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Abstract
Autozygosity is associated with rare Mendelian disorders and clinically-relevant quantitative
traits. We investigated associations between FROH (fraction of the genome in runs of
homozygosity) and common diseases in Genes & Health (N=23,978 British South Asians), UK
Biobank (N=397,184), and 23andMe, Inc. We show that restricting analysis to offspring of first
cousins is an effective way of removing confounding due to social/environmental correlates of
FROH. Within this group in G&H+UK Biobank, we found experiment-wide significant associations
between FROH and twelve common diseases. We replicated the associations with type 2
diabetes (T2D) and post-traumatic stress disorder via between-sibling analysis in 23andMe
(median N=480,282). We estimated that autozygosity due to consanguinity accounts for 5-18%
of T2D cases amongst British Pakistanis. Our work highlights the possibility of widespread
non-additive effects on common diseases and has important implications for global populations
with high rates of consanguinity.

Introduction
The prevalence of consanguinity, unions between related individuals, differs around the world,
being relatively low in modern European-ancestry populations and higher in South Asia and the
Middle East1,2. It often co-occurs with endogamy, unions between individuals from the same clan
or social group3–5. These practices increase the rates of autozygosity i.e. stretches of
homozygosity in the genome that are identical by descent. Autozygosity is known to increase
the risk of rare congenital anomalies and recessive Mendelian disorders6,7, and has been
associated with various other phenotypic outcomes, such as decreased height, fertility, and
self-reported overall health8,9, and increased risk for complex diseases such Alzheimer’s
disease10 and coronary artery disease (CAD)11. Notably, the prevalence of CAD and other
complex diseases such as type 2 diabetes (T2D) is significantly higher in British South Asian
individuals compared to White British individuals12. While this is undoubtedly partly due to social
and environmental factors12,13 as well as differential additive genetic susceptibility at certain loci
towards T2D in South Asians compared to white Europeans14, it is unclear whether higher rates
of autozygosity could also contribute.

One mechanistic explanation for the association between autozygosity and certain traits and
diseases is that autozygosity increases the chance of harbouring rare homozygous genotypes
at damaging recessive variants, which are less effectively removed from the population by
negative selection than dominantly-acting variants15. However, other potential explanations
exist, such as the heterozygote advantage hypothesis, whereby heterozygosity for certain
common variants leads to fitness advantages15, or, that the increased variance in additive
genetic liability towards binary traits induces associations with autozygosity in the absence of
non-additive effects16.

A challenging problem in assessing the relationship between autozygosity and phenotypes is
that associations may be confounded by both population structure and the social circumstances
in which consanguinity and endogamy are practised. For example, attempted replication of a
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previously-detected association with schizophrenia17 failed in reasonably powered cohorts18,19,
suggesting potential confounding. In another example, it has been shown that a negative
association in the Dutch population between depression and the fraction of the genome in runs
of homozygosity (FROH, a measure of autozygosity) was confounded by religious assortative
mating, whereby religious individuals had higher FROH due to stricter endogamy20. Thus, the
environmental and social factors that correlate with having related parents may produce
spurious associations between autozygosity and disease phenotypes. However, experimental
studies in nonhuman organisms that are free of social and environmental confounding show
effects of autozygosity on several phenotypes15,21–25, suggesting that the observations in humans
may be at least partially of genetic origin.

Here, we describe the patterns of consanguinity and examine the effect of autozygosity on
disease risk across the phenotypic spectrum in two cohorts: the Genes & Health cohort, a
population-based study of self-reported British Bangladeshi and British Pakistani individuals,
and in UK Biobank individuals genetically inferred to have European and South Asian
ancestries. We show that subsetting association analyses to highly consanguineous individuals
better controls for social and environmental confounding. With this approach, we find significant
associations between autozygosity and various diseases, several of which we replicate, using a
different method, in a between-sibling analysis conducted in the 23andMe cohort. Via
simulations, we show that these observed associations most likely stem from non-additive
genetic effects. Our study quantifies the effect of autozygosity across the disease phenotypic
spectrum for the first time, using a novel approach that addresses confounding, and highlights
the possibility of widespread non-additive effects across diseases.

Since consanguinity is a sensitive topic for many communities, we have prepared a “Frequently
asked questions” document for a lay audience in collaboration with the Community Advisory
Board from Genes & Health, explaining the motivation for and results of our study, and placing
them in wider context.

Results
Our main analysis focuses on two cohorts, Genes & Health (G&H) and UK Biobank (UKB), both
with electronic health record (EHR) data from primary and secondary care provided by the
National Health Service (NHS) in England. G&H (n=44,190 with genetic and EHR data at the
time of analysis) is a community based cohort of British Bangladeshi (65%) and Pakistani (35%)
individuals recruited in London, Manchester and Bradford, UK. The dataset is reasonably
representative of the background population, albeit likely with some over-sampling of individuals
with chronic diseases since much of the recruitment was conducted in a primary care setting26.
We additionally analysed individuals with genetically-inferred European and South Asian
ancestries from UKB (UKBEUR and UKBSAS, respectively). We removed individuals for whom
EHR data linkage was unavailable and one of each pair of individuals inferred to be third-degree
relatives or closer, leaving 23,978 G&H individuals, 387,531 UKBEUR individuals, and 9,653
UKBSAS individuals. See Table 1 for descriptive statistics of the cohorts.
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G&H
(n=23,978)

UKBEUR
(n=387,531)

UKBSAS
(n=9,653)

% male 47% 46% 54%

Age  (years) -
mean (SD)

44.9 (13.1) 56.7 (8.0) 53.4 (8.5)

Self-reported
ancestry

65% Bangladesh
35% Pakistan

94% Great Britain,
6% other European

60% India, 21% Pakistan,  4%
Bangladesh, 15% other South Asian

FROH mean (SD) 0.0178 (0.025) 0.0037 (0.0050) 0.013 (0.022)

# “highly
consanguineous”

4,034 (16.8%) 977 (0.25%) 754 (7.8%)

Table 1. Descriptive statistics of unrelated individuals in the G&H and UKB cohorts. FROH is the
fraction of the genome in runs of homozygosity. The bottom row gives the number of individuals
inferred to be offspring of first cousin/avuncular unions included in the “highly consanguineous”
analyses described below. SD: standard deviation.

Consanguinity patterns in Genes & Health and UK Biobank
Given that G&H has high self-reported rates of consanguinity26 (9% in British Bangladeshi
individuals, 36% in British Pakistani individuals), we first sought to genetically characterise
consanguinity patterns in the cohort and compare them to UK Biobank. We applied a method
we previously developed to infer an individual’s parental relatedness (PR) based on the
distribution of runs of homozygosity (ROHs) in their genome2. The method infers ten classes of
PR, some involving multiple generations of consanguinity (Methods). Rates of consanguinity
(offspring of second cousins or closer) were very low in UKBEUR (2%), and higher in UKBSAS
and G&H (29% and 33% respectively) (Figure 1a). In concordance with previous findings in
G&H based on FROH distribution26, self-reporting of PR was imperfect (Figure 1b,c).

Next, we explored whether the rate of consanguinity has been changing over time (Figure
1d,e,f). We replicated a recent finding 27 that, in UKBEUR, FROH significantly increases with age
(Figure 1d). In contrast, FROH significantly decreases with age in G&H British Pakistani
individuals but showed no significant association in G&H British Bangladeshi individuals (Figure
1d). In UKBEUR and G&H British Bangladeshi individuals, age was significantly positively
associated with rates of both first cousin or closer PR and of first cousins once removed/second
cousin PR (Figure 1f). In G&H British Pakistani individuals, although there is no significant
overall change in the rate of PR (i.e. second cousin or closer) with age (Figure 1e), we see
significant and opposing age effects for different classes of PR (Figure 1f). We note that
although these trends are highly significant, the changes are subtle; for example, 23% of British
Pakistani individuals aged 70-80 were inferred to be offspring of first cousins or closer,
compared to 38% of those aged 15-30 (Supplementary Figure 1).
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Figure 1. Patterns of parental relatedness (PR) in G&H and UKB. (a) Stacked bar plots showing
genetically-inferred PR for the indicated groups. (b) and (c) Stacked bar plot showing genetically-inferred
PR for G&H British Bangladeshi individuals and British Pakistani individuals respectively, stratified by
self-reported PR. The inferred classes of PR include up to three generations of first cousin marriages, first
cousin once removed, second cousin or unrelated. (d) Effect sizes of age on FROH, inferred from linear
regression, in the indicated groups. (e) Effect sizes of age on being genetically-inferred offspring of
second cousins or closer, from logistic regression. (f) Effect sizes of age having the indicated class of PR,
inferred from multinomial logistic regression. Lines indicated 95% confidence intervals. BB: British
Bangladeshi; BP: British Pakistani.
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Associations between autozygosity and common confounders
We then examined associations between FROH and phenotypes in G&H and UKB, considering
two sets of individuals within each cohort: we carried out one version of the analyses using all
individuals (full cohort) and one using only individuals who are inferred to be offspring of first
cousin/avuncular unions and who have FROH < 0.18 (highly consanguineous cohort). (The cutoff
of FROH<0.18 was chosen as it is the midpoint between the expected FROH for individuals having
avuncular versus sibling parents.) The motivation for this was that we suspected that social and
environmental correlates of consanguinity may confound associations between phenotypes and
FROH within the full cohort, i.e. highly consanguineous individuals might have systematically
different cultural, social, or environmental exposures to those whose parents are unrelated. If we
restrict to individuals whose parents had the same degree of PR and control for population
structure, variance in FROH is attributable to stochastic recombination events and Mendelian
segregation (Figure 2), thus mitigating associations between FROH and environmental
confounders. We excluded a small number of individuals with FROH > 0.18 whose parents may
be first-degree relatives, since such unions might be associated with extreme environmental
confounders.

Figure 2. Variability in autozygosity due to stochastic recombination and Mendelian segregation events
among individuals with parents who are first cousins. (a) Figure illustrating, using just one chromosome,
how autozygosity can vary substantially between individuals who are offspring of first cousins. Two
offspring of independent first cousin unions have inherited different ROHs of different lengths on one
chromosome due to stochastic recombination and Mendelian segregation events. This leads to the
variation in genome-wide FROH shown in panel (b) for G&H individuals inferred to have parents who are
first cousins. The red line in (b) indicates the best fit of a lognormal distribution, which was used for power
calculations.
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Figure 3. Associations between FROH and potential confounders with and without conditioning on
educational attainment in (a) UKBEUR and (b) UKBSAS. Forest plot showing FROH odds ratio. OR is
calculated for FROH value of 0.0625 (expected FROH for first cousin PR). Bands indicate 95% confidence
intervals adjusted for multiple testing (p<.05/9).

To test the robustness of this approach, we considered five traits/exposures which may
confound associations with FROH in UKBEUR and UKBSAS: self-reported religiosity, ever
smoked tobacco, ever drank alcohol, socioeconomic status as measured by the Townsend
Deprivation Index (SES), and having attended university. Clark et al. previously showed that
FROH negatively correlated with educational attainment (EA) and alcohol and tobacco use8. We
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find that in the full cohort, FROH is significantly associated with all five traits assessed in UKBEUR
and UKBSAS (Figure 3). However, in the highly consanguineous cohorts we find no significant
associations. Using power calculations28, we find that the power to detect significant
associations in the highly consanguineous cohorts using the OR estimated from the full cohorts
ranges from 0.72 to >.99 with a median of 0.86, suggesting the widespread attenuation
observed was unlikely to be due to the reduction in sample size when restricting to the highly
consanguineous cohorts.

As has been done in previous work to attempt to control for confounding8,9,29, we then repeated
these analyses controlling for educational attainment (EA; specifically, number of years in
education). This made minimal difference to our results (Figure 3, right), showing that
conditioning on EA does not attenuate associations with the potential confounders we
considered.

Associations between autozygosity and disease
Having demonstrated that focusing on highly consanguineous individuals attenuates
confounding with risk factors for ill health (Figure 3), we then assessed associations between
FROH and diseases in this subset of individuals, meta-analysing G&H and UKB. To define the
disease phenotypes, we used the first-occurrence three letter ICD-10 codes in UKB and
generated phenotypes in G&H by mapping diagnostic codes from primary and secondary care
EHRs using the methods defined in UKB (Methods, Supplementary Methods). We considered
the sixty-one diseases with at least a 5% case prevalence in the G&H highly consanguineous
cohort, since this was the largest sample (N=4,034 versus N=977 and N=754 for UKBEUR and
UKBSAS respectively).

After 5% FDR correction, we find twelve associations, with four associations passing Bonferroni
correction (p<0.05/61) in the meta-analysis of the highly consanguineous cohorts (Figure 4a,
Supplementary Table 1). The disorders span several organ systems including metabolic,
psychiatric, ear, eye, immune, and respiratory disorders. We assessed whether the effect of
FROH varied linearly with respect to the log-odds, using binned FROH values, to ensure model
assumptions were met. We find that the increase in log-odds for the significant traits consistently
appears to be approximately linear (Supplementary Figure 2), suggesting the associations are
not driven by extreme FROH values.

When conducting the same analysis in the full cohort, thirty traits were significant after FDR
correction and thirteen passed Bonferroni correction (Supplementary Table 2). The highly
consanguineous and full cohort analyses share ten significant associations at FDR<5%, with the
two psychiatric traits being unique to the former (Figure 4b). We observe an inflation in the
p-values for Cochran’s Q test for heterogeneity in the meta-analysis of the full cohorts and none
for the highly consanguineous cohorts (Supplementary Figure 3), suggesting the effect size
estimates are more consistent across the different highly consanguineous cohorts.
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Figure 4. Associations between FROH and disorders significant after 5% FDR correction in the
meta-analysis of highly consanguineous cohorts from G&H and UKB. (a) shows all significant disorders,
and (b) highlights two psychiatric disorders that showed significant associations in the meta-analysis of
highly consanguineous cohorts but not of full cohorts. Forest plot showing FROH odds ratio (OR). OR is
calculated for FROH value of 0.0625 (expected FROH for first cousin PR). Bands indicate 95% confidence
intervals, asterisks indicate traits that pass Bonferroni correction(p<0.05/61) and colours indicate disorder
categories.

Between-sibling analysis of FROH-phenotype associations in 23andMe
To attempt to replicate findings, we conducted a between-sibling analysis in the 23andMe cohort
using self-reported phenotypes (n=42,218-545,806, median 478,590; Supplementary Table 3).
This complementary approach exploits variation in FROH within nuclear families, which eliminates
confounding due to population structure 8,30,31. Confirming the results in Figure 3, we found no
significant association (p>0.15) between FROH and having ever used tobacco or reporting being
‘at all religious’. We then considered fourteen disease phenotypes that match or are similar to
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the three-digit ICD10 codes that passed FDR<5% in the meta-analysis of either the highly
consanguineous and/or full cohorts from G&H+UKB (Supplementary Table 3). The seven
diseases that were significant in the G&H+UKB highly consanguineous cohorts showed
convincing evidence of replication: all had concordant directions of effect size, significantly more
than expected by chance (p=0.008, one-sided binomial test), and two were experiment-wide
significant [post-traumatic stress disorder, included within ICD10 chapter F43 (OR=1.96,
p=0.00082) and type 2 diabetes (OR=1.57, p =0.00395)]. In contrast, of the seven diseases that
were only significant in the G&H+UKB full cohorts, five had discordant directions of effect in
23andMe and none passed experiment-wide significance. Importantly, PTSD, the disorder with
the most significant FROH association in the replication analysis, was only significant in the
analysis of the highly consanguineous cohorts in G&H and UKB (Figure 4b).

Population attributable risk of autozygosity to T2D and asthma
British South Asians have more than twice the rate of T2D compared to White British
Europeans12,32, as well as a higher rate of asthma hospitalizations and death12,32. Given the
detected associations between autozygosity and these diseases, we estimated the fraction of
the incidence of these disorders that may be attributable to the rate of consanguinity in each
population. To do so, we calculated the percent population attributable risk (i.e. percent of cases
in the population attributable to autozygosity) for the two diseases, using the odds ratio
estimates for FROH from the G&H+UKB meta-analysis of the highly consanguineous cohorts and
the rate of consanguinity estimated in UKBEUR individuals and in G&H British Bangladeshi and
Pakistani individuals (see Methods). Since conversion of the odds ratio estimate requires an
estimate of the prevalence of the disorders in nonconsanguineous individuals, which is not
available, we varied the assumed prevalence from 5% to 15% for each disorder, as that should
reasonably capture the true prevalence33,34.

Assuming a 5% prevalence of disease in nonconsanguineous individuals, we estimated that
10.1% (5.2%-15.9%, 95% CI) of the prevalence of T2D in G&H British Pakistanis is attributable
to autozygosity resulting from consanguinity (Figures 5 and S4a-d). This is independent of the
environmental/cultural correlates of consanguinity that may influence risk of the disorder. The
rate was estimated at 2.6% (1.2%-4.6%) in G&H British Bangladeshis, and at <1% in UKBEUR.
Likewise, we estimated 7.4% (2.5%-12.5%) of asthma cases in G&H British Pakistanis are
attributable to autozygosity, 2.4% (0.9%-4.2%) in G&H British Bangladeshis, and <1% in
UKBEUR. The estimates increase slightly when assuming a prevalence of 15%. Thus, we
conclude a substantial proportion of the increased incidence of T2D in British Pakistanis is due
to autozygosity resulting from consanguinity.

As a point of comparison for T2D, we considered the population attributable risk due to having a
high polygenic risk score (PRS) for the disease. We considered the T2D PRS developed in
Mars et al.35 which showed similar predictive accuracy in European and British South Asian
cohorts they studied (OR for 1SD of the PRS ~1.65 in both populations). Supplementary Figure
4e shows that in G&H British Pakistanis and British Bangladeshis, the increase in T2D
prevalence due to autozygosity is similar to that due to individuals being in the top 5-18% and
1-3% of polygenic risk, respectively.
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Figure 5. Percent population attributable risk of FROH on (a) T2D and (b) asthma estimated for UKBEUR
and G&H British Bangladeshis and Pakistanis, assuming underlying prevalence estimates of disease in
the nonconsanguineous population equal to 5% or 15%. Error bars indicate 95% confidence intervals.

Impact of genetic architecture on FROH associations with binary traits
Associations between FROH and traits can be induced by several underlying genetic
architectures. A commonly described hypothesis is that FROH increases the risk of inheriting
deleterious recessive variants, thereby increasing genetic predisposition towards disease. An
alternative (but not mutually exclusive) explanation is that autozygosity increases the additive
genetic variance of a trait in the population (specifically by a factor of 1+F, where F is the
average “inbreeding coefficient” in the population16, also see Supplementary Note). Thus, under
a liability threshold model for a binary trait, individuals with high values for FROH are more likely
to cross the liability threshold even in the absence of non-additive effects, inducing an
association between FROH and the trait (Supplementary Figure 5).

To assess the degree to which the increased additive variance could induce associations
between FROH and binary traits, we simulated binary traits with an additive polygenic genetic
architecture and varying heritabilities, then estimated the power we would have to detect
significant associations between FROH and the simulated traits in our current study, considering
the sample size and FROH distribution in the highly consanguineous cohorts. We find that purely
additive, polygenic traits with heritabilities similar to those of the most heritable traits we
consider (e.g. T2D with an estimated narrow-sense h2 of 20%-30%36) would be very
underpowered to show significant associations with FROH in our study (Supplementary Figure
6a). In the unrealistic case of FROH values in the population being uniformly distributed from 0 to
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1, there would still be very little power to detect associations at our current sample size
(Supplementary Figure 6b). We conclude that the associations we observe are unlikely to reflect
a solely additive genetic architecture and hence highlight the possibility of widespread
non-additive effects on diseases across the phenotypic spectrum.

Discussion
We introduce a novel approach to reduce confounding in studies assessing trait associations
with autozygosity by restricting analyses to highly consanguineous individuals. We find
compelling evidence that autozygosity impacts several common diseases spanning multiple
organ systems, notably type 2 diabetes and PTSD. Simulations indicate that the associations
most likely stem from non-additive genetic effects, and we calculate population attributable
fractions to show that these effects cumulatively contribute substantially to disease incidence in
populations with high rates of consanguinity.

In concordance with previous studies1,37,38, we find that British Bangladeshi and Pakistani
individuals practise consanguinity at higher rates than British individuals with European
ancestries. Our results from G&H show that younger British Pakistanis are more likely to have
parents inferred to be first cousins, while overall consanguinity (i.e. second cousin or closer) is
decreasing in younger British Bangladeshis. The fact that we see opposite patterns in the two
groups suggests that this is not due to the impact of autozygosity on health which could lead to
ascertainment biases. We cannot be sure whether the patterns we observe are due to changing
patterns of unions within the UK across time or temporal changes in migration rates from
Pakistan/Bangladesh to the UK which affected trans-national marriage/union patterns39. Recent
work in large biobank settings has shown that overall rates of consanguinity are decreasing in
large cohorts from the United States (All of Us and Million Veterans Program) and increasing in
UKB South Asians27. Our analysis suggests that examining these trends at the level of a whole
country or broad ancestry group may obscure fine-scale differences. Also, considering only
changes in mean FROH may obscure changes in rates of different types of consanguinity (Figure
1 and Supplementary Figure 1). These results highlight important trends for clinical settings, as
autozygosity increases the risk of recessive Mendelian diseases40 and, as we show here,
several common, complex disorders.

Before we assessed association between FROH and disease, we investigated associations
between FROH and common confounders that are associated with disease risk, including
socioeconomic, behavioural, and cultural traits in the UKB cohorts. When considering all
individuals, we found significant associations between FROH and university attendance,
deprivation, religiosity and alcohol/tobacco use. All of the associations were attenuated with our
approach of restricting to the highly consanguineous cohort, suggesting they were due at least
in part to confounding. Consistent with this, religiosity and tobacco use were likewise not
significant in the 23andMe between sibling-analysis. We found that conditioning on EA, a
sensitivity analysis common in the autozygosity literature8,9,29, did not attenuate the associations
between FROH and the potential confounders assessed (Figure 3). These analyses illustrate the
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need to carefully assess whether the causes of FROH associations in several previous studies
are indeed biological, and emphasise that they should be interpreted with caution.

Having demonstrated that restricting analyses to highly consanguineous individuals greatly
attenuates confounding, we investigated associations between FROH and clinical phenotypes
extracted from EHRs within this group. We found associations between FROH and twelve
diseases classified by three-digit ICD10 codes, including T2D, asthma, and two psychiatric
disorders (“F43 - reaction to severe stress disorders”, which includes PTSD, and “F41 - other
anxiety disorders”). We also replicated T2D and PTSD at experiment-wide significance in the
23andMe between-sibling analysis. We saw several additional associations in G&H+UKB,
including shoulder lesions, which include adhesive capsulitis, a common comorbidity of T2D41.
Additionally, it has been shown that PTSD symptoms and diagnosis are associated with
increased risk for T2D42. As cohorts with highly consanguineous individuals grow and
non-additive loci are discovered for these disorders, it may be possible to disentangle the
potential causal paths operating between these associations.

When analysing the full cohort from G&H+UKB, we found multiple additional associations.
However, when attempting to replicate seven of these via between-sibling analysis in 23andMe,
none passed experiment-wide significance and five had discordant directions of effect size,
indicating they were likely spurious. Interestingly, the analysis of the full G&H+UKB cohorts gave
nonsignificant results for the two psychiatric disorders identified in the highly consanguineous
analysis (Figure 4b). This result suggests that environmental/cultural factors correlated with
consanguinity, and therefore FROH, in these cohorts are either truly protective against these
disorders, and/or that consanguineous individuals are less likely to seek medical assistance for
them. Thus, our approach not only addresses spurious associations between FROH and
diseases, but also prevents masking that is potentially due to consanguinity-related differences
in disease ascertainment in EHRs.

Our paper has several limitations. Our approach assumes that within the highly consanguineous
subset of the cohort, the degree of autozygosity is not correlated with environmental factors that
influence disease risk, which we cannot totally rule out. However, our results in Figure 3 suggest
that there is no remaining association with some obvious potential confounders. Another
limitation of the paper is that, after multiple testing correction, we only replicated two of the
seven diseases tested in the between-sibling analysis from 23andMe. This is likely due to the
more limited power of this approach, but results for these other diseases should be treated with
caution unless replicated in future studies.

We showed that the risk towards T2D and asthma incurred by autozygosity may contribute
substantially to the incidence of these diseases in British Pakistanis, and to a lesser degree in
British Bangladeshis. Our estimates of population attributable risk (PAR) assume that G&H is
representative of the broader British Pakistani and Bangladeshi communities in the UK, though
we note the majority of the current G&H cohort is from London. Our recent work in a cohort
collected in Bradford, a city in the north of England with a substantial British Pakistani
population, reported higher rates of consanguinity than found here, with 44% of British
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Pakistanis inferred to have parents who are first cousins or closer2 (compared to 33% in the
current study), suggesting we are potentially underestimating the true PAR. For T2D, we found
that the rate of consanguinity in British Pakistanis increases the prevalence in the population
approximately equivalently to individuals being in the top decile of common variant risk
measured in a previous study35. Importantly, we note that our estimates for the PAR due to
autozygosity have large standard errors (the confidence intervals for T2D for British Pakistanis
span between 5.2% and 17.5%, depending on assumed prevalence), and that other risk factors
for T2D have a far higher PAR than autozygosity. One study estimated the PAR for having BMI
> 25 kg/m2 is >60% in the Americas, with little fluctuation between regions43. In a separate study
of a cohort based in Rotterdam, the PAR for BMI > 25 kg/m2 was 51%, and 71% for all
modifiable risk factors assessed in their study (high BMI and waist circumference, current
smoking, and high C-reactive protein)44. Thus, while the impact of autozygosity resulting from
consanguinity on T2D risk is significant, its impact is less than other, modifiable risk factors.
Furthermore, the health risks incurred by consanguinity need to be weighed against potential
social and economic benefits for communities.

Via simulations, we show that the associations we detected are unlikely to be due to
autozygosity increasing additive variance for genetic risk of binary traits, suggesting
wide-spread non-additive effects. In the few studies that have looked, recessive-acting rare and
common variants have been found to be associated with multiple common diseases including
T2D45–47. However, it has been previously shown that dominance heritability at common variants
is negligible48,49, suggesting the observed FROH associations likely stem from non-additive effects
at low allele frequency variants and/or epistasis. Assuming an outbred population, detecting
recessive effects requires much larger sample sizes than for additive loci, since only np2

individuals have informative alternative genotypes (where n is sample size and p is the effect
allele frequency) versus n(p(1-p)+p2))=np under an additive model. This issue is especially
exacerbated at rare variants due to the quadratic scaling, but is reduced in consanguineous
cohorts where the number of informative alternative genotypes for recessive loci is
n((1-mean(F))p2 + mean(F)p). Thus, large sequenced cohorts from populations with high levels
of consanguinity will be necessary to fully characterise the nature of non-additive genetic effects
across the allele frequency spectrum for polygenic traits.

In conclusion, we have described patterns of consanguinity in two large UK cohorts and
proposed a novel approach to control for social and environmental confounding in autozygosity
association studies. We found multiple significant associations between autozygosity and
common diseases which we contend are unlikely to be confounded. Our findings suggest that
previous results in the field should be revisited, as they may have been driven by uncontrolled
confounders. Furthermore, our results indicate that autozygosity may be an important
contributing factor to the increased incidence of T2D in British Pakistanis as well as in other
worldwide populations with high rates of consanguinity. Our work motivates the incorporation of
genome-wide autozygosity into predictions of genetic risk, as well as a search for individual
non-additive-acting variants and genes influencing disease risk across the phenotypic spectrum.
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Methods

G&H and UK Biobank cohorts and genotype data preparation
We used the 2021 July data release of the G&H data, which contained 46,132 individuals
genotyped on the Illumina Global Screening Array v3EAMD (GRCh38). The G&H cohort was
recruited across several sites in East London, Luton, Manchester, and Bradford, including
community settings (e.g. mosques, shopping centres, libraries) and primary care clinics26. Fifty
six percent of individuals were recruited in primary care settings, 5% were recruited in hospitals,
and the remaining were recruited in community settings. We first removed 1,736 individuals with
call rate less than 99.2% and SNPs with MAF < 1%, leaving 355,862 SNPs. To ensure we did
not lose SNPs that have high quality but that fail Hardy-Weinberg Equilibrium due to high rates
of consanguinity and strong population structure in British Pakistani individuals, we removed
726 SNPs that failed Hardy-Weinberg Equilibrium p-value < 1x10-6 in British Bangladeshi
individuals alone, as done in Huang et al.50 This left 355,136 SNPs.

Genotyping and processing for the UK Biobank cohort were done centrally by the UKB group51.
Two customized Affymetrix genotyping arrays were used, the UK Biobank Axiom array
(n=438,692) and the UK BiLEVE Axiom array (n=50,520), which covered 812,428 SNPs with
95% overlap between the arrays. Quality control consisted of excluding individuals with >3%
missingness, inconsistent sex, sex aneuploidy, excess heterogeneity, or withdrawn consent.

In both cohorts, we estimated the relatedness between individuals using PropIBD from KING52

removed one from each pair of related individuals inferred to be 3rd relatives or closer. To
remove related individuals while maximising the sample size, we ranked individuals by their
number of relatives, then removed the individual with the highest number of relatives until no
relatives remained.

Ancestry definition
In G&H, we inferred genetic ancestry by merging the data with reference sequences of
unrelated individuals (determined using KING as described above) from the 1000 Genome
Project53 and Central and South Asian individuals from the Human Genome Diversity Project54.
We first excluded palindromic variants and multiallelic sites from both datasets. Then, we
merged the external reference data and G&H by matching positions and alleles of the common
SNPs that passed QC in G&H, and kept variants found in both datasets, which left 349,632
SNPs. A further 1285 variants were excluded due to AF discrepancies between G&H and South
Asian reference individuals (>4 standard deviations from the mean residual of -log10 frequency
bins, and Fisher's exact test p<1x10-5), resulting in 348,347 variants. PLINK 1.9 LD pruning was
performed with a window size of 1000kb, step size 50 and LD r2 cutoff of 0.1, then long LD
regions55 were excluded, resulting in 104,552 variants. We used PLINK 1.9 to calculate principal
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components (PCs). To remove individuals with non-South Asian ancestry, we first calculated
PCs for the 3,433 reference individuals, projecting the G&H samples into the reference PC
space. We calculated UMAP coordinates using the umap R package. We found that the UMAP
with 7 PCs was optimal to separate the reference individuals into their assigned
superpopulations. 44,320 out of 44,396 G&H individuals were inferred to be South Asians at this
stage. To identify British Bangladeshi and Pakistani individuals in G&H, we then performed a
second PC analysis on the unrelated G&H individuals, projecting the related G&H individuals
into the PC space defined by the unrelateds. The UMAP with 4 PCs identified distinct
Pakistani and Bangladeshi clusters (defined based on the self-reported ancestries), and this
was used to classify individuals as genetically Pakistani or Bangladeshi (leaving 44,190
individuals in the final dataset).

UKB participants were divided into five continental groups, defined by projecting UKB
individuals into the 1000 Genomes PCA space. Individuals were then grouped into their closest
ancestral population, based on the Mahalanobis distance between their projected principal
component score and the average score of each ancestral sample. Individuals with a
Mahalanobis distance that deviated from each population average at >6 SD were excluded.
387,531 individuals of European descent and 9,653 individuals of South Asian descent
remained after quality control.

ROH calling
For ROH calling in G&H, we filtered out SNPs with minor allele frequency <5% and used PLINK
1.9 to call ROHs on the filtered SNPs using the following parameters, following Clark et al.8:
-homozyg-window-snp 50 --homozyg-snp 50 --homozyg-kb 1500 --homozyg-gap 1000,
--homozyg-density 50 --homozyg-window-missing 5 --homozyg-window-het 1. In UKB we
followed the same procedure, but before ROH calling we removed variants that had
Hardy-Weinberg p<1x10-6 in the relevant ancestry group.

We calculated FROH by summing up the total length of all autosomal ROHs previously calculated
(in base pairs) and dividing by 2.7 billion (the approximate length of the autosomal genome),
following Clark et al.8.

Consanguinity inference
We developed a method to infer parental relatedness which has been fully described in 2.
Briefly, unrelated individuals were randomly chosen from the actual dataset, phased using Eagle
v2.4.153, and consanguineous pedigrees are simulated using custom R code available at
https://github.com/malawsky/consanguinity_simulation; specifically we included unions between
individuals who are siblings, avuncular (including multiple generations), first cousins (including
multiple generations), first cousins once removed, and second cousins, as well as between
unrelated individuals. We then applied the same ROH calling procedures described above to the
simulated offspring. For each simulated individual, we then calculated fifteen statistics for the
purposes of classification using the neural net classifier: the total length of the ten longest ROHs
(in cM), and the frequency of ROHs ranging from 10 to 150 cM binned into 14 intervals of 10
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cM. Using these statistics, we trained a neural net classifier implemented in the R package nnet
to assign simulated individuals to a given consanguineous pedigree by repeating this procedure
10 times, summing up the probabilities for each possible PR category, and choosing the one
with the highest probability per individual. We then calculated the same statistics on the true
samples and used the trained neural net classifier to infer the degree of PR. For most of our
analyses, we group together people whose parents were inferred to be second cousins with first
cousins once removed, and people whose parents were inferred to be first cousins for
one/two/three generations, because of the low accuracy in differentiating between the
finer-grained classifications.

Analysis of consanguinity patterns in G&H and UK Biobank
In G&H, individuals were asked about their parental relatedness at recruitment (“Were your
parents related by blood? (not just by marriage)”) with the options of “Yes”, “No”, and “Don't
know”. If the individual answered “Yes”, they were asked a follow-up question of “If Yes, how
were your parents related?” with the options of “First Cousins”, “Don't Know'', and “Other related
by blood”. Figure 1b,c shows the inferred degree of parental relatedness for individuals split by
self-reported parental relatedness.

We used linear regression to regress FROH on age G&H British Pakistanis, G&H British
Bangladeshis, UKBEUR and UKBSAS, controlling for sex and 20 PCs. To test if overall
consanguinity changed over time, we made a binary variable indicating parental relatedness (1
if inferred to have parents that are second cousins or closer, 0 otherwise) and regressed that on
age, sex, and 20 PCs using a logistic regression. To test for more subtle changes in
consanguinity patterns over time, we made a categorical variable indicating each of the three
main inferred parental relatedness categories (first cousins or closer, second cousins/first
cousins once removed, or unrelated), and regressed it on age, sex, and 20 PCs using a
multinomial logistic regression with the nnet R package56.

Association between autozygosity and traits

Phenotypic data harmonisation and preparation for G&H and UK Biobank
The G&H EHR data consisted of SNOMED codes from primary care data for 34,712 of the
participants (i.e. those registered with a GP in inner London, outer London, and Bradford),
ICD-10 codes from secondary care data for 17,132 individuals (i.e. those who had attended the
Barts Health or Bradford University Hospitals NHS trusts), and ICD-10 codes from national
Hospital Episode Statistics available on all participants. There were twelve participants with no
ICD-10 codes, and we removed these individuals from the analyses since it was possible that
they had recently moved to the UK so may be missing any EHR data for that reason. After
removal of relatives, 23,978 individuals were retained. We translated SNOMED codes in primary
care data to ICD-10 codes using the Interactive Map-Assisted Generation of ICD-10 Codes
algorithm (using only codes with strict 1:1 mapping, as also done by UK Biobank)57. See
Supplementary Methods for additional details. Since we suspected that coding practices might
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be different in different areas, and since missing EHR data could otherwise affect our results, in
the analyses described below we included indicator variables to account for:

- Whether a G&H individual had primary care data from an inner London borough, outer
London borough, and/or Bradford (3 binary variables)

- Whether a G&H individual had at least one secondary care code from Barts Health or
Bradford University Hospitals NHS trust (2 binary variables)

To define disease phenotypes in UKB (Figure 4, Supplementary Tables 1 and 2), we used the
‘first-occurence’ ICD10 codes (field 1712). The UKB phenotypes used in Figure 3 were as
follows:

● Religiosity (field 100328) indicates whether an individual reported attending a religious
group at least once a week.

● Townsend deprivation index (field 189) was used as a proxy for socioeconomic status.
● Educational attainment (field 6138) was binarised into ‘having attended university’ or not

when used as an outcome phenotype (for easy of comparison with the other phenotypes
in the figure), but when used as a covariate (right hand side of Figure 3), we converted it
to years in education as done previously58.

● ‘Ever drinking alcohol’ was obtained from field 1558.
● ‘Ever smoked’ was obtained from field 20160.

Regression analyses in G&H and UK Biobank
We considered two subsets of individuals in each cohort (G&H, UKB and UKBSAS) to identify
associations between FROH and phenotypes: the full cohort including all individuals and the
highly consanguineous cohort consisting of individuals inferred to have parents that are first
cousins. We used logistic regression in base R for binary variables.

For G&H, as covariates in the regression we included FROH, sex, age, age2, age*sex, genetic
PCs 1-20, (has primary care code from outer London primary care data), (has primary care code
from inner London primary care data), (has primary care code from Bradford), (has secondary
care code from Barts Health), and (has secondary care code from Bradford University Hospitals
NHS trust).

In UKB, slightly different covariates were used, including array (UKB field 22000), batch (UKB
field 22000), recruitment centre (UKB field 54), and whether primary care data were available
(UKB field 42040).

For the meta-analysis of disease phenotypes, we used inverse variance-weighted fixed effect
meta-analysis of estimates obtained from regressions in the UKBEUR and UKBSAS cohorts
and in G&H.

For the log(OR) estimates by residualized FROH quintiles (Supplementary Figure 3), we
regressed FROH on the other covariates and binned FROH values by quintiles. The quintiles were
defined in the G&H highly consanguineous cohort as the FROH distribution in this group was very
similar to that seen in the highly consanguineous individuals from UKB (Supplementary Table
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4). We then regressed a given trait on the binned FROH quintiles and meta-analysed the effect
size across the three cohorts. For a linear regression of the log(OR), we used an inverse
variance weighted linear regression using SE estimates for each log(OR) estimate.

Power analyses
We used G*Power28 to calculate power to detect a significant effect size for logistic regression in
the highly consanguineous cohorts, assuming the effect size estimates in the full cohorts. One
needs to specify the frequency of the binary phenotype in the population, the expected OR, the
distribution of FROH, sample size, and p-value threshold. For each trait, we used the OR
estimated in the full cohort analyses, the frequency of the binary phenotype in the highly
consanguineous cohort, the sample size for a given highly consanguineous cohort, a p-value
threshold of 0.05, and a log-normal distribution for FROH with mean -2.5 and standard deviation
of 0.5, with FROH values restricted to be between 0.02-0.18 (which approximates the empirical
distribution of FROH for individuals with first cousin parents; Figure 1B).

Between-sibling analysis in 23andMe

We conducted a between-sibling regression analysis using individuals inferred to be full
biological siblings in the 23andMe cohort, including individuals from all ancestry groups since
this within-family analysis is immune to population stratification. We considered 7,363,319
23andMe customers that had consented to research and had reported age, sex and at least one
of the phenotypes of interest. Sibling groups were identified as cliques sharing 2249cM < IBD1
< 3373cM and 375cM < IBD2 < 2249cM59. We then performed relatedness pruning to avoid (for
example) two generations of a pedigree being analysed as independent sibling groups. For
each phenotype, only cliques containing at least two individuals with non-missing data were
considered, we then greedily removed cliques with the highest number of related cliques until no
clique interconnections were remaining. Two cliques were considered connected if at least one
pair across the cliques shared IBD1 > 700cM. This resulted in between 20,713 and 262,433
sibling cliques containing 42,218 to 545,806 individuals depending on phenotype. ROHs were
called and FROH was determined in the same way as described above for G&H and UKB.

As 23andMe does not have electronic health records, we used self-reported phenotypes as
proxies to replicate our significant findings from the meta-analysis of G&H and UKB. The results
and lists of equivalent phenotypes are shown in Supplementary Table 3. Using the bife R
package60, we regressed the binary disease phenotype of interest on FROH, adjusting for age,
age2, sex, and sex*age as fixed effects and family membership as a random effect (i.e.
family-specific intercept). For quantitative phenotypes, we regressed the phenotype on the
same random and fixed effects using the plm R package61. The analysis was conducted
separately for three different genotyping chips, and the results meta-analysed.

Participants provided informed consent and volunteered to participate in the research online,
under a protocol approved by the external AAHRPP-accredited IRB, Ethical & Independent
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(E&I) Review Services. As of 2022, E&I Review Services is part of Salus IRB
(https://www.versiticlinicaltrials.org/salusirb).

Calculating population attributable risk
To calculate population attributable risk as a percentage, we used the following formula:

𝑃𝐴𝑅 = 100 × 𝑃×(𝑅𝑅−1)
𝑃×(𝑅𝑅−1) + 1

where is the prevalence of the disorder in “unexposed” individuals (in our case, those with𝑃
unrelated parents) and is the risk ratio for the disease. As it is not possible at present to𝑅𝑅
derive robust estimates of disease prevalence excluding individuals with related parents, we
varied the disease prevalence from 5% to 15% for both diseases. In practice we found that this
made little difference to our estimates (Figure 5).

To convert the OR to RR, we used the following formula:
𝑅𝑅 = 𝑂𝑅

1−𝑃+𝑃×𝑂𝑅

where is the prevalence of the disorder in unexposed individuals and OR is the odds ratio for𝑃
a given level of autozygosity on a given disorder. When estimating PAR it is necessary to
discretise continuous measures, so we chose to discretise FROH into the values corresponding to
the expectation for first-cousin PR (FROH = 0.0625) and second-cousin PR (FROH = 0.01562). We
estimated the prevalence of these based on the estimates of the frequency of first cousin PR
and of second cousin/first cousins once removed PR (Figure 1).

To calculate PAR for T2D attributable to a PRS, we used the OR estimates for a PRS developed
in Mars et al.35 using the GWAS in 62, which they showed to have roughly equivalent degrees of
predictive power in individuals with European versus South Asian ancestry. We used the same
procedure as above, but calculated a risk ratio for individuals in twenty bins ranging from the top
1% to the top 20% of the PRS distribution, then calculated the cumulative sum of the PAR
attributable to each 1% increment (Supplementary Figure 4e).

Simulation of binary traits with strictly additive genetic architectures
We simulated the architecture of an additive binary trait by first assigning an effect size drawnβ
from N(0,1) for 1,000 independent causal loci. (We note that varying the parameter for the
number of causal loci has no effect on our conclusions, as the genetic liability distribution for
polygenic traits is normally distributed.) The allele frequency for each locus in the population
was calculated by first calculating 1/ for each SNP and then linearly scaling the values to beβ
between 0 and 0.5, to approximate model assumptions used in 63. (However, we note that the
MAF-effect size relationship does not impact results as the additive variance and FROH

relationship is not affected.) We then simulated 6,000 individuals (slightly more than the number
of individuals in the combined highly consanguineous cohorts) to have FROH values either
uniformly drawn from 0 to 1 or from the FROH distribution of the G&H highly consanguineous
cohort (as shown in Figure 2b). For each individual, a random subset of round(1,000*FROH)
SNPs were assigned to be autozygous. We then simulated genotypes for each individual with
the genotype in non-autozygous segments drawn from Binomial(2,p) and from autozygous
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segments from 2*Binomial(1,p) where p is the frequency of the effect allele at the locus. Genetic
risk was then calculated by multiplying each individual’s genotypes with their corresponding
effect sizes, summing them up, and then normalising the values across the cohort.

We then simulated a binary phenotype by drawing random values from Binomial(1,pd) where pd

is the probability an individual has the disease given their genetic risk score G, calculated as
follows:

𝑃𝑟(𝑑𝑖𝑠𝑒𝑎𝑠𝑒) = 𝐿(𝐺 | 𝑁(𝑑,1))
𝐿(𝐺 | 𝑁(0,1)) + 𝐿(𝐺 | 𝑁(𝑑,1))

where L(G | D) is the relative likelihood of genetic risk score G with respect to a distribution D
and d is the mean shift in the distribution of genetic risk among cases, ranging from 0.5-1.5 in
increments of 0.1. The heritability was calculated using Nagelkerke pseudo-R2 in a logistic
regression of the phenotype on G. We then carried out a logistic regression of simulated
phenotype on FROH. We repeated this for 100 simulations, and then calculated power as the
fraction of simulations in which the FROH effect size was positive and its p-value was less than a
given cutoff (p<0.05 or p<0.05/61).

Supplementary note

Explanation for how autozygosity influences the additive variance of a trait
For illustration, consider a causal locus for a genetically additive trait as is assumed in standard
GWAS, where being heterozygous increases risk towards the disease and being homozygous
for the alternate allele increases risk twice as much as being heterozygous. Thus, we can code
the risk incurred at the locus as 0 for homozygous reference allele, 1 for heterozygous, and 2 for
homozygous alternate allele. Assume the locus has risk allele frequency p. For an individual not
autozygous at the locus, the variance for the coded genotype is equivalent to the variance of a

binomial distribution Var( ) = = Var(Binomial(2,p)) = 2p(1-p). However, for an individual𝑓
1

σ
1
2

autozygous at the locus, the variance is equivalent to Var ) = = Var(2*Binomial(1,p)) =(𝑓
2

σ
2
2

4p(1-p).

Given an individual with inbreeding coefficient F (which we approximate by FROH), the variance
at the locus of the mixture distribution is:

𝑉𝑎𝑟((1 − 𝐹) ×  𝑓
1

+ 𝐹 ×  𝑓
2
) =

(1 − 𝐹) ×  σ
1
2 + 𝐹 ×  σ

2
2 =  

(1 − 𝐹) ×  σ
1
2 + 2𝐹 ×  σ

1
2 =  

(1 +  𝐹) ×  σ
1
2

which is equivalent to results of a complementary derivation from Falconer et al.16
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Thus, extending this argument to multiple risk loci, autozygosity linearly increases variance in
risk towards a trait that has an entirely additive architecture. Assuming a liability threshold
model, the increased additive variance will lead to individuals with higher FROH having a greater
chance of passing the disease threshold even in the absence of non-additive effects, and may
induce an association between FROH and the trait.

Supplementary Figures

Supplementary Figure 1. Stacked bar plots showing inferred parental relatedness by age bin in G&H (a)
British Bangladeshi individuals and (b) British Pakistani individuals. The inferred categories of parental
relatedness include up to three generations of first cousin marriages, first cousin once removed, second
cousin or unrelated.
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Supplementary Figure 2. Log(OR) increase in disease risk across residualized FROH bins by quintiles in
the meta-analysis of the highly consanguineous cohorts. The Log(OR) are expressed with respect to the
lowest quintile of residualized FROH values. Error bars reflect standard error (SE) and lines reflect a linear
regression of log(OR) on residualized FROH values with shading representing the SE of the slope. For
some traits, the Log(OR) SEs were >200 for the last quintile. For these traits, we plotted them twice, once
excluding the last quintile estimate, and once including the estimate, designated with a * following the
three letter code. Effect sizes (beta) and p-values are from an inverse-variance weighted linear regression
of the log(OR) on the residualized FROH quintiles.
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Supplementary Figure 3. QQ-plot of p-values from a Cochran’s Q test for heterogeneity for all 61
diseases tested across G&H, UKBEUR and UKBSAS, using the full cohorts (blue) and the highly
consanguineous cohorts (red). The black line is y=x.
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Supplementary Figure 4. Percent population attributable risk (PAR) for varying degrees of prevalence of
parental relatedness for (a), (b) T2D and (c), (d) asthma and (e) for varying fraction of individuals in the
top percentiles for T2D polygenic risk score (PRS). (a), (c) show PAR owed to first cousin PR, (b), (d) for
second cousin parental relatedness, and (e) for PAR owed to individuals in the top T2D PRS percentiles.
Dotted lines indicate the population prevalence estimates for the indicated class of consanguinity in
UKBEUR (yellow), G&H British Bangladeshis (orange), and G&H British Pakistanis (red). The prevalence
of the disease in the nonconsanguineous populations was used to calculate the RR for each disease
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using 5% and 15% prevalence, shown in purple and green, respectively. Shaded areas indicate 95% CI
for the estimated RR.

Supplementary Figure 5. Demonstration of how a correlation between FROH and disease status can arise
in a trait with solely additive genetic genetic architecture. Here, we simulate additive genetic liability and
FROH values for 100,000 individuals. The variance of additive genetic liability towards a trait increases with
increasing FROH. If we imagine that individuals with a genetic liability > 2.5 (as shown by the red line) will
be disease cases, more individuals will surpass the threshold at higher values of FROH due to the
increased variance in genetic liability. Thus, FROH could correlate with disease case status when the trait
has a purely additive genetic architecture.

Supplementary Figure 6. Power to detect significant associations between FROH and a binary trait with a
purely additive genetic architecture and varying heritability. Panel (a) with FROH values drawn from a
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lognormal distribution with variance of 0.5 and mean -2.5 and values restricted to be between 0.02-0.18
(i.e. mimicking the observed distribution in Figure 2b) and panel (b) shows the power to detect
associations with FROH values drawn uniformly from 0 to 1. Red is the power for p<0.05 and blue for
p<.05/61. Power determined with 100 simulations.

Supplementary Tables

Supplementary Table 1. Associations between FROH and ICD10 codes in the highly consanguineous
cohorts from G&H and UKB. Columns indicate the effect sizes (beta), standard errors (SE), and p-values
for the associations in each cohort as well as in the meta-analysis. FDR corrected q-values and
Cochrane’s Q test for heterogeneity are shown for the meta-analysis.

Supplementary Table 2. Associations between FROH and ICD10 codes in the full cohorts from G&H and
UKB. Columns indicate the effect sizes (beta), standard errors (SE), and p-values for the associations in
each cohort as well as in the meta-analysis. FDR corrected q-values and Cochrane’s Q test for
heterogeneity are shown for the meta-analysis.

Supplementary Table 3. Associations between FROH and phenotypes in the between-sibling analysis
from 23andMe. We show the effect size (beta), standard error(SE) and p-value from a meta-analysis
across three chips.

Supplementary Table 4. Distribution of FROH values across cohorts. Per cohort, the quintile distribution of
FROH is shown as well as the mean and standard deviation.

Supplementary Methods

Generating ICD-10 codes in G&H by integrating multiple EHR modalities

We derived ICD10 diagnostic codes for each participant with linked healthcare data in Genes &
Health. Our methods were designed to closely resemble those used in UK Biobank. For each
ICD10 code, we determined whether the participant had any diagnostic codes equivalent to the
ICD10 code, the date of the earliest diagnostic code, and the data sources which corroborated
the presence of the ICD10 code. In total, we combined data from the following different sources:
Barts Health inpatient and outpatient care (native format ICD10, n=23,940 unique pseudoNHS
numbers with >=1 code, clinical coding), Barts Health inpatient and outpatient care (native
format SNOMED description IDs, n=20,967 unique pseudoNHS numbers with >=1 code, directly
coded by healthcare professionals), Bradford Teaching Hospitals inpatient and outpatient care
(native format ICD10, n=1,615 unique pseudoNHS numbers with >=1 code, clinical coding),
Bradford Teaching Hospitals inpatient and outpatient care (native format SNOMED description
IDs, n=1,740 unique pseudoNHS numbers with >=1 code, directly coded by healthcare
professionals), primary care observations from the Discovery Clinical Commissioning Group
(CCG) and Tower Hamlets (native format SNOMED concept IDs, n=39,077 unique pseudoNHS
numbers with >=1 code, coded directly by primary care professionals), NHS Digital Hospital
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Episode Statistics (both Admitted Patient Care and Outpatient Care), and mortality records
(native formats ICD10).

First, we mapped SNOMED description IDs to SNOMED concept IDs for clinician-coded
SNOMED codes pertaining to participants who had healthcare encounters at Bradford Teaching
Hospitals or Barts Health. The SNOMED mapping file was downloaded from the NHS Digital
website on 12/05/22. We used SNOMED build SNOMEDCT2_32.12.0_20220413000001 - the
20th April 2022 minor release (fileset uk_sct2cl_32.12.0_20220413000001Z.zip). This folder
contains four separate link files referring to the international SNOMED edition and three distinct
UK-specific editions. These files contain mapping for SNOMED descriptionIDs to SNOMED
conceptIDs. We collated them into a single mapping reference. All description IDs map onto a
single conceptID. This relationship is many-to-one: each descriptionID maps to a single
conceptID, but each conceptID can be referred to by several descriptionIDs (the median is
three). In total we used a mapping reference consisting of 1,746,657 unique SNOMED
description IDs mapping to 578,387 unique SNOMED concept IDs.

For the Barts Health data, we obtained three separate datasets containing records of
'Diagnoses', 'Problems', and 'Procedures' respectively. These files were merged with the
mapping files based on the description ID. We excluded codes with a missing SNOMED
description ID. Overall we were able to successfully map a high proportion of SNOMED
description IDs to concept IDs:
- Diagnoses: 118191 out of 138235 records mapped (85.5%)
- Problems: 31006 out of 31084 records mapped (99.75%)
- Procedures: 3518 out of 3586 records mapped (98.1%)
The most common unmapped code was a code for 'Venous Thromboembolism Risk
Assessment' (n=13,887 codes), an administrative code of no diagnostic relevance, referring to a
standard thromboembolism risk checklist completed on patient admission within Barts Health.
Exclusion of this code improved the mapping for the diagnoses dataset from 85.5% to 95.2%.
We performed identical mapping for Bradford Teaching Hospitals 'Diagnoses' and 'Problems'
data with a similar successful mapping percentage.

Next, we mapped these codes to ICD10 using the most recent SNOMED maps from NHS digital
(SnomedCT_InternationalRF2_PRODUCTION_20210131T120000Z and
SnomedCT_UKClinicalRF2_PRODUCTION_20220413T000001Z). We combined the UK and
the international map. We restricted this map to SNOMED concept IDs which mapped to a
single 3-digit ICD10 code (i.e. a 1-to-1 relationship), resulting in 119,459 individual SNOMED
concept IDs. We combined the derived SNOMED concept IDs from step 1 with 'directly coded'
ICD10 data for each participant in Barts Health and Bradford data separately. 4-digit ICD10
codes were truncated to the first three characters. We then processed data from two primary
care networks: the Discovery Clinical Commissioning Group (CCG) network and Tower Hamlets.
These data were provided as SNOMED concept IDs and were mapped to ICD10 codes using
the same 1:1 mapping approach as for primary care data. Overall between 3% and 8% of all
primary care codes were successfully mapped to ICD10 codes, reflecting the large number of
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administrative and measurement codes recorded in primary care, e.g. ‘text message sent to
patient’, ‘blood pressure recording’, and ‘body mass index’.

We then combined 3-digit ICD10 codes derived from these sources (primary care, Barts Health,
Bradford Teaching Hospitals) with data exports from NHS Digital (mortality records, HES
outpatients and HES APC). Mortality records were searched for underlying cause of death
(provided in ICD10 3-digit format). HES-APC codes were used to extract all diagnostic codes
recorded during an admission (provided in ICD10 format). We used the admission date as the
date of the report. HES-OP data were used to extract all diagnostic codes recorded in relation to
the appointment, also provided in ICD10 format. The appointment date was used as the date of
report. All ICD10 codes were truncated to 3-digit codes. We excluded ICD10 codes describing
generic symptoms rather than disease entities (codes beginning R-Z). For each ICD10 code
and each participant, we determined the presence/absence of the ICD10 code (in any health
records), the data sources supporting the presence of the code, and the earliest recorded code.
When determining the earliest reported code we excluded codes which encode 'special dates' in
electronic healthcare records (placeholders for missing data) - 1/1/1860, 30/12/1899,
31/12/1899, and 1/1/1900. Similarly to UKB, we derived the 'source of first report' field by taking
the earliest reported source for the ICD code and specifying whether other data sources
supported the code. e.g. if an individual has a diagnostic code for G35 in primary care records
and Barts Health data, with the first primary care code being recorded earlier, their 'source of
first report of G35' value would be 'Primary care and other sources'. For simplicity, we grouped
data sources into 'secondary care', 'primary care', and 'mortality'.

Overall, we successfully mapped data for 46,279 unique NHS numbers, 1,926 unique 3-digit
ICD10 codes, and 2,976,436 individual diagnoses.
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