1 − π = P(X = 0) < 1 C =
RRC(X )
RRU(X )

X > 0

B =
PAFL

PAF

=
EX(RRC(X )) − 1

EX(RRC(X ))
EX(RRU(X ))

EX(RRU(X ) RRC(X ) − 1
RRC(X ) )

=
1 − π + πEX|X>0(RRC(X )) − 1

1 − π + πEX|X>0(RRC(X ))
1 − π + πEX|X>0(RRU(X ))

πEX|X>0(RRU(X ) RRC(X ) − 1
RRC(X ) )

= C
1 − π + πEX|X>0(RRU(X ))
1 − π + πEX|X>0(RRC(X ))

= C
1 + π(EX|X>0(RRU(X )) − 1)

1 + π(C × EX|X>0(RRU(X )) − 1)

RRC(X ) = C × RRU(X ) X > 0
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