Pharmacokinetics of Cannabidiol: A systematic review and meta-regression analysis

Running title: CBD pharmacokinetics

Ehsan Moazen-Zadeh^{1,2}, Alexandra Chisholm^{1,2,3}, Keren Bachi^{1,2,4}, Yasmin L. Hurd^{1,2,3,4}

¹Departments of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
²Addiction Institute, Mount Sinai Behavioral Health System, New York, NY, USA.
³Department of Neuroscience, Icahn School of Medicine at Mount Sinai, Addiction Institute, Mount Sinai Behavioral Health System, New York, NY, USA.
⁴Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA.

Corresponding author: Yasmin Hurd, Hess Center for Science and Medicine Building 10th, Floor Room 105 Officem,1470 Madison Avenue, Box 1639, New York, NY 10029-6574. Yasmin.hurd@mssm.edu

Authors' Contributions

E.M.Z., K.B., Y.L.H.: conceptualization; E.M.Z. and A.C.: methodology, data extraction, and quality assessments; E.M.Z.: narrative and quantitative synthesis, and original article draft preparation; and A.C., K.B., and Y.L.H. edited the article. All authors have read and agreed to the final version of the article.

Keywords: pharmacokinetics; cannabidiol; cannabis; clinical trials; bioavailability

Abstract

Background: In this review, we provide an updated assessment of available evidence on the pharmacokinetics (PK) of cannabidiol (CBD) and explore the impact of different factors on PK outcomes.

Materials and Methods: This systematic review and meta-regression analysis was preregistered (PROSPERO: CRD42021269857). We systematically searched Medline, Embase, PsychInfo, and Web of Science Core Collection up to November 19, 2022. Trials of CBD in healthy adults were included if they reported at least one of the PK parameters of interest, including Tmax, Cmax, AUC0-t, AUC0-inf, and $T_{1/2}$, in serum or plasma. Studies of patient populations or CBD co-administration with other medications were excluded. The *National Heart, Lung, and Blood Institute's Quality Assessment Tool for Before-After Studies with no Control Group* was used. Random-effects multivariable meta-regression analysis was conducted.

Results: A total of 112 trial arms from 39 studies were included; 26 trial arms had a "Good" quality, 70 "Fair," and 16 "Poor." Eight arms used inhalation CBD, 29 oromucosal, 73 oral, and 2 intravenous. CBD formulations could be categorized to nanotech (n=14), oil-based (n=21), alcohol-based (n=10), water-based (n=12), Sativex (n=17), and Epidiolex (n=22). For single-dose studies, CBD doses ranged between 2-100mg in inhalation, 5-50mg in oromucosal, and 0.42-6000mg in oral administration. Sixty-six trial arms had only male participants or a higher number of males than females. The duration of the PK session was between 4h-164h. A higher CBD dose was associated with higher Cmax, AUC0-t, and AUC0-inf. Compared to oral administration, oromucosal administration was associated with lower Cmax, AUC0-t, and AUC0-inf. Fed status was associated with higher Cmax and AUC0-t when compared to the fasting status. A higher ratio of female participants was associated with lower Tmax in oral administration and higher Cmax.

Conclusion: As expected, CBD dose, route of administration, and diet were major determinants of CBD pharmacokinetics with oral routes providing higher bioavailability and nanotechnology formulations a faster onset. Though CBD appeared to have a faster onset and longer duration in females, more studies are required to delineate the role of biological sex. Factors that influence CBD PK have implications for medication development and appropriate dosing in clinical practice.

Introduction

Cannabidiol (CBD), a cannabinoid constituent of the cannabis plant, has exponentially gained attention in both research and clinical applications as a potential treatment of several neuropsychiatric and general medical conditions ¹. Epidiolex® was the first FDA-approved plant-derived CBD medication. Today, many CBD-based formulations are in development aiming for FDA approval and numerous non-approved CBD preparations are available over the counter often implying beneficial 'medicinal' properties ². However, many questions raised by clinicians, researchers and consumers of CBD products often relates to dosing and administration.

Pharmacokinetics (PK) is fundamental to medication development and guides appropriate dosing to achieve clinical effectiveness. Important factors normally considered for medication development include the route of administration and bioavailability. Keeping in line with the route of administration most preferred for medicinal purposes, the majority of CBD products currently available are for oral use. However, similar to other cannabinoids, CBD generally has poor bioavailability when consumed orally³. That challenge has sparked a growth in the industry for the development of new nanotechnologies to improve bioavailability, thus increasing the diversity of formulations and delivery systems being used. There are now multiple CBD products being investigated in clinical studies with varying routes of administration, formulations and administration conditions. Data generated from such studies should help to shed significant light on CBD PK parameters relevant to identifying those products potentially most suitable for subsequent trials regarding CBD's pharmacodynamic properties to alleviate specific clinical conditions. However, one of the major challenges across studies and even in previous reviews has been the incomparability of outcomes across different CBD PK studies due to the different units and scales of reporting PK parameters, mainly geometric versus arithmetic scales ³. While both scales have been commonly used in reporting PK data, they are not readily or precisely convertible which contributes to confusion regarding PK outcomes. Of the scales, geometric method is preferred for reporting certain PK parameters due to its greater robustness ⁴. No study has yet integrated the various CBD PK data on one scale.

In this review, we aimed to provide an updated systematic assessment of available evidence on the PK of CBD, covering recently published studies that were not included in previous reviews; provide comparable values of PK parameters from different studies on the same scale, and demonstrate patterns in outcomes based on the CBD dose and route of administration; and explore the simultaneous impact of different factors on PK outcomes using meta-regression models.

Materials and Methods

Protocol

This systematic review and meta-regression analysis was pre-registered on PROSPERO (<u>https://www.crd.york.ac.uk/prospero/</u>, ID: CRD42021269857) and conducted in accordance with PRISMA guidelines as much as it applied to pharmacokinetic studies.

Research objectives and outcomes

This review systematically assessed PK studies of CBD (pure CBD or in combination with THC) in healthy adults for both the quality of the studies and PK outcomes. The primary outcome was patterns of PK parameters of interest classified based on the route of entry and CBD dose to find potential meaningful patterns in outcomes that could help predict the PK of CBD relevant for clinical applications. The secondary outcome was the statistical significance level for each of the variables/factors that could potentially influence PK parameters, based on the available literature resulting from meta-regression models.

There were five PK parameters of interest:

- 1. Tmax: time from CBD administration to the maximum concentration of CBD in plasma/serum
- 2. Cmax: maximum concentration of CBD in plasma/serum
- 3. AUC0-t: the area under the curve of serum/plasma concentrations plotted against time from CBD administration to a specific time-point, usually the end of the PK session
- 4. AUC0-inf: the extrapolation of AUC0-t to the infinity time point
- 5. Half-life, $t_{1/2}$: the time needed for the concentration of the drug in the plasma to be reduced by 50%.

Potential variables of interest were: route of administration, CBD dose, CBD formulation, dietary (fasting/fed) status before CBD administration, abstinence from cannabis before CBD administration, sex, and duration of the PK session ^{3,5,6}.

Inclusion/exclusion criteria

Trials of any design were considered for inclusion if conducted on healthy adults (age between 18 to 65 years) and reported at least one of the PK parameters of interest after CBD administration in serum or plasma. CBD could be administered in any form, through any entry route, in any formulation or product. Studies were excluded if there was a history of major psychiatric disorders or general medical conditions in the sample, or if CBD was co-administered with another medication.

Search strategy

We systematically searched Medline, Embase, PsychInfo, Web of Science Core Collection, LILACS, and OpenGrey from inception to September 19, 2021, and in the case of Google Scholar, for the first 200 citations, using the following search terms: [Title/abstract→ (CBD OR cannabidiol OR Sativex OR Epidiolex)] AND [Title/abstract→ (pharmacokinetic OR concentration OR serum OR plasma OR blood)]. The above search was systematically updated on November 19, 2022 to cover publications since 2021 to date. Search terms were in English, but no language or publication period restriction was applied. Appropriate special characters/suffixes were used to search for any extension of the above terms. After the systematic search and screening, previous reviews of PK studies on CBD were searched manually for relevant original studies in addition to the reference lists of original articles published in the past 5 years. Experts in the field were consulted to seek any missed literature that could be included.

Study selection and data extraction

Two doctorate-level authors were co-trained and calibrated for the screening and data extraction on a sample of CBD PK studies. Any discrepancy would be discussed and resolved between the two screeners and the senior author at each stage. Conference abstracts and thesis reports were also included if the minimum required data was reported. Title-abstract and full-text screening were carried out in parallel using EndNote v. 9 (Cleverbridge, Inc., USA). Data extraction was carried out by one of the two authors, and then all the data was checked against the original source for accuracy by the other author. Microsoft Excel sheets with predefined columns were used for extracting data, including but not limited to full citation details, study design, participants' age/sex/health status, sample size and dropouts, cannabis use pattern and abstinence status, fast/fed status before CBD administration, CBD source/supplier, details of CBD formulation, route of administration, CBD dosing, duration of the study session, values of any reported PK parameter in their original format, any relevant considerations of statistical methods, and finally any other relevant methodological information. Published papers, supplementary material, and pharmaceutical providers' websites were all used to collect relevant information, and in some cases, authors were contacted to obtain further details.

CBD formulation determination

CBD formulations were determined using three primary factors. First, when a patent was held and the specific ingredients were not provided in the methodology section for each study, a CBD sample would be designated as its own formulation (i.e., Epidiolex or Sativex). Second, when a methodology section indicated that the solution used a specific technology type (e.g., nanoparticle), these solutions were determined to be their own formulation. Third, when a study provided specific ingredients in the methodology section, the main base of the solution was determined to categorize different CBD formulation types. For example, most formulations consist mainly of oil-based, ethanol-based, gelatin-based, or water-based solutions. All CBD solutions were categorized using these three factors.

Quality assessment

The two authors who carried out the screening and data extraction also conducted a parallel quality assessment of all the studies. Any differences in ratings would be discussed and resolved between the two screeners and the senior author. Given the lack of a widely-accepted quality assessment tool for PK studies, the US National Heart, Lung, and Blood Institute Quality Assessment Tool for Before-After Studies with no Control Group was deemed the best choice ⁷. The tool consists of 12 items assessing different aspects of before-after studies, from the clarity of the study question to the very end analysis. Each item is rated as Yes, No, Cannot Determine (CD), or Not Reported (NR). Specifically for the sample size question (Q5), a sample of >19 was considered as "Yes," <10 was considered "No," and in between was rated as "CD" ⁸. The assessor assigned an overall rating to each study as Poor, Fair, or Good. Toward a more precise and replicable application of this tool for PK studies, the authors weighted some items and developed a stratification strategy for overall rating, which can be found in supplementary material Section A.

Narrative synthesis

Study characteristics were organized, summarized, and presented separately for each trial arm in Table 1 in the order of date of publication. Similarities and differences among trial arms were described, including characteristics of the population such as sex, cannabis use, study design, diet status, CBD formulations, CBD dose, and reported outcomes. Numerical values of PK parameters were presented in Supplement Table 1 and described in the quantitative synthesis section.

Statistical analyses

To make between-study comparisons and meta-regression analysis feasible, the reported values for PK parameters went through two steps of conversion/estimation, using online calculators and SPSS v. 28 (IBM Statistics, USA). In the first step, values were converted into a unified form consisting of hours for Tmax and $T_{1/2}$, ng/mL for Cmax, h*ng/mL for AUC0-t and AUC0-inf. In the second step, we converted the values for Tmax and $T_{1/2}$ into arithmetic mean [standard deviation (SD)] format and all the values for Cmax, AUC0-t, and AUC0-inf in geometric mean [coefficient of variation (CV%)] format as the preferred method for reporting of PK parameters ⁴. This was carried out because Cmax, AUC0-t, and AUC0-inf are usually highly variable and skewed, so a geometric scale is preferrable. In contrast, Tmax and $T_{1/2}$ are less variable and an arithmetic scale is an acceptable method which also would require less conversions in this review thus allowing for higher accuracy. For the linear meta-regression analysis, confidence intervals were estimated and log-transformed for every parameter's values as necessary. Step 2 conversions are based on previously published methods and the latest guidelines ⁹⁻¹¹, summarized and simplified in the supplementary material Section B to help with utilization in other PK reviews and replicability of this work. Missing data were addressed as follows: (1) if the mean or median was not reported for a specific PK parameter, it was considered missing and was not imputed; and (2) if no measure of distribution (e.g. SD or CV%) was reported for a PK parameter, but the mean or median was reported, the SD (for Tmax and T_{1/2}) or CV% (for Cmax, AUC0-t, AUC0-inf) was imputed using the largest SD or CV% value available for that parameter among all single-dose trial arms.

Comprehensive Meta-Analysis v. 3 (Biostat Inc., USA) software was used for randomeffects multivariable meta-regression analysis, with PK parameters as dependent outcomes and route of administration, CBD dose, diet status, CBD formulation, female ratio, and duration of PK session as independent predictors. Details of considerations for modeling are provided in the supplementary material Section C. Overall, three groups of models were built for each PK parameter across single-dose trial arms: (1) models including all the three routes of CBD administration (inhalation, oromucosal, and oral); (2) models including only oromucosal and oral trial arms; and (3) models including only oral CBD trial arms. For sensitivity analysis, models were conducted once with all the single-dose trial arms irrespective of the quality rating and then a second time only including trial arms with a "Good" or "Fair" quality rating. For each model, the number of included arms was reported alongside the R-squared value to measure model fit, indicating the amount of variability in the data that the model could explain. For each variable in the model, the significance level (alpha=0.05) and the positive or negative sign of the regression coefficient were reported to indicate a positive or negative association, respectively. Since models were based on log-transformed data, the net regression coefficient values were not interpretable in terms of effect size, and thus only their positive/negative sign was reported.

Results

Study selection and overview

After processing all the retrieved records, 39 studies comprising 112 trial arms were included in the narrative synthesis ¹²⁻³⁸,³⁹⁻⁵⁰ out of which 35 studies comprising 92 arms were used for quantitative comparisons and regression analysis (Figure 1). Out of the 20 trial arms that were excluded from the analysis, but included in the narrative synthesis, 15 trial arms administered multiple doses of CBD (Table 1), two arms had only one participant ²⁴, two arms were intravenous administration of CBD ^{32,50}, and PK values was not reported for one trial arm ¹³.

Quality assessment

Twenty-six trial arms were rated as "Good," 70 as "Fair," and 16 as "Poor" based on 12 criteria (Q1-Q12) (Table 2). Most studies clearly stated the study question (Q1), described eligibility criteria (Q2) and had a representative sample in terms of inclusion/exclusion criteria (Q3). At the same time, they mostly failed to report whether all the eligible potential participants were included (Q4), and most had either moderate or low sample sizes (Q5), which was an essential consideration for rating. The intervention was well described in most studies (Q6), and PK outcomes were well-defined and consistently assessed (Q7). The majority of trial arms were non-double-blind (Q8). Subject loss at follow-up (Q9) was reported in most studies. Statistical methods primarily measured before-after changes (Q10), for multiple times (Q11), except in some cases where it was not clearly stated. All studies were conducted at the individual participant level with no group interventions applicable to any of the studies (Q12).

Narrative synthesis

Thirty studies had more than one treatment arm, out of which 22 studies, comprising 69 arms, had cross-over designs with washout periods ranging between 24h to 21days (Table 1). Seventeen studies, comprising 42 arms, had at least one double-blind arm. Sixty-six trial arms had either only male participants or a higher number of males than females, while the sex ratio was either equal to one or favored females in 36 arms. Participants' sex was not clearly reported for 10 arms. Participants were abstinent from cannabis before study initiation in 105 arms and had fasted before CBD administration in 63 arms. Eight arms used inhalation as the route of administration, 29 oromucosal, 73 oral, and 2 intravenous. A variety of formulations were used consisting of nanotech (n=14), oil-based (n=21), alcohol-based (n=10), and water-based (n=12), alongside Sativex (n=17) and Epidiolex (n=22) formulations. For single-dose studies, CBD doses ranged between 2-100mg in inhalation, 5-50mg in oromucosal, and 0.42-6000mg in oral administration (Table 1). The duration of the PK session was between 4-164 h. All trial arms reported Tmax and Cmax except one that did not report any values, 96 reported AUC0-t, 59 reported AUC0-inf, and 60 reported $T_{1/2}$. Only 22 treatment arms from four studies reported Cmax and AUC in geometric scale (Supplement Table1 and Supplement Showcase). At least one PK parameter from each and all treatment arms needed to go through second step conversions to geometric values in order to conform to the reporting format in Supplement Table 1.

Quantitative synthesis

Reported PK Values

Given the large variability of the doses studied, Table 3 provides a summary of the PK parameters for doses consisting of more than 2 trials. Suppl Table 1 presents the PK parameters from all single-dose trial arms. Figure 2 demonstrates the PK parameters in order of increasing CBD dose for all the trial arms. Suppl Figure 1 is a magnified version of Figure 2 for CBD doses equal or less than 100mg. Among single-dose trial arms, the arithmetic mean Tmax ranged between 0.00-0.60 h for inhalation, 1.00-5.01 h for oromucosal, and 0.59-10.45 h for oral administration (Suppl Table1, Figure 2). Geometric mean Cmax ranged between 0.42-120.77 ng/mL for inhalation, 0.38-12.90 ng/mL for oromucosal, and 0.22-1628 ng/mL for oral administration. Geometric mean AUCO-t ranged between 6.18-76.77 h*ng/mL for inhalation, 0.69-61.64 h*ng/mL for oromucosal, and 0.47-9390.94 h*ng/mL for oral administration. The geometric mean AUCO-inf was 9.03 for the only inhalation study that reported this parameter, ranging between 1.59-70.98 h*ng/mL for oromucosal and 3.32-8669 h*ng/mL for oral administration. The arithmetic mean T_{1/2} ranged between 1.10-31.00 h for inhalation, 1.44-10.86 h for oromucosal, and 1.09-70.3 h for oral administration.

Meta-regression analysis

Overall, out of a total number of 92 trial arms that were included in analysis, 88 were used in regression models for Tmax, 86 for Cmax, 78 for AUC0-t, and 53 for AUC0-inf and $T_{1/2}$. The amount of variability in the data that the models could explain (R^2) ranged between 0-83% for Tmax, indicating a very low to high model fit, 41-49% for Cmax, indicating a moderate fit, 44-52% for AUC0-t indicating a moderate fit, 35-70% for AUC0-inf indicating a low to high fit, and 84-87% for $T_{1/2}$ indicating a high fit. Removing the "Poor" quality trial arms from the models did not result in a noticeable change in model fit or a change in the significance of variables.

Higher CBD dose was consistently associated with higher Cmax, AUC0-t, and AUC0-inf across all models (Table 4; Figure 2; Suppl Figure 1). Compared to oral administration as a reference, inhalation was associated with lower Tmax in a poorly-fitted model (Table 4, Model# 1,2), but did not show any significant difference for Cmax (Model# 7,8), AUC0-t (Model# 13,14), or AUC0-inf (Model#19). In addition, compared to oral administration as a reference, oromucosal administration was associated with lower Cmax (Model# 7-10), AUC0-t (Model# 13-16), and AUC0-inf (Model#19,20), but there was no significant difference for Tmax (Model# 1-4). Compared to the Epidiolex formulation as a reference, nanotech and oil-based formulations were associated with a lower Tmax (Model#5,6). Fed status was associated with higher Cmax (Model# 9-12) and AUC0-t values for both oromucosal and oral administration models (Model#15-18) compared with the fasting status. No significant association of fed status was observed with either Tmax (Model# 3-6) or AUC0-inf (Model#20-21). A higher ratio of female participants in the sample was associated with lower Tmax (Model# 5,6) and higher T_{1/2} (Model# 25) only among oral administration arms. A higher ratio of female participants was also associated with higher Cmax (Model# 9-12) in all models.

of female/total ratio with AUC0-t (Model#13-18) or AUC0-inf (Model# 19-21). Finally, longer study duration was associated with higher AUC0-t only in the regression models that included all routes of administration (Model# 13,14), and higher AUC0-inf and $T_{1/2}$ in all the regression models (Model# 19-25).

Discussion

In this review, we aimed to provide an updated systematic assessment of available evidence on the PK of CBD, provide comparable PK parameters from different studies on the same scale, and explore the impact of different relevant factors on PK outcomes. There was considerable heterogeneity in the available PK data for CBD both in terms of the study conduct and reported outcomes. Nevertheless, despite the heterogeneity and quality aspects, several meaningful patterns emerged for factors expected to influence the pharmacokinetic outcomes of CBD including the route of administration, dose, formulation, diet status, sex ratio, and study duration.

For the parameters related to bioavailability, i.e. Cmax, AUC0-t, AUC0-inf, it appeared that inhalation and oral administration had comparable outcomes. However, oromucosal administration consistently resulted in a lower bioavailability than oral administration, which is in line with a previous systematic review ³ and some of the within-study comparisons using a similar dose for both routes of administration ^{31,35}. There are though other within-study comparisons indicating that bioavailability was comparable between oral and oromucosal administration ¹⁶, or that oral administration resulted in lower bioavailability ⁴⁹. Different CBD formulations for oral and oromucosal administration could potentially explain these within-study inconsistencies, at least in part. However, due to the low CBD doses used particularly in oromucosal trial arms, comparability is limited and reliable interpretation warrants additional studies. Regarding rate of absorption, as would be expected, inhalation resulted in the lower Tmax/ faster absorption compared to oral administration regarding absorption rate, which is in line with a previous systematic review ³ as well as some of the direct within-study comparisons 16,31,35.

Given the general low bioavailability of oral administration of cannabinoids, recent years have seen an increase in CBD nanoformulations in hope of increasing absorption and bioavailability through the oral and oromucosal administration routes. In the regression models for Tmax, model fit was noticeably improved by accounting for formulation. Nanotech and oilbased formulations were associated with lower Tmax than the Epidiolex formulation indicating that they would have a faster onset of action. To our knowledge, there has been no published direct side-by-side comparison of Epidiolex with nanotech or oil-based formulations. In this review, due to the methodological considerations that are discussed in the statistics section and supplementary methods, only certain formulations could be included in the regression models for Tmax. Therefore, we could not explore other formulations or other PK parameters, thus limiting interpretation of different formulations on their comparable bioavailability for CBD.

As expected, higher CBD dose was consistently associated with higher bioavailability in all the models for Cmax, AUC0-t, and AUC0-inf. The information provided in Table 3 and Figure 2 serve as a useful reference to help predict CBD dose to reach a certain serum level and potential clinical effect for specific conditions. While various CBD formulations have been used in lower doses, all the studies with a CBD dose of >100mg were only conducted with Epidiolex. As such, there is still a lack of PK information about CBD doses expected to be more aligned with a 'medicinal' range.

Food consumption can influence bioavailability of many medications, especially lipophilic compounds like CBD through increased transit time and lymphatic absorption in the intestines. We observed that fed condition was associated with a higher bioavailability of CBD, but had no significant impact in the time to reach maximum serum concentrations, compared to the fasted status. Specifically, we observed a higher Cmax and AUC0-t across all the models for fed condition compared to fast status, which is in line with within-study direct comparisons ^{12,19,34,40}. The lack of a significant effect of diet status on Tmax, is in line with two multiple-arm comprehensive studies ^{19,34}, but inconsistent with two other studies where Tmax was considerably longer in the fed group ^{12,40}. Although we would expect a significant effect of diet on AUC0-inf, both theoretically and based on within-study comparisons ^{19,34,40}, we did not detect such an effect in our models. This could be in part attributed to the lower number of studies that reported AUC0-inf and thus lower power of these models.

The importance of sex for drug bioavailability and clearance could also have significant implications, including a probably lower required dose of CBD in females to reach a certain blood level and clinical effect. There are noted sex differences in CYP450 family of enzymes which contribute to the metabolism of CBD ⁵¹. Also the literature suggests slower clearance in females compared to males ^{52,53}. We found that for the PK studies in which sex ratio was reported, a higher female ratio was associated with a faster absorption and higher maximum concentrations through oral administration, evident with lower Tmax and higher Cmax respectively. These findings are consistent with direct within-study CBD PK comparisons showing higher Cmax and lower Tmax in female participants compared with males ^{26,45}. A recent PK study with very low doses of CBD reported no effect for sex on Tmax, but female sex was associated with significantly higher Cmax and AUC0-t ¹⁴. A higher Cmax and lower T_{1/2} with oral administration would mathematically be expected to be associated with a higher AUC0-t and AUC0-inf and also in line with direct within-study sex comparisons ^{14,26,45}. However, this relationship was not evident in our analysis perhaps due to the few studies

conducted with females. Well-powered studies with clinically relevant higher doses in males and females are still needed.

As expected, duration of PK session was a determinant of overall bioavailability and clearance of CBD with implications for designing future studies. A longer duration of PK session was associated with a higher AUC0-inf in all models, and a higher AUC0-t in models that included data from all routes of administration of CBD. A higher duration of the PK session was also consistently associated with a longer $T_{1/2}$ across all models. In line with this later finding, the literature suggests that cannabinoids in humans may need extended durations to adequately determine cannabinoid half-lives, given that the terminal half-life of cannabinoids is longer than the initial half-life ⁶. Indeed, half-lives of longer than 60h were reported for Epidiolex with a PK duration of 168h ²³.

Certain study characteristics could limit cross-study comparisons, including different reporting scales, considerable heterogeneity of study conditions, and lack of clarity in details of some formulations, particularly for commercialized products. Presence of other cannabinoids in the preparations is also an important consideration. For example, THC could hypothetically influence CBD PK at the level of shared metabolic pathways, although, to the best of authors' knowledge, there are no human PK study to date that has systematically compared CBD bioavailability with and without THC. In addition, CBDA in some of the preparations could readily convert to CBD in the human body and alter pharmacokinetic outcomes. There were also certain limitations related to the methods of this review. Comprehensive quality assessment of PK studies requires a specifically designed assessment tool beyond the ones used for general before-after studies. Although there have been efforts to introduce such quality assessment tools ⁵⁴, there is still no commonly accepted one available. In addition to the items covered by the NIHLB tool, pre-registration of study protocol as a clinical trial, the potential effect of other constituents of the administered product on the PK outcomes, sufficient length of study, accounting for the potential effect of important covariates like sex and body mass, would be important considerations. In regard to the statistical methods, the log-transformed regression coefficients could not be interpreted in terms of effect size, limiting our prediction of each factor's impact on PK parameters. Finally, we did not include the PK outcomes of CBD metabolites reported by some of the included studies since it metabolism is affected by multiple factors thus requiring a focused and extensive exploration that was outside the scope of this review. Understanding the pharmacokinetics of CBD metabolites can provide further insights into the CBD half/life and sex differences.

Conclusion

We provided an updated overview of the current status of evidence of pharmacokinetics of CBD. In exploring how different factors potentially influenced the PK outcomes of CBD, consuming

food while taking CBD, female sex, and oral administration were associated with higher bioavailability. Recommendations for future research would mainly concern conducting original systematic studies to elucidate the impact of biological sex and different formulations in single studies with multiple arms. It would also be beneficial for future studies to examine clinically relevant doses of CBD, e.g., >200mg, given the increasing number of such preparations on the market and their potential application in clinical practice. Finally, reporting PK parameters in both arithmetic and geometric scales would help improve comparisons across studies and would also enhance knowledge aggregation and replicability.

Acknowledgements

None

Author Disclosure Statement

Authors have no conflicts or competing interests to disclose.

Funding Information

Authors were supported by National Institutes of Health NIDA UG3DA050323 and K23-DA045928.

Supplementary Material

Supplementary methods, sections A-C Supplementary Table 1 Supplementary Figure 1

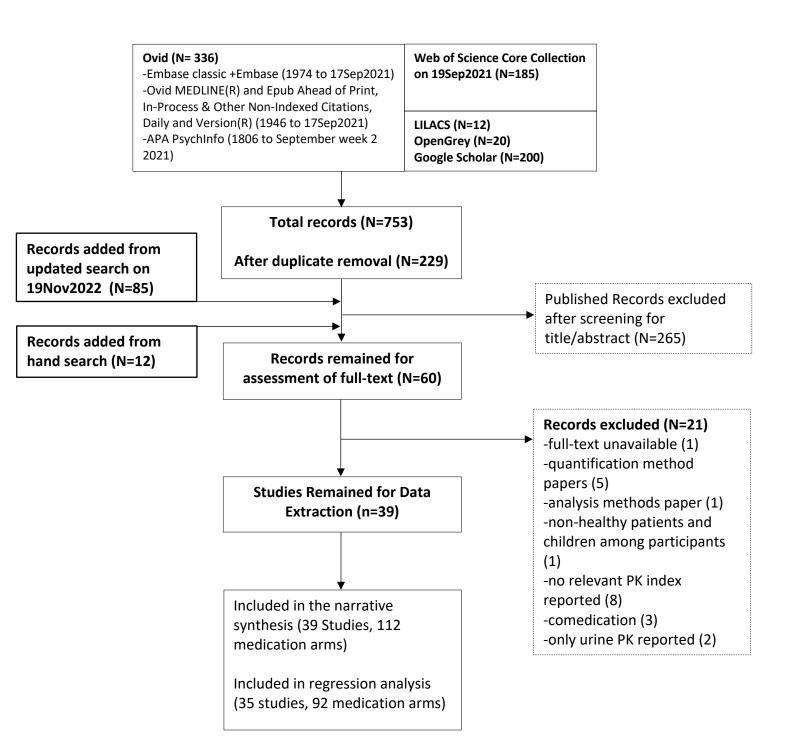
Figure Legends

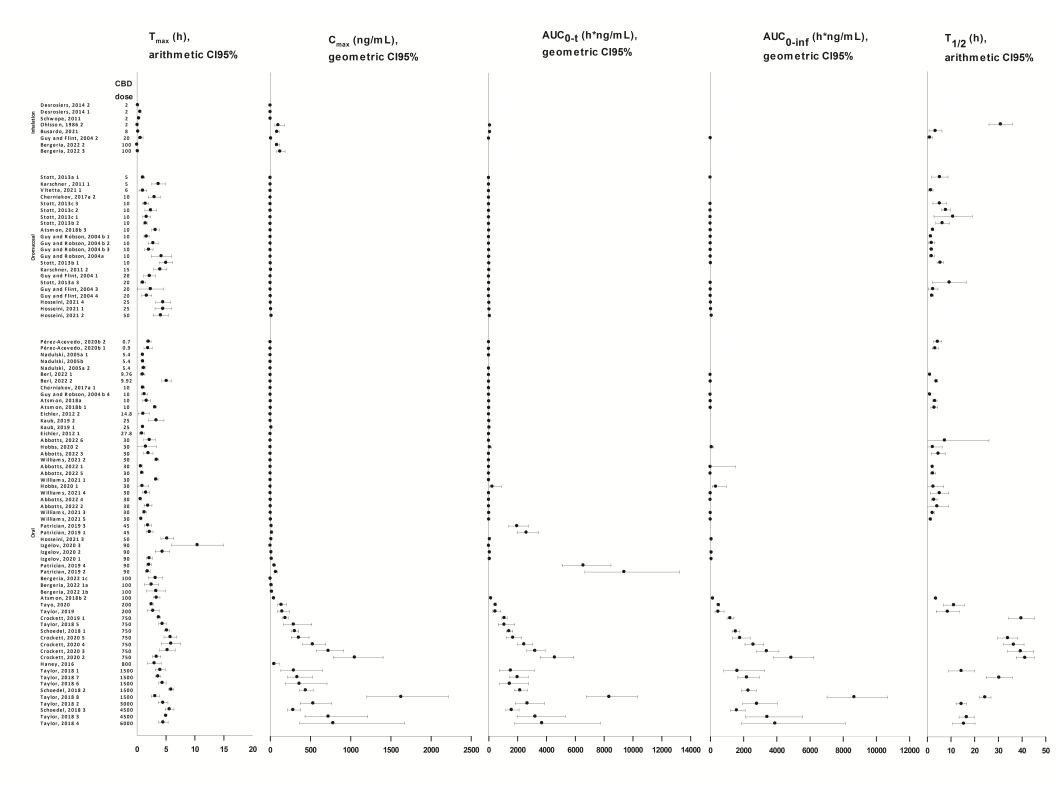
Figure 1. PRISMA flow diagram

Figure 2. Pharmacokinetic parameters of single dose cannabidiol studies in increasing order of

CBD dose.

References


- 1. VanDolah HJ, Bauer BA, Mauck KF. Clinicians' guide to cannabidiol and hemp oils. Mayo Clin Proc. 2019;94:1840-1851.
- WHO. CANNABIDIOL (CBD) Critical Review Report. WHO Fortieth Meeting, Geneva, 4-7 June 2018;
- 3. Millar SA, Stone NL, Yates AS, et al. A systematic review on the pharmacokinetics of cannabidiol in humans. Front Pharmacol 2018;9:1365.
- 4. Julious SA, Debarnot CA. Why are pharmacokinetic data summarized by arithmetic means? J Biopharm Stat 2000;10:55-71
- 5. Lucas CJ, Galettis P, Schneider J. The pharmacokinetics and the pharmacodynamics of cannabinoids. Br J Clin Pharmacol 2018;84:2477-2482.
- 6. Huestis MA. Human cannabinoid pharmacokinetics. Chem Biodivers 2007;4:1770-1804.
- National Heart L, Institute B. Study Quality Assessment Tools: for Observational Cohort and Cross-Sectional Studies, for Before-After (Pre-Post) Studies With No Control Group, for Case-Control Studies. Maryland, USA Im Internet (Stand: 1001 2019): www nhlbi nih gov/health-topics/study-quality-assessment-tools 2019;
- 8. Aarons L, Ogungbenro K. Optimal design of pharmacokinetic studies. Basic Clin Pharmacol Toxicol 2010;106:250-255.
- 9. Wan X, Wang W, Liu J, et al. Estimating the sample mean and standard deviation from the sample size, median, range and/or interquartile range. BMC Med Res Methodol 2014;14:135.
- 10. Higgins JP, White IR, Anzures-Cabrera J. Meta-analysis of skewed data: combining results reported on log-transformed or raw scales. Stat Med 2008;27:6072-6092.
- 11. Higgins JPT TJ, Chandler J, Cumpston M, Li T, Page MJ, Welch VA (editors). Cochrane Handbook for Systematic Reviews of Interventions version 6.3 (updated February 2022). Cochrane Available from www.trainingcochraneorg/handbook 2022;
- 12. Abbotts KSS, Ewell TR, Butterklee HM, et al. Cannabidiol and Cannabidiol Metabolites: Pharmacokinetics, Interaction with Food, and Influence on Liver Function. Nutrients 2022;14:2152.
- Bergeria CL, Spindle TR, Cone EJ, et al. Pharmacokinetic Profile of ∆9-Tetrahydrocannabinol, Cannabidiol and Metabolites in Blood following Vaporization and Oral Ingestion of Cannabidiol Products. J Anal Toxicol 2022;46:583-591.
- Berl V, Hurd YL, Lipshutz BH, et al. A Randomized, Triple-Blind, Comparator-Controlled Parallel Study Investigating the Pharmacokinetics of Cannabidiol and Tetrahydrocannabinol in a Novel Delivery System, Solutech, in Association with Cannabis Use History. Cannabis Cannabinoid Res 2022;7:777-789.


- 15. Busardò FP, Pérez-Acevedo AP, Pacifici R, et al. Disposition of phytocannabinoids, their acidic precursors and their metabolites in biological matrices of healthy individuals treated with vaporized medical cannabis. Pharmaceuticals 2021;14:59.
- 16. Hosseini A, McLachlan AJ, Lickliter JD. A phase I trial of the safety, tolerability and pharmacokinetics of cannabidiol administered as single-dose oil solution and single and multiple doses of a sublingual wafer in healthy volunteers. Br J Clin Pharmacol 2021;87:2070-2077.
- 17. Vitetta L, Butcher B, Henson JD, et al. A pilot safety, tolerability and pharmacokinetic study of an oro-buccal administered cannabidiol-dominant anti-inflammatory formulation in healthy individuals: A randomized placebo-controlled single-blinded study. Inflammopharmacology 2021;29:1361-1370.
- 18. Williams NNB, Ewell TR, Abbotts KSS, et al. Comparison of five oral cannabidiol preparations in adult humans: pharmacokinetics, body composition, and heart rate variability. Pharmaceuticals 2021;14:35.
- 19. Crockett J, Critchley D, Tayo B, et al. A phase 1, randomized, pharmacokinetic trial of the effect of different meal compositions, whole milk, and alcohol on cannabidiol exposure and safety in healthy subjects. Epilepsia 2020;61:267-277.
- 20. Hobbs JM, Vazquez AR, Remijan ND, et al. Evaluation of pharmacokinetics and acute anti-inflammatory potential of two oral cannabidiol preparations in healthy adults. Phytother Res 2020;34:1696-1703.
- 21. Izgelov D, Davidson E, Barasch D, et al. Pharmacokinetic investigation of synthetic cannabidiol oral formulations in healthy volunteers. Eur J of Pharm Biopharm 2020;154:108-115.
- 22. Pérez-Acevedo AP, Pacifici R, Mannocchi G, et al. Disposition of cannabinoids and their metabolites in serum, oral fluid, sweat patch and urine from healthy individuals treated with pharmaceutical preparations of medical cannabis. Phytother Res 2021;35:1646-1657.
- 23. Perkins D, Butler J, Ong K, et al. A phase 1, randomised, placebo-controlled, dose escalation study to investigate the safety, tolerability and pharmacokinetics of cannabidiol in fed healthy volunteers. Eur J Drug Metab Pharmacokinet 2020;45:575-586.
- 24. Pichini S, Mannocchi G, Gottardi M, et al. Fast and sensitive UHPLC-MS/MS analysis of cannabinoids and their acid precursors in pharmaceutical preparations of medical cannabis and their metabolites in conventional and non-conventional biological matrices of treated individual. Talanta 2020;209:120537.
- 25. Tayo B, Taylor L, Sahebkar F, et al. A phase I, open-label, parallel-group, single-dose trial of the pharmacokinetics, safety, and tolerability of cannabidiol in subjects with mild to severe renal impairment. Clin Pharmacokinet 2020;59:747-755.
- 26. Knaub K, Sartorius T, Dharsono T, et al. A novel self-emulsifying drug delivery system (SEDDS) based on VESIsorb® formulation technology improving the oral bioavailability of cannabidiol in healthy subjects. Molecules 2019;24:2967.

- 27. Morrison G, Crockett J, Blakey G, et al. A phase 1, open-label, pharmacokinetic trial to investigate possible drug-drug interactions between clobazam, stiripentol, or valproate and cannabidiol in healthy subjects. Clin Pharmacol Drug Dev 2019;8:1009-1031.
- 28. Patrician A, Versic-Bratincevic M, Mijacika T, et al. Examination of a new delivery approach for oral cannabidiol in healthy subjects: a randomized, double-blinded, placebo-controlled pharmacokinetics study. Adv Ther 2019;36:3196-3210.
- 29. Taylor L, Crockett J, Tayo B, et al. A phase 1, open-label, parallel-group, single-dose trial of the pharmacokinetics and safety of cannabidiol (CBD) in subjects with mild to severe hepatic impairment. J Clin Pharmacol 2019;59:1110-1119.
- 30. Atsmon J, Cherniakov I, Izgelov D, et al. PTL401, a new formulation based on pro-nano dispersion technology, improves oral cannabinoids bioavailability in healthy volunteers. J Pharm Sci 2018;107:1423-1429.
- 31. Atsmon J, Heffetz D, Deutsch L, et al. Single-dose pharmacokinetics of oral cannabidiol following administration of PTL101: a new formulation based on gelatin matrix pellets technology. Clin Pharmacol Drug Dev 2018;7:751-758.
- 32. Meyer P, Langos M, Brenneisen R. Human Pharmacokinetics and Adverse Effects of Pulmonary and Intravenous THC-CBD Formulations. Med Cannabis Cannabinoids 2018;1:36-43.
- 33. Schoedel KA, Szeto I, Setnik B, et al. Abuse potential assessment of cannabidiol (CBD) in recreational polydrug users: a randomized, double-blind, controlled trial. Epilepsy Behav 2018;88:162-171.
- 34. Taylor L, Gidal B, Blakey G, et al. A phase I, randomized, double-blind, placebocontrolled, single ascending dose, multiple dose, and food effect trial of the safety, tolerability and pharmacokinetics of highly purified cannabidiol in healthy subjects. CNS drugs 2018;32:1053-1067.
- 35. Cherniakov I, Izgelov D, Barasch D, et al. Piperine-pro-nanolipospheres as a novel oral delivery system of cannabinoids: Pharmacokinetic evaluation in healthy volunteers in comparison to buccal spray administration. J Control Release 2017;266:1-7.
- 36. Haney M, Malcolm RJ, Babalonis S, et al. Oral cannabidiol does not alter the subjective, reinforcing or cardiovascular effects of smoked cannabis. Neuropsychopharmacology 2016;41:1974-1982.
- 37. Desrosiers NA, Himes SK, Scheidweiler KB, et al. Phase I and II cannabinoid disposition in blood and plasma of occasional and frequent smokers following controlled smoked cannabis. Clin Chem 2014;60:631-643.
- 38. Sellers EM, Schoedel K, Bartlett C, et al. A multiple-dose, randomized, double-blind, placebo-controlled, parallel-group QT/QTc study to evaluate the electrophysiologic effects of THC/CBD spray. Clin Pharmacol Drug Dev 2013;2:285-294.
- Stott C, White L, Wright S, et al. A phase I study to assess the single and multiple dose pharmacokinetics of THC/CBD oromucosal spray. Eur J Clin Pharmacol 2013;69:1135-1147.

- 40. Stott C, White L, Wright S, et al. A phase I study to assess the effect of food on the single dose bioavailability of the THC/CBD oromucosal spray. Eur J Clin Pharmacol 2013;69:825-834.
- 41. Stott C, White L, Wright S, et al. A Phase I, open-label, randomized, crossover study in three parallel groups to evaluate the effect of Rifampicin, Ketoconazole, and Omeprazole on the pharmacokinetics of THC/CBD oromucosal spray in healthy volunteers. Springerplus 2013;2:236.
- 42. Eichler M, Spinedi L, Unfer-Grauwiler S, et al. Heat exposure of Cannabis sativa extracts affects the pharmacokinetic and metabolic profile in healthy male subjects. Planta Med 2012;78:686-691.
- 43. Karschner EL, Darwin WD, Goodwin RS, et al. Plasma cannabinoid pharmacokinetics following controlled oral Δ9-tetrahydrocannabinol and oromucosal cannabis extract administration. Clin Chem 2011;57:66-75.
- 44. Schwope DM, Karschner EL, Gorelick DA, et al. Identification of recent cannabis use: whole-blood and plasma free and glucuronidated cannabinoid pharmacokinetics following controlled smoked cannabis administration. Clin Chem 2011;57:1406-1414.
- 45. Nadulski T, Pragst F, Weinberg G, et al. Randomized, double-blind, placebo-controlled study about the effects of cannabidiol (CBD) on the pharmacokinetics of Δ9tetrahydrocannabinol (THC) after oral application of THC verses standardized cannabis extract. Ther Drug Monit 2005;27:799-810.
- 46. Nadulski T, Sporkert F, Schnelle M, et al. Simultaneous and sensitive analysis of THC, 11-OH-THC, THC-COOH, CBD, and CBN by GC-MS in plasma after oral application of small doses of THC and cannabis extract. J Anal Toxicol 2005;29:782-789.
- 47. Guy G, Flint M. A single centre, placebo-controlled, four period, crossover, tolerability study assessing, pharmacodynamic effects, pharmacokinetic characteristics and cognitive profiles of a single dose of three formulations of cannabis based medicine extracts (CBMEs)(GWPD9901), plus a two period tolerability study comparing pharmacodynamic effects and pharmacokinetic characteristics of a single dose of a cannabis based medicine extract given via two administration routes (GWPD9901 EXT). J Cannabis Therapeutics 2004;3:35-77.
- 48. Guy G, Robson P. A phase I, double blind, three-way crossover study to assess the pharmacokinetic profile of cannabis based medicine extract (CBME) administered sublingually in variant cannabinoid ratios in normal healthy male volunteers (GWPK0215). J Cannabis Therapeutics 2004;3:121-152.
- 49. Guy G, Robson P. A Phase I, open label, four-way crossover study to compare the pharmacokinetic profiles of a single dose of 20 mg of a cannabis based medicine extract (CBME) administered on 3 different areas of the buccal mucosa and to investigate the pharmacokinetics of CBME per oral in healthy male and female volunteers (GWPK0112). J Cannabis Therapeutics 2004;3:79-120.

- 50. Ohlsson A, Lindgren JE, Andersson S, et al. Single-dose kinetics of deuterium-labelled cannabidiol in man after smoking and intravenous administration. Biomed Environ Mass Spectrom 1986;13:77-83.
- 51. Soldin OP, Mattison DR. Sex differences in pharmacokinetics and pharmacodynamics. Clin Pharmacokinet 2009;48:143-57.
- 52. Meibohm B, Beierle I, Derendorf H. How important are gender differences in pharmacokinetics? Clin Pharmacokinet 2002;41:329-342.
- 53. Gandhi M, Aweeka F, Greenblatt RM, et al. Sex differences in pharmacokinetics and pharmacodynamics. Annu Rev Pharmacol Toxicol 2004;44:499-523.
- 54. Soliman ABE, Pawluk SA, Wilby KJ, et al. Creation of an inventory of quality markers used to evaluate pharmacokinetic literature: A systematic review. J Clin Pharm Ther 2022;47:178-183.

		M:F	Abstinence status before medication	Diet status	Study Design	Route of administratio n	Technology / formulation	CBD dose mg	Durati on of the PK session	Reported PK parameters
	Arm1	14 M	3 days	Fast	Probably open-label, randomized, crossover (unclear washout)	Oral Solution	Water-based	30, single dose	6	Tmax Cmax AUC0-t AUC0-inf T _{1/2} K _e V _d
	Arm2	14 M	3 days	Fed	Probably single- blinded, randomized, crossover (unclear washout)	Oral Solution	Water-based	30, single dose	6	$Tmax \\ Cmax \\ AUC0-t \\ AUC0-inf \\ T_{1/2} \\ K_e \\ V_d$
Abbott s et al., 2022 ¹²	Arm3	14 M	3 days	Fast	Probably open-label, randomized, crossover (unclear washout)	Oral Oil	Oil-based	30, single dose	6	Tmax Cmax AUC0-t AUC0-inf T _{1/2} K _e V _d
2022	Arm4	14 M	3 days	Fast	Probably open-label, randomized, crossover (unclear washout)	Oral Solution	Water-based	30, single dose	6	$Tmax \\ Cmax \\ AUC0-t \\ AUC0-inf \\ T_{1/2} \\ K_e \\ V_d$
	Arm5	14 M	3 days	Fast	Probably open-label, randomized, crossover (unclear washout)	Oral Solution	Water-based	30, single dose	6	Tmax Cmax AUC0-t AUC0-inf T _{1/2} K _e V _d
	Arm6	14 M	3 days	Fast	Probably open-label, randomized, crossover	Oral Solution	Water-based	30, single dose	6	Tmax Cmax AUC0-t AUC0-inf T _{1/2}

					(unclear washout)					K _e V _d
	Arm1a	3:3	Yes (Urine Negative)	Fed	Double-blind, double- dummy, randomized, cross-over (washout 1 week)	Oral Capsule	Water-based	100, single dose	58	Cmax Tmax
	Arm1b	3:3	Yes (Urine Negative)	Fed	Double-blind, double- dummy, randomized, cross-over (washout 1 week)	Oral Solution	Epidiolex Formulation	100, single dose	58	Cmax Tmax
Berger ia et al.,	Arm1c	3:3	Yes (Urine Negative)	Fed	Double-blind, double- dummy, randomized, cross-over (washout 1 week)	Oral Solution	Water-based	100, single dose	58	Cmax Tmax
2022 ¹³	Arm2	9:9	Yes (Urine Negative)	Fed	Double-blind, double- dummy, randomized, cross-over (washout 1 week)	Inhalation/ Vaporization	N/A	100, single dose	58	Cmax Tmax
	Arm3	9:9	Yes (Urine Negative)	Fed	Double-blind, double- dummy, randomized, cross-over (washout 1 week)	Inhalation/ Vaporization	N/A	100, single dose	58	Cmax Tmax
	Arm4	3:3	Yes (Urine Negative)	Fast	Double-blind, double- dummy, randomized, cross-over (washout 1 week)	Oral Solution	Water-based	100, single dose	58	none

Berl et al.,	Arm1	8:8	30days	Fed	Triple-blind, randomized, parallel group	Oral Solution	Nanotech	9.76, single dose	48	$\begin{array}{c} Tmax\\ Cmax\\ AUC0-t\\ AUC0-inf\\ T_{1/2}\\ K_a\\ t_{lag}\\ \lambda_Z\\ \lambda\\ \end{array}$
2022 ¹⁴	Arm2	7:8	30days	Fed	Triple-blind, randomized, parallel group	Oral Solution	Oil-based	9.92, single dose	48	$\begin{array}{c} Tmax\\ Cmax\\ AUC0-t\\ AUC0-inf\\ T_{1/2}\\ K_a\\ t_{lag}\\ \lambda_Z\\ \lambda\end{array}$
Busardo 2022		12:2	5 days	Fast	open-label, non- randomized, single arm	Inhalation/ Vaporization	N/A	8, single dose	24	Tmax Cmax AUC0-t T _{1/2} Kel
	Arm 1	11:1	6 months	Fast	open-label, randomized, crossover (24h washout)	Oromucosal/ Sublingual	Nanotech	25, single dose	24	Tmax Cmax AUC0-t AUC0-inf CL/F
	Arm 2	11:1	6 months	Fast	open-label, randomized, crossover (24h washout)	Oromucosal/ Sublingual	Nanotech	50, single dose	24	Tmax Cmax AUC0-t AUC0-inf CL/F
Hosseini et al, 2021 ¹⁶	Arm 3	11:1	6 months	Fast	open-label, randomized, crossover (24h washout)	Oral Oil	Oil-Based	50, single dose	24	Tmax Cmax AUC0-t AUC0-inf CL/F
	Arm 4	11:1	6 months	Fast	open-label, randomized, crossover (24h washout)	Oromucosal spray	Sativex Formulation	25, single dose	24	Tmax Cmax AUC0-t AUC0-inf CL/F
	Arm 5	3 total	6 months	Fast	double-blind, randomized,	Oromucosal/ Sublingual	Nanotech	50, multiple dose	12	Tmax Cmax AUC0-t

					placebo- controlled					T _{1/2}
Vitetta et al., 2021	Arm 1	11 total (25 % male in the origi nal sam ple)	Yes (Urine Negative)	Fast	single-blind, randomized placebo- controlled	Oromucosal spray buccal	Nanotech	6, single dose	12	Tmax Cmax AUC0-t T _{1/2} CL/F
17	Arm 2	12 total (25 % male in the origi nal sam ple)	Yes (Urine Negative)	Fast	single-blind, randomized placebo- controlled	Oromucosal spray buccal	Nanotech	18, multiple dose	12	Tmax Cmax AUC0-t T _{1/2} CL/F
	Arm 1	9:6	3 days	Fast	double-blind, randomized, cross-over (72h washout)	Oral solution	Oil-Based	30, single dose	4	Tmax Cmax AUC0-t Ka
	Arm 2	9:6	3 days	Fast	double-blind, randomized, cross-over (72h washout)	Oral solution	Water- Based	30, single dose	4	Tmax Cmax AUC0-t Ka
Williams et al., 2021 ¹⁸	Arm 3	9:6	3 days	Fast	double-blind, randomized, cross-over (72h washout)	Oral solution	Oil-Based	30, single dose	4	$\begin{array}{c} Tmax\\ Cmax\\ AUC0-t\\ AUC0-inf\\ T_{1/2}\\ Kel\\ Vd\\ Ka\\ \end{array}$
	Arm 4	9:6	3 days	Fast	double-blind, randomized, cross-over (72h washout)	Oral solution	Oil-Based	30, single dose	4	Tmax Cmax AUC0-t AUC0-inf T _{1/2}

										Kel Vd Ka
	Arm 5	9:6	3 days	Fast	double-blind, randomized, cross-over (72h washout)	Oral solution	Oil-Based	30, single dose	4	Tmax Cmax AUC0-t AUC0-inf T _{1/2} Kel Vd Ka
	Arm 1	12:1 7	1 month	Fast	open-label, randomized, crossover (14d washout)	Oral Solution	Epidiolex Formulation	750, single dose	96	Tmax Cmax AUC0-t AUC0-inf T _{1/2} CL/F V/F
	Arm 2	9:6	1 month	Fed	open-label, randomized, crossover (14d washout)	Oral Solution	Epidiolex Formulation	750, single dose	96	Tmax Cmax AUC0-t AUC0-inf T _{1/2} CL/F V/F
Crockett et al., 2020 ¹⁹	Arm 3	3:11	1 month	Fed	open-label, randomized, crossover (14d washout)	Oral Solution	Epidiolex Formulation	750, single dose	96	Tmax Cmax AUC0-t AUC0-inf T _{1/2} CL/F V/F
	Arm 4	6:9	1 month	Fed	open-label, randomized, crossover (14d washout)	Oral Solution	Epidiolex Formulation	750, single dose	96	Tmax Cmax AUC0-t AUC0-inf T _{1/2} CL/F V/F
	Arm 5	6:9	1 month	Fed	open-label, randomized, crossover (14d washout)	Oral Solution	Epidiolex Formulation	750, single dose	96	Tmax Cmax AUC0-t AUC0-inf T _{1/2} CL/F V/F

Hobbs et al., 2020	Arm 1	2:3	3 days	Fast	double-blind, randomized, parallel arm,	Oral solution	Oil-Based	30, single dose	6	Tmax Cmax AUC0-t AUC0-inf T _{1/2} Kel Vd Ka Ka Ke
20	Arm 2	2:3	3 days	Fast	double-blind, randomized, parallel arm,	Oral solution	Oil-Based	30, single dose	6	Tmax Cmax AUC0-t AUC0-inf T _{1/2} Kel Vd Ka Ka Ke
	Arm 1	12 M	30 days	Fast	blind(?), randomized, crossover (3w washout)	Oral Capsule	Nanotech	90, single dose	24	Tmax Cmax AUC0-t AUC0-inf Kel CL/F V/F
Izgelov, 2020 ²¹	Arm 2	12 M	30 days	Fast	blind(?), randomized, crossover (3w washout)	Oral Capsule	Oil-Based	90, single dose	24	Tmax Cmax AUC0-t AUC0-inf Kel CL/F V/F
	Arm 3	12 M	30 days	Fast	blind(?), randomized, crossover (3w washout)	Oral Capsule	Water- Based	90, single dose	24	Tmax Cmax AUC0-t
Pérez- Acevedo	Arm 1	11:2	Yes (Urine Negative)	Fast	open label, non- randomized, cross over (15d washout)	Oral Oil	Oil-Based	0.9, single dose	24	Tmax Cmax AUC0-t T _{1/2} Kel
et al., 2020b ²²	Arm 2	11:2	Yes (Urine Negative)	Fast	open label, non- randomized, cross over (15d washout)	Oral Decoction	Water- Based	0.7, single dose	24	Tmax Cmax AUC0-t T _{1/2} Kel

al., 2019 26	Arm 2 Arm	8:8 9 total	7 days	Fast	(14d washout) double-blind, randomized, cross-over (14d washout) open-label,	Oral Capsule	Oil-Based Epidiolex	25, single dose	24	Tmax Cmax AUC0-t Tmax
Knaub et	Arm 1	8:8	7 days	Fast	double-blind, randomized, cross-over	Oral Capsule	Nanotech	25, single dose	24	Tmax Cmax AUC0-t
Tayo et al. 25	, 2020	3:5	1 month	Fed	open-Label, non- randomized, Parallel- Group	Oral solution	Epidiolex Formulation	200, single dose	48	$\begin{array}{c} Tmax\\ Cmax\\ AUC0-t\\ AUC0-inf\\ T_{1/2}\\ CL/F\\ V/F \end{array}$
al., 2020 24	Arm 2	1 M	NR	NR	open label, non- randomized, cross over (2w washout)	Oral Oil	Oil-Based	0.86, single dose	24	Tmax Cmax AUC0-t T _{1/2}
Pichini et	Arm 1	1 M	NR	NR	open label, non- randomized, cross over (2w washout)	Oral Decoction	Water- Based	0.42, single dose	24	Tmax Cmax AUC0-t T _{1/2}
	Arm 3	5:1	3 months	Fed	double-blind, randomized, placebo- controlled,	Oral Solution	Oil-Based	20 mg/kg, single dose	168	Tmax Cmax AUC0-t AUC0-inf T _{1/2}
Perkins et al., 2020 ²³	Arm 2	5:1	3 months	Fed	double-blind, randomized, placebo- controlled,	Oral Solution	Oil-Based	10 mg/kg, single dose	168	Tmax Cmax AUC0-t AUC0-inf T _{1/2}
	Arm 1	4:2	3 months	Fed	double-blind, randomized, placebo- controlled,	Oral Solution	Oil-Based	5 mg/kg, single dose	168	Tmax Cmax AUC0-t AUC0-inf T _{1/2}

	Arm 3 Arm 4 Arm 5	6 total 4 total 14 total	3 months	Fed	open-label, non- randomized, parallel arm	Oral solution	Epidiolex Formulation	250, multiple dose	12	Tmax Cmax AUC0-t
	Arm 6 Arm 7 Arm 8	9:6 8:4 9:5	3 months	Fed	open-label, non- randomized, parallel arm	Oral solution	Epidiolex Formulation	750, multiple dose	12	Tmax Cmax AUC0-t
	Arm 1	12 M	Yes (time NR)	Fed	double-blind, placebo- controlled, cross-over (6d washout)	Oral Capsule	Nanotech	45, single dose	6	Tmax Cmax AUC0-t
Patrician	Arm 2	12 M	Yes (time NR)	Fed	double-blind, placebo- controlled, cross-over (6d washout)	Oral Capsule	Nanotech	90, single dose	6	Tmax Cmax AUC0-t
et al., 2019 ²⁸	Arm 3	12 M	Yes (time NR)	Fed	double-blind, placebo- controlled, cross-over (6d washout)	Oral Capsule	Oil-Based	45, single dose	6	Tmax Cmax AUC0-t
	Arm 4	12 M	Yes (time NR)	Fed	double-blind, placebo- controlled, cross-over (6d washout)	Oral Capsule	Oil-Based	90, single dose	6	Tmax Cmax AUC0-t
Taylor e 2019		4:4	1 month	Fed	Open-Label, non- randomized, parallel- group,	Oral solution	Epidiolex Formulation	200, single dose	48	$\begin{array}{c} Tmax\\ Cmax\\ AUC0-t\\ AUC0-inf\\ T_{1/2}\\ CL/F\\ V/F\\ \end{array}$
Atsmon e 2018a		15 M	30 days	Fed	open-label, randomized, crossover (7d washout)	Oral capsule	Nanotech	10, single dose	24	Tmax Cmax AUC0-t AUC0-inf T _{1/2}

										Kel
	Arm 1	15 M	Yes (Urine Negative)	Fed	open-label, randomized, crossover (7d washout)	Oral capsule	Nanotech	10, single dose	24	$\begin{array}{c} Tmax\\ Cmax\\ AUC0-t\\ AUC0-inf\\ T_{1/2} \end{array}$
Atsmon et al., 2018b ³¹	Arm 2	15 M	Yes (Urine Negative)	Fed	open-label, randomized, crossover (7d washout)	Oral capsule	Nanotech	100, single dose	24	Tmax Cmax AUC0-t AUC0-inf T _{1/2}
	Arm 3	15 M	Yes (Urine Negative)	Fed	open-label, randomized, crossover (7d washout)	Oromucosal spray	Sativex Formulation	10, single dose	24	Tmax Cmax AUC0-t AUC0-inf T _{1/2} Kel
Meyer e 2018		8, total	Yes (Urine Negative)	Fasted, Irreleva nt	Open-label, non- randomized, single arm	IV	N/A	1.6, single dose	58	Tmax Cmax AUC0-t
	Arm 1	38 total (72. 1% male in origi nal sam ple)	>12 days	Fast	double-blind, randomized, placebo- controlled crossover (8d washout)	Oral solution	Epidiolex Formulation	750, single dose	24	Tmax Cmax AUC0-t AUC0-inf
Schoedel et al., 2018 ³³	Arm 2	39 total (72. 1% male in origi nal sam ple)	>12 days	Fast	double-blind, randomized, placebo- controlled crossover (8d washout)	Oral solution	Epidiolex Formulation	1500, single dose	24	Tmax Cmax AUC0-t AUC0-inf
	Arm 3	40 total (72. 1%	>12 days	Fast	double-blind, randomized, placebo- controlled	Oral solution	Epidiolex Formulation	4500, single dose	24	Tmax Cmax AUC0-t AUC0-inf

		male in origi nal sam ple)			crossover (8d washout)					
	Arm 1	1:5	1 month	Fast	double-blind, randomized, placebo- controlled	Oral solution	Epidiolex Formulation	1500, single dose	48	Tmax Cmax AUC0-t AUC0-inf T _{1/2} CL/F V/F
	Arm 2	3:3	1 month	Fast	double-blind, randomized, placebo- controlled	Oral solution	Epidiolex Formulation	3000, single dose	48	Tmax Cmax AUC0-t AUC0-inf T _{1/2} CL/F V/F
Taylor et al., 2018	Arm 3	0:6	1 month	Fast	double-blind, randomized, placebo- controlled	Oral solution	Epidiolex Formulation	4500, single dose	48	Tmax Cmax AUC0-t AUC0-inf T _{1/2} CL/F V/F
	Arm 4	2:4	1 month	Fast	double-blind, randomized, placebo- controlled	Oral solution	Epidiolex Formulation	6000, single dose	48	Tmax Cmax AUC0-t AUC0-inf T _{1/2} CL/F V/F
	Arm 5	2:7	1 month	Fast	double-blind, randomized, placebo- controlled	Oral solution	Epidiolex Formulation	750, single dose and multiple dose	12	Tmax Cmax AUC0-t T _{1/2}
	Arm 6	5:4	1 month	Fast	double-blind, randomized, placebo- controlled	Oral solution	Epidiolex Formulation	1500, single dose and multiple dose	12	Tmax Cmax AUC0-t T _{1/2}

	Arm 7	4:8	1 month	Fast	open-label, randomized, cross-over (7d washout)	Oral solution	Epidiolex Formulation	1500, single dose	48	Tmax Cmax AUC0-t AUC0-inf T _{1/2} CL/F V/F
	Arm 8	4:8	1 month	Fed	open-label, randomized, cross-over (7d washout)	Oral solution	Epidiolex Formulation	1500, single dose	48	Tmax Cmax AUC0-t AUC0-inf T _{1/2} CL/F V/F
Cherniak ov et al.,	Arm 1	9 M	28 days	Fast	open label, randomized, cross-over (21d washout)	Oral capsule	Nanotech	10, single dose	24	Tmax Cmax AUC0-t Kel
2017a ³⁵	Arm 2	9 M	28 days	Fast	open label, randomized, cross-over (21d washout)	Oromucosal spray	Sativex Formulation	10, single dose	24	Tmax Cmax AUC0-t Kel
Haney e 2016		8 total	No (Urine Positive)	Fed	probably open-label, non- randomized, single arm	Oral capsule	NR	800, single dose	6	Tmax Cmax
Desrosier s et al.,	Arm 1	10:4	No (Urine Positive)	NR_ Irreleva nt	open-label, non- randomized, parallel arm	Inhalation/ Smoking	N/A	2, single dose	30	Tmax Cmax
2014 ³⁷	Arm 2	8:3	No (Urine Positive)	NR_ Irreleva nt	open-label, non- randomized, parallel arm	Inhalation/ Smoking	N/A	2, single dose	30	Tmax Cmax
Sellers et al., 2013	Arm 1	60 total (64. 2%: 35.8 %)	90 days	Fast	double- blind, randomized, placebo- controlled, parallel arm	Oromucosal spray	Sativex Formulation	20, multiple dose	24	Tmax Cmax AUC0-t AUC0-inf
38	Arm 2	51 total (64. 2%:	90 days	Fast	double- blind, randomized, placebo- controlled, parallel arm	Oromucosal spray	Sativex Formulation	60-90, multiple dose	24	Tmax Cmax AUC0-t AUC0-inf

		35.8 %)								
	Arm 1	6 M	30 days	Fast	open-label, randomized, parallel arm	Oromucosal spray	Sativex Formulation	5, single dose	24	Tmax Cmax AUC0-t AUC0-inf T _{1/2} Kel CL/F
Stott et al., 2013a ³⁹	Arm 3	6 M	30 days	Fast	open-label, randomized, parallel arm	Oromucosal spray	Sativex Formulation	20, single dose	24	Tmax Cmax AUC0-t AUC0-inf T _{1/2} Kel CL/F
	Arm 4	6 M	30 days	Fast	open-label, randomized, parallel arm	Oromucosal spray	Sativex Formulation	5, multiple dose	24	Tmax Cmax AUC0-t
	Arm 5	12 M	30 days	Fast	open-label, randomized, parallel arm	Oromucosal spray	Sativex Formulation	10, multiple dose	24	Tmax Cmax AUC0-t
	Arm 6	6 M	30 days	Fast	open-label, randomized, parallel arm	Oromucosal spray	Sativex Formulation	20, multiple dose	24	Tmax Cmax AUC0-t
Stott et	Arm 1	12 M	30 days	Fed	open-label, probably non- randomized, cross-over (3d washout)	Oromucosal spray	Sativex Formulation	10, single dose	24	Tmax Cmax AUC0-t AUC0-inf T _{1/2} Kel CL/F
al., 2013b ⁴⁰	Arm 2	12 M	30 days	Fast	open-label, probably non- randomized, cross-over (3d washout)	Oromucosal spray	Sativex Formulation	10, single dose	24	Tmax Cmax AUC0-t AUC0-inf T _{1/2} Kel CL/F
Stott et al., 2013c ⁴¹	Arm 1	12 M	30 days	NR	open-label, randomized, intra-arm crossover (7d washout)	Oromucosal spray	Sativex Formulation	10, single dose	24	Tmax Cmax AUC0-t AUC0-inf T _{1/2} Kel CL/F

										V/F
	Arm 2	12 M	30 days	NR	open-label, randomized, intra-arm crossover study (5d washout)	Oromucosal spray	Sativex Formulation	10, single dose	24	Tmax Cmax AUC0-t AUC0-inf T _{1/2} Kel CL/F V/F
	Arm 3	12 M	30 days	NR	open-label, randomized, intra-arm crossover study (2d washout)	Oromucosal spray	Sativex Formulation	10, single dose	24	Tmax Cmax AUC0-t AUC0-inf T _{1/2} Kel CL/F V/F
Eichler et al., 2012 ⁴²	Arm 1	9 M	Yes (Urine Negative)	Fast	double-blind, randomized, cross-over (2w washout)	Oral capsule	Alcohol- based	27.8, single dose	24	Tmax Cmax AUC0-t
	Arm 2	9 M	Yes (Urine Negative)	Fast	double-blind, randomized, cross-over (2w washout)	Oral capsule	Alcohol- based	14.8, single dose	24	Tmax Cmax AUC0-t
Karschne r et al., 2011 ⁴³	Arm 1	6:3	Yes (Urine Negative)	Fed	double-blind, randomized, placebo- controlled, double- dummy	Oromucosal spray	Sativex Formulation	5, single dose	10	Tmax Cmax AUC0-t
	Arm 2	6:3	Yes (Urine Negative)	Fed	double-blind, randomized, placebo- controlled, double- dummy	Oromucosal spray	Sativex Formulation	15, single dose	10	Tmax Cmax AUC0-t
Schwope et al., 2011 44		9:1	No (Urine Positive)	NR_ Irreleva nt	probably open-label, non- randomized, single arm	Inhalation/ Smoking	N/A	2, single dose	6	Tmax Cmax
Nadulski et al., 2005a ⁴⁵	Arm 1	12:1 2	30 days	Fast	double-blind, randomized, placebo- controlled	Oral capsule	Oil-Based	5.4, single dose	24	Tmax Cmax AUC0-t

					crossover (1w washout)					
	Arm 2	12 total	30 days	Fast	Open-label, non- randomized, cross over (1w washout)	Oral capsule	Oil-Based	5.4, single dose	24	Tmax Cmax AUC0-t
Nadulski et al., 2005b ⁴⁶		24 total	NR	Fast	double-blind, probably randomized, placebo- controlled	Oral capsule	NR	5.4, single dose	24	Tmax Cmax
	Arm 1	3:3	30 days	Fast	double-blind , placebo- controlled, crossover (6d washout)	Oromucosal/ Sublingual	Alcohol- based	20, single dose	12	Tmax Cmax AUC0-t
Guy and Flint, 2004 ⁴⁷	Arm 2	n 3:3 30 days Fast Open-label, crossover (6d washout)		Inhalation/Neb ulizer	Oil-Based	20, single dose	12	Tmax Cmax AUC0-t AUC0-inf T _{1/2} Kel		
	Arm 3	3:3	30 days	Fast	Open-label, crossover (6d washout)	Oromucosal/A erosol/subling ual	Alcohol- based	20, single dose	12	Tmax Cmax AUC0-t AUC0-inf T _{1/2} Kel
	Arm 4	3:3	30 days	Fast	Open-label, crossover (6d washout)	Oromucosal/ Sublingual	Alcohol- based	20, single dose	12	Tmax Cmax AUC0-t AUC0-inf T _{1/2} Kel
Guy and R 2004a		24 M	Yes (Urine Negative)	Fed	double-blind, randomized placebo- controlled	Oromucosal spray sublingual	Alcohol- based	10, single dose	24	$\begin{array}{c} Tmax\\ Cmax\\ AUC0-t\\ AUC0-inf\\ T_{1/2} \end{array}$
Guy and Robson, 2004b ⁴⁹	Arm 1	6:6	30 days	Fast	open-label, randomized, cross-over (6d washout)	Oromucosal spray sublingual	Alcohol- based	10, single dose	12	Tmax Cmax AUC0-t AUC0-inf T _{1/2}

	Arm 2	6:6	30 days	Fast	open-label, randomized, cross-over (6d washout)	Oromucosal spray buccal	Alcohol- based	10, single dose	12	$\begin{array}{c} Tmax\\ Cmax\\ AUC0-t\\ AUC0-inf\\ T_{1/2} \end{array}$
	Arm 3	6:6	30 days	Fast	open-label, randomized, cross-over (6d washout)	Oromucosal spray oro- pharyngeal	Alcohol- based	10, single dose	12	Tmax Cmax AUC0-t AUC0-inf T _{1/2}
	Arm 4	6:6	30 days	Fast	open-label, non- randomized, cross-over (6d washout)	Oral capsule	Gelatin- Based	10, single dose	12	Tmax Cmax AUC0-t AUC0-inf T _{1/2}
Ohlsson et al.,	Arm 1	5 M	72 h	NR_ Irreleva nt	open-label, randomized, cross-over (1w washout)	IV	Alcohol- based	20, single dose	72	Tmax Cmax AUC0-t T _{1/2} CL/F Vd
1986 ⁵⁰	Arm 2	5 M	72 h	NR_ Irreleva nt	open-label, randomized, cross-over (1w washout)	Inhalation/ Smoking	N/A	19.2, single dose	72	Tmax Cmax AUC0-t T _{1/2}

Table 2. Quality assessment of pharmacokinetic studies of cannabidiol

		Q1	Q2	Q3	Q4	Q5	Q6	Q7	Q8	Q9	Q10	Q11	Q12	Overall
	Arm1	Yes	Yes	Yes	Yes	CD	Yes	Yes	NR	Yes	Yes	Yes	N/A	Fair
Abbotts et al., 2022 ¹²	Arm2	Yes	Yes	Yes	Yes	CD	Yes	Yes	NR	Yes	Yes	Yes	N/A	Fair
	Arm3	Yes	Yes	Yes	Yes	CD	Yes	Yes	NR	Yes	Yes	Yes	N/A	Fair
	Arm4	Yes	Yes	Yes	Yes	CD	Yes	Yes	NR	Yes	Yes	Yes	N/A	Fair
	Arm5	Yes	Yes	Yes	Yes	CD	Yes	Yes	NR	Yes	Yes	Yes	N/A	Fair
	Arm6	Yes	Yes	Yes	Yes	CD	Yes	Yes	NR	Yes	Yes	Yes	N/A	Fair
	Arm1a	Yes	Yes	Yes	NR	No	Yes	Yes	Yes	NR	Yes	Yes	N/A	Fair
Domaani	Arm1b	Yes	Yes	Yes	NR	No	Yes	Yes	Yes	NR	Yes	Yes	N/A	Fair
Bergeri a et al.,	Arm1c	Yes	Yes	Yes	NR	No	Yes	Yes	Yes	NR	Yes	Yes	N/A	Fair
2022^{13}	Arm2	Yes	Yes	Yes	NR	CD	Yes	Yes	Yes	NR	Yes	Yes	N/A	Fair
2022	Arm3	Yes	Yes	Yes	NR	CD	Yes	Yes	Yes	NR	Yes	Yes	N/A	Fair
	Arm4	Yes	Yes	Yes	NR	No	Yes	Yes	Yes	NR	Yes	Yes	N/A	Fair
Berl et	Arm1	Yes	Yes	Yes	Yes	CD	Yes	Yes	Yes	Yes	Yes	Yes	N/A	Fair
al., 2022 ¹⁴	Arm2	Yes	Yes	Yes	Yes	CD	Yes	Yes	Yes	Yes	Yes	Yes	N/A	Fair
Busard 202		Yes	Yes	Yes	NR	CD	Yes	Yes	No	Yes	Yes	Yes	N/A	Fair
Hereit	Arm1	Yes	Yes	Yes	NR	CD	Yes	Yes	No	Yes	Yes	Yes	N/A	Fair
Hosseini	Arm2	Yes	Yes	Yes	NR	CD	Yes	Yes	No	Yes	Yes	Yes	N/A	Fair
et al, 2021 ¹⁶	Arm3	Yes	Yes	Yes	NR	CD	Yes	Yes	No	Yes	Yes	Yes	N/A	Fair
2021 10	Arm4	Yes	Yes	Yes	NR	CD	Yes	Yes	No	Yes	Yes	Yes	N/A	Fair
	Arm5	Yes	Yes	Yes	NR	No	Yes	Yes	Yes	Yes	Yes	Yes	N/A	Fair
Vitetta et	Arm1	Yes	Yes	Yes	Yes	CD	Yes	Yes	No	Yes	Yes	Yes	N/A	Good
al., 2021	Arm2	Yes	Yes	Yes	Yes	CD	Yes	Yes	No	Yes	Yes	Yes	N/A	Good
	Arm1	Yes	Yes	Yes	Yes	CD	Yes	Yes	Yes	Yes	Yes	Yes	N/A	Good
Williams	Arm2	Yes	Yes	Yes	Yes	CD	Yes	Yes	Yes	Yes	Yes	Yes	N/A	Good
et al.,	Arm3	Yes	Yes	Yes	Yes	CD	Yes	Yes	Yes	Yes	Yes	Yes	N/A	Good
2021 18	Arm4	Yes	Yes	Yes	Yes	CD	Yes	Yes	Yes	Yes	Yes	Yes	N/A	Good
	Arm5	Yes	Yes	Yes	Yes	CD	Yes	Yes	Yes	Yes	Yes	Yes	N/A	Good
	Arm1	Yes	Yes	Yes	NR	Yes	Yes	Yes	No	Yes	Yes	Yes	N/A	Good
Crockett	Arm2	Yes	Yes	Yes	NR	CD	Yes	Yes	No	Yes	Yes	Yes	N/A	Fair
et al.,	Arm3	Yes	Yes	Yes	NR	CD	Yes	Yes	No	Yes	Yes	Yes	N/A	Fair
2020 19	Arm4	Yes	Yes	Yes	NR	CD	Yes	Yes	No	Yes	Yes	Yes	N/A	Fair
	Arm5	Yes	Yes	Yes	NR	CD	Yes	Yes	No	Yes	Yes	Yes	N/A	Fair
Hobbs et	Arm1	Yes	Yes	Yes	Yes	No	Yes	Yes	Yes	Yes	Yes	Yes	N/A	Fair
al., 2020	Arm2	Yes	Yes	Yes	Yes	No	Yes	Yes	Yes	Yes	Yes	Yes	N/A	Fair
Izcolori	Arm1	Yes	Yes	Yes	NR	CD	Yes	Yes	Yes	NR	Yes	Yes	N/A	Fair
Izgelov, 2020 ²¹	Arm2	Yes	Yes	Yes	NR	CD	Yes	Yes	Yes	NR	Yes	Yes	N/A	Fair
	Arm3	Yes	Yes	Yes	NR	CD	Yes	Yes	Yes	NR	Yes	Yes	N/A	Fair
Pérez- Acevedo	Arm1	Yes	Yes	Yes	NR	CD	Yes	Yes	No	Yes	Yes	Yes	N/A	Fair
et al., 2020b ²²	Arm2	Yes	Yes	Yes	NR	CD	Yes	Yes	No	Yes	Yes	Yes	N/A	Fair
Perkins	Arm1	Yes	Yes	Yes	NR	No	Yes	Yes	Yes	Yes	Yes	Yes	N/A	Fair
et al.,	Arm2	Yes	Yes	Yes	NR	No	Yes	Yes	Yes	Yes	Yes	Yes	N/A	Fair
2020 ²³ Pichini et	Arm3	Yes	Yes	Yes	NR	No	Yes	Yes	Yes	Yes	Yes	Yes	N/A	Fair
		Yes	No	CD	No	No	Yes	Yes	NR	N/A	Yes	Yes	N/A	Poor
al., 2020	Arm2	Yes	No	CD	No	No	Yes	Yes	NR	N/A	Yes	Yes	N/A	Poor
Tayo et a		Yes	Yes	Yes	NR	No	Yes	Yes	No	Yes	Yes	Yes	N/A	Fair
Knaub et			T	T		CD	Yes	Yes	V.	Yes	Yes	Yes	N/A	Good
Knaub et	Arm1	Yes	Yes	Yes	Yes	CD	res	res	Yes	168	105	105	1N/A	Good
Knaub et al., 2019 26		Yes Yes	Yes Yes	Yes Yes	Yes Yes	CD	Yes	Yes	Yes	Yes	Yes	Yes	N/A N/A	Good

	Arm2	Yes	Yes	Yes	NR	No	Yes	Yes	No	Yes	CD	NR	N/A	Poor
	Arm3	Yes	Yes	Yes	NR	No	Yes	Yes	No	Yes	CD	NR	N/A	Poor
Morrison	Arm4	Yes	Yes	Yes	NR	No	Yes	Yes	No	Yes	CD	NR	N/A	Poor
et al.,	Arm5	Yes	Yes	Yes	NR	CD	Yes	Yes	No	Yes	CD	NR	N/A	Poor
2019 27	Arm6	Yes	Yes	Yes	NR	CD	Yes	Yes	No	Yes	CD	NR	N/A	Poor
	Arm7	Yes	Yes	Yes	NR	CD	Yes	Yes	No	Yes	CD	NR	N/A	Poor
	Arm8	Yes	Yes	Yes	NR	CD	Yes	Yes	No	Yes	CD	NR	N/A	Poor
D (' '	Arm1	Yes	Yes	Yes	NR	CD	Yes	Yes	Yes	Yes	Yes	Yes	N/A	Good
Patrician	Arm2	Yes	Yes	Yes	NR	CD	Yes	Yes	Yes	Yes	Yes	Yes	N/A	Good
et al., 2019 ²⁸	Arm3	Yes	Yes	Yes	NR	CD	Yes	Yes	Yes	Yes	Yes	Yes	N/A	Good
2019	Arm4	Yes	Yes	Yes	NR	CD	Yes	Yes	Yes	Yes	Yes	Yes	N/A	Good
Taylor et a	1., 2019	Yes	Yes	Yes	NR	No	Yes	Yes	No	Yes	Yes	Yes	N/A	Fair
Atsmon 2018a		Yes	Yes	Yes	NR	CD	Yes	Yes	No	Yes	Yes	Yes	N/A	Fair
Atsmon	Arm1	Yes	Yes	Yes	NR	CD	Yes	Yes	No	Yes	Yes	Yes	N/A	Fair
et al.,	Arm2	Yes	Yes	Yes	NR	CD	Yes	Yes	No	Yes	Yes	Yes	N/A	Fair
2018b ³¹	Arm3	Yes	Yes	Yes	NR	CD	Yes	Yes	No	Yes	Yes	Yes	N/A	Fair
Meyer et al 32	1., 2018	Yes	Yes	Yes	NR	No	Yes	Yes	No	No	Yes	Yes	N/A	Poor
Schoedel	Arm1	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	N/A	Good
et al.,	Arm2	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	N/A	Good
2018 33	Arm3	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	N/A	Good
	Arm1	Yes	Yes	Yes	NR	No	Yes	Yes	Yes	Yes	Yes	Yes	N/A	Fair
	Arm2	Yes	Yes	Yes	NR	No	Yes	Yes	Yes	Yes	Yes	Yes	N/A	Fair
Taylor et	Arm3	Yes	Yes	Yes	NR	No	Yes	Yes	Yes	Yes	Yes	Yes	N/A	Fair
al., 2018	Arm4	Yes	Yes	Yes	NR	No	Yes	Yes	Yes	Yes	Yes	Yes	N/A	Fair
34 34	Arm5	Yes	Yes	Yes	NR	No	Yes	Yes	Yes	Yes	Yes	Yes	N/A	Fair
	Arm6	Yes	Yes	Yes	NR	No	Yes	Yes	Yes	Yes	Yes	Yes	N/A	Fair
	Arm7	Yes	Yes	Yes	NR	CD	Yes	Yes	Yes	Yes	Yes	Yes	N/A	Good
	Arm8	Yes	Yes	Yes	NR	CD	Yes	Yes	Yes	Yes	Yes	Yes	N/A	Good
Cherniak	Arm1	Yes	Yes	Yes	NR	No	Yes	Yes	No	Yes	CD	Yes	N/A	Poor
ov et al., 2017a ³⁵	Arm2	Yes	Yes	Yes	NR	No	Yes	Yes	No	Yes	CD	Yes	N/A	Poor
Haney et a $\frac{36}{36}$	1., 2016	Yes	Yes	Yes	NR	No	Yes	Yes	Yes	No	NR	Yes	N/A	Poor
Desrosier	Arm1	Yes	Yes	Yes	NR	CD	Yes	Yes	NR	NR	Yes	Yes	N/A	Fair
s et al., 2014 ³⁷	Arm2	Yes	Yes	Yes	NR	CD	Yes	Yes	NR	NR	Yes	Yes	N/A	Fair
Sellers et	Arm1	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	N/A	Good
al., 2013	Arm2	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	No	Yes	Yes	N/A	Good
	Arm1	Yes	Yes	Yes	NR	No	Yes	Yes	No	Yes	Yes	Yes	N/A	Fair
Stott et	Arm3	Yes	Yes	Yes	NR	No	Yes	Yes	No	Yes	Yes	Yes	N/A	Fair
al.,	Arm4	Yes	Yes	Yes	NR	No	Yes	Yes	No	Yes	Yes	Yes	N/A	Fair
2013a ³⁹	Arm5	Yes	Yes	Yes	NR	CD	Yes	Yes	No	Yes	Yes	Yes	N/A	Fair
C 4-11-1	Arm6	Yes	Yes	Yes	NR	No	Yes	Yes	No	Yes	Yes	Yes	N/A	Fair
Stott et al.,	Arm1	Yes	Yes	Yes	NR NR	CD CD	Yes	Yes	No	NR NR	Yes	Yes	N/A N/A	Fair Fair
2013b 40	Arm2	Yes	Yes	Yes			Yes	Yes	No		Yes	Yes		
Stott et	Arm1	Yes	Yes	Yes	NR	CD	Yes	Yes	No	NR	Yes	Yes	N/A	Fair
al., 2012×41	Arm2	Yes	Yes	Yes	NR	CD	Yes	Yes	No	NR	Yes	Yes	N/A	Fair
2013c ⁴¹	Arm3	Yes	Yes	Yes	NR	CD	Yes	Yes	No	NR	Yes	Yes	N/A	Fair
Eichler	Arm1	Yes	Yes	Yes	NR	CD	Yes	Yes	Yes	Yes	Yes	Yes	N/A	Good
et al., 2012 ⁴²	Arm2	Yes	Yes	Yes	NR	CD	Yes	Yes	Yes	Yes	Yes	Yes	N/A	Good
Karschne r et al.,	Arm1	Yes	Yes	Yes	NR	No	Yes	Yes	Yes	NR	Yes	Yes	N/A	Fair
2011 ⁴³	Arm2	Yes	Yes	Yes	NR	No	Yes	Yes	Yes	NR	Yes	Yes	N/A	Fair

Schwope 2011		Yes	Yes	Yes	NR	CD	Yes	Yes	No	NR	Yes	Yes	N/A	Fair
Nadulski	Arm1	Yes	Yes	Yes	NR	Yes	Yes	Yes	Yes	NR	Yes	Yes	N/A	Good
et al., 2005a ⁴⁵	Arm2	Yes	Yes	Yes	NR	CD	Yes	Yes	No	NR	Yes	Yes	N/A	Fair
Nadulski 2005t		Yes	Yes	Yes	NR	Yes	Yes	Yes	Yes	NR	Yes	Yes	N/A	Good
Constant	Arm1	Yes	Yes	Yes	NR	No	Yes	Yes	Yes	Yes	Yes	Yes	N/A	Fair
Guy and	Arm2	Yes	Yes	Yes	NR	No	Yes	Yes	No	Yes	Yes	Yes	N/A	Fair
Flint, 2004 47	Arm3	Yes	Yes	Yes	NR	No	Yes	Yes	No	Yes	Yes	Yes	N/A	Fair
2004	Arm4	Yes	Yes	Yes	NR	No	Yes	Yes	No	Yes	Yes	Yes	N/A	Fair
Guy and R 2004a		Yes	Yes	Yes	NR	Yes	N/A	Good						
Constant	Arm1	Yes	Yes	Yes	NR	No	Yes	Yes	No	Yes	Yes	Yes	N/A	Fair
Guy and	Arm2	Yes	Yes	Yes	NR	No	Yes	Yes	No	Yes	Yes	Yes	N/A	Fair
Robson, 2004b ⁴⁹	Arm3	Yes	Yes	Yes	NR	No	Yes	Yes	No	Yes	Yes	Yes	N/A	Fair
20040	Arm4	Yes	Yes	Yes	NR	No	Yes	Yes	No	Yes	Yes	Yes	N/A	Fair
Ohlsson	Arm1	Yes	Yes	Yes	NR	No	Yes	Yes	No	NR	Yes	Yes	N/A	Poor
et al., 1986 ⁵⁰	Arm2	Yes	Yes	Yes	NR	No	Yes	Yes	No	NR	Yes	Yes	N/A	Poor

Q1. Was the study question or objective clearly stated? Q2. Were eligibility/selection criteria for the study population prespecified and clearly described? Q3. Were the participants in the study representative of those who would be eligible for the test/service/intervention in the general or clinical population of interest? Q4. Were all eligible participants that met the prespecified entry criteria enrolled? Q5. Was the sample size sufficiently large to provide confidence in the findings? Q6. Was the test/service/intervention clearly described and delivered consistently across the study population? Q7. Were the outcome measures prespecified, clearly defined, valid, reliable, and assessed consistently across all study participants? Q8. Were the people assessing the outcomes blinded to the participants' exposures/interventions? Q9. Was the loss to follow-up after baseline 20% or less? Were those lost to follow-up accounted for in the analysis? Q10. Did the statistical methods examine changes in outcome measures from before to after the intervention? Were statistical tests done that provided p values for the pre-to-post changes? Q11. Were outcome measures of interest taken multiple times before the intervention and multiple times after the intervention (i.e., did they use an interrupted time-series design)? Q12. If the intervention was conducted at a group level (e.g., a whole hospital, a community, etc.) did the statistical analysis take into account the use of individual-level data to determine effects at the group level?

Table 3. Pharmacokinetic parameters of cannabidiol in single dose studies in accordance with increasing CBD dose

	CB D		Tm	_{ax} , arithn	netic	Cm	ax, geomet	tric	AU	C _{0-t} , geom	etric	AU	Co-inf, geor	netric	T _{1/2}	2, arithn	netic
	Dos e	N	mea n	*lowe r	*uppe r	mean	lower	upper	mean	lower	upper	mean	lower	upper	mea n	lowe r	uppe r
Oromucosal formulation s																	
Cherniakov, 2017 2	10	9	3	1.96	4.04	0.43	0.28	0.66	2.89	2.17	3.85						
Stott, 2013c 3	10	1 2	1.46	0.97	1.95	0.52	0.35	0.77	1.53	1.05	2.24	2.71	2.03	3.61	5.22	2.35	8.09
Stott, 2013c 2	10	1 2	2.38	1.36	3.40	0.58	0.41	0.8	1.58	1.13	2.21	3.45	3	3.98	7.81	5.90	9.72
Stott, 2013c 1	10	1 2	1.63	0.95	2.31	0.81	0.52	1.26	2.7	1.84	3.95	4.37	3.08	6.22	10.8 6	2.78	18.94
Stott, 2013b 2	10	1 2	1.45	1.16	1.74	0.97	0.67	1.41	3.57	2.31	5.54	4.57	3.02	6.9	6.39	3.54	9.24
Atsmon, 2018b 3	10	1 5	3.18	2.55	3.81	1.81	1.37	2.39	6.8	5.51	8.38	7.35	6.06	8.92	2.31	1.91	2.71
Guy and Robson, 2004b 1	10	1 2	1.63	1.20	2.06	2.02	1.33	3.06	5.75	3.97	8.32	6.09	4.27	8.69	1.44	0.94	1.94
Guy and Robson, 2004b 2	10	1 2	2.79	1.96	3.62	2.09	1.21	3.61	5.19	3.44	7.83	5.69	3.89	8.32	1.81	0.51	3.11
Guy and Robson, 2004b 3	10	1 2	2.04	1.32	2.76	2.11	1.39	3.19	6.53	4.46	9.55	6.97	4.8	10.12	1.76	1.25	2.27
Guy and Robson, 2004a	10	2 4	4.22	2.44	6.00	2.21	1.51	3.24	6.83	4.46	10.45	8.29	5.78	11.91	1.81	0.76	2.86
Stott, 2013b 1	10	1 2	5.01	3.84	6.18	3.11	2.16	4.47	18.65	14.46	24.06	21.46	16.79	27.44	5.49	4.11	6.87
Guy and Flint, 2004 1	20	6	2.17	1.14	3.20	1.87	1.19	2.93	1.57	0.54	4.51						
Stott, 2013a 3	20	6	1	0.58	1.42	1.89	1.09	3.29	7.36	3.26	16.61	9.54	4.06	22.4	9.36	2.21	16.51
Guy and Flint, 2004 3	20	6	2.35	0.12	4.58	2.3	1.36	3.87	3.68	1.46	9.29	13.07	9.9	17.24	2.4	0.28	4.52
Guy and Flint, 2004 4	20	6	1.67	0.81	2.53	2.5	1.9	3.28	2.78	1.37	5.64	8.91	5.85	13.56	1.97	1.32	2.62

Table 3. Pharmacokinetic parameters of cannabidiol in single dose studies in accordance with increasing CBD dose

Oral Formulation s																	
Cherniakov, 2017a 1	10	9	1	0.74	1.26	1.82	1.21	2.74	6.01	4.01	9.00						
Guy and Robson, 2004b 4	10	1 2	1.27	0.74	1.80	1.83	1.12	2.99	4.37	2.73	7.01	4.65	2.95	7.35	1.09	0.80	1.38
Atsmon, 2018a	10	1 5	1.64	0.99	2.29	2.85	2.49	3.27	8.97	7.06	11.4	9.66	7.69	12.14	3.21	2.31	4.11
Atsmon, 2018b 1	10	1 5	3.1	2.85	3.35	2.99	2.42	3.7	8.91	7.15	11.1	9.57	7.72	11.85	2.95	1.52	4.38
Abbotts, 2022 6	30	1 1	2.16	1.16	3.16	0.2219	0.107	0.4601	0.4727	0.2435	0.9179				7.38	- 11.29	26.05
Hobbs, 2020 2	30	5	1.5	-0.36	3.36	0.43	0.14	1.33	54.48	15.59	190.35	68.24	23.55	197.69	2.3	-1.61	6.21
Abbotts, 2022 3	30	1 2	1.94	1.13	2.75	0.4642	0.3634	0.593	0.948	0.7113	1.2634				4.68	1.75	7.61
Williams, 2021 2	30	1 5	3.39	3.03	3.75	0.72	0.39	1.31	1.47	0.87	2.48						
Abbotts, 2022 1	30	1 4	0.64	0.40	0.88	1.3828	0.9092	2.1031	2.548	1.8574	3.4953	4.0519	0.011	1491.922 1	2.22	1.95	2.49
Abbotts, 2022 5	30	1 4	0.86	0.63	1.09	1.6279	1.0399	2.5482	2.8186	1.9374	4.1006	5.2783	2.6764	10.4098	2.34	1.26	3.42
Williams, 2021 1	30	1 5	3.29	2.95	3.63	1.67	1.11	2.52	3.5	2.33	5.25						
Hobbs, 2020 1	30	5	0.9	-0.22	2.02	1.87	0.61	5.76	245.62	70.3	858.2	329.82	113.85	955.53	2.54	-1.77	6.85
Williams, 2021 4	30	1 5	1.53	0.97	2.09	2.18	1.45	3.3	5.12	3.58	7.34	7.72	5.2	11.46	5.18	1.26	9.10
Abbotts, 2022 4	30	1 4	0.59	0.46	0.72	2.5665	1.7999	3.6598	3.8146	2.7132	5.3631	5.5323	3.1207	9.8074	2.85	1.61	4.09
Abbotts, 2022 2	30	1 4	1.89	1.21	2.57	2.6463	2.067	3.388	6.1004	4.8302	7.7046				4.14	-0.56	8.84
Williams, 2021 3	30	1 5	1.28	0.94	1.62	3.21	2.51	4.1	6.98	5.37	9.08	11.87	8.76	16.1	2.2	1.57	2.83
Williams, 2021 5	30	1 5	0.7	0.57	0.83	4.79	3.53	6.49	7.73	5.62	10.63	9.52	7.22	12.54	1.42	1.13	1.71
Izgelov, 2020 3	90	1 2	10.4 5	5.96	14.94	0.6	0.37	0.97	6.4	4.19	9.78						
Izgelov, 2020 2	90	$1 \\ 2$	4.38	3.12	5.64	12.52	9.28	16.91	60.76	46.92	78.68	65.73	51.21	84.36			

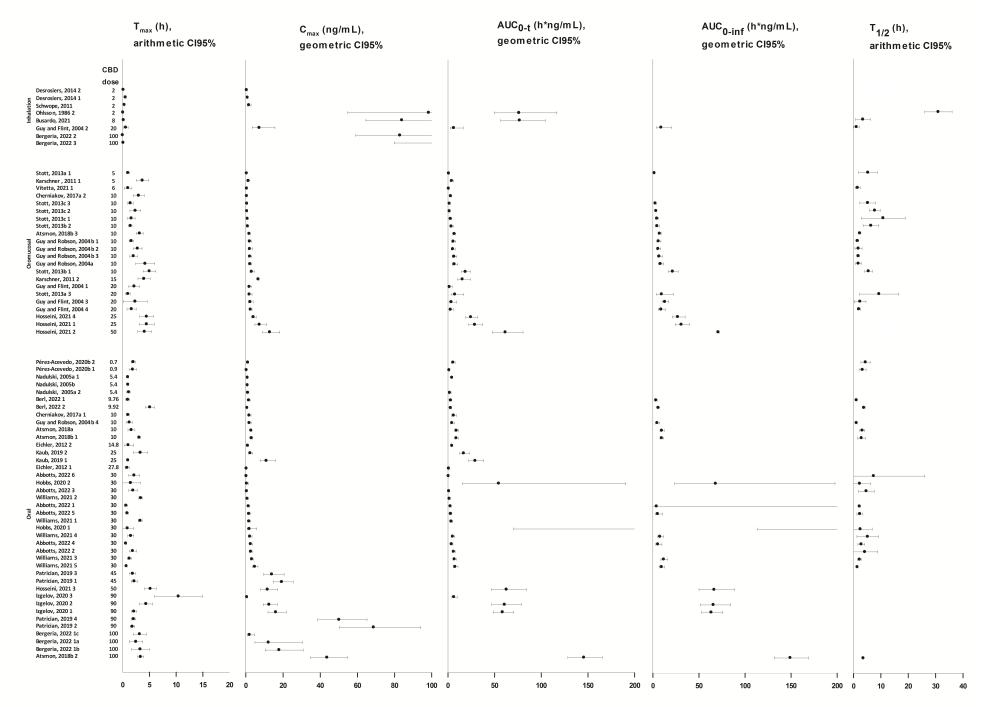
Table 3. Pharmacokinetic parameters of cannabidiol in single dose studies in accordance with increasing CBD dose

Izgelov, 2020 1	90	1 2	2.13	1.64	2.62	16.1	11.93	21.74	58.51	48.69	70.3	63.42	53.01	75.88			
Patrician, 2019 4	90	$\begin{array}{c} 2\\ 1\\ 2\end{array}$	2.05	1.62	2.48	50.15	38.6	65.17	6563.2 9	5084.5 8	8472.05						
Patrician, 2019 2	90	1 2	1.83	1.40	2.26	68.76	50.3	93.98	9390.9 4	6663.4 8	13234.7 9						
Bergeria, 2022 1c	100	6	3.20	1.96	4.44	1.9941	0.8399	4.7344									
Bergeria, 2022 1a	100	6	2.50	1.26	3.74	12.190 1	4.8913	30.380 2									
Bergeria, 2022 1b	100	6	3.30	1.64	4.96	17.901 2	10.365 1	30.916 7									
Atsmon, 2018b 2	100	1 5	3.38	2.82	3.94	43.67	34.85	54.71	145.75	128.55	165.24	149.25	131.85	168.96	3.59	3.45	3.73
Tayo, 2020	200	8	2.5	2.21	2.79	137.49	93.4	202.38	457.64	398.3	525.83	493.22	434.13	560.35	11.2	6.78	15.62
Taylor, 2019	200	8	2.78	1.75	3.81	148	90.09	243.13	449	259.17	777.87	474	273.11	822.67	8.58	3.67	13.49
Crockett, 2019 1	750	2 9	3.75	3.47	4.03	187	155.16	225.38	1077	901.06	1287.29	1190	997.86	1419.14	39.7	34.27	45.13
Taylor, 2018 5	750	9	4.38	3.73	5.03	290.8	163.88	516.01	1070	641.7	1784.17						
Schoedel, 2018 1	750	3 8	5.16	4.70	5.62	304.62	263.25	352.5	1407.7 5	1198.6 6	1653.31	1525.1 8	1318.0 3	1764.9			
Crockett, 2020 5	750	1 5	5.76	4.64	6.88	354	260.51	481.05	1676	1237.7 3	2269.46	1782	1323.6 5	2399.07	34	29.78	38.22
Crockett, 2020 4	750	1 5	5.88	4.21	7.55	527	403.42	688.44	2450	1983.1 9	3026.69	2588	2084.5 4	3213.06	36.5	32.17	40.83
Crockett, 2020 3	750	1 4	5.26	3.90	6.62	722	572.7	910.22	3202	2623.1 1	3908.64	3394	2789.2 4	4129.89	39.4	33.88	44.92
Crockett, 2020 2	750	1 5	3.38	2.66	4.10	1050	786.26	1402.2	4584	3563.9 2	5896.06	4870	3806.1 6	6231.19	41.3	37.50	45.10
Taylor, 2018 1	150 0	6	4	3.17	4.83	292.4	132.16	646.95	1517	734.68	3132.35	1618	804.95	3252.28	14.4 3	8.96	19.90
Taylor, 2018 7	150 0	1 2	3.63	3.13	4.13	335.4	213.31	527.38	1987	1443.8 7	2734.44	2198	1644.0 2	2938.65	30.3 3	24.84	35.82
Taylor, 2018 6	150 0	9	4.38	3.73	5.03	361.8	185.85	704.35	1444	756.56	2756.07						
Schoedel, 2018 2	150 0	3 9	5.89	5.51	6.27	439.96	363.05	533.17	2169.6 2	1767.6 4	2663.01	2285.0 8	1889.8 6	2762.95			
Taylor, 2018 8	150 0	1 2	3.13	2.45	3.81	1628	1196.8 7	2214.4 2	8347	6760.9 9	10305.0 5	8669	7030.0 4	10690.06	24.4	21.92	26.88
Schoedel, 2018 3	450 0	4 0	5.62	4.87	6.37	283.2	211.95	378.39	1576.2 5	1186.4	2094.2	1586.6 3	1206.2 9	2086.9			

Table 3. Pharmacokinetic parameters of cannabidiol in single dose studies in accordance with increasing CBD dose

Taylor, 2018 3	450 0	6	5	5.00	5.00	722.1	430.97	1209.8 8	3215	1952.9 7	5292.58	3426	2118.6 2	5540.15	16.6 1	13.35	19.87	
-------------------	----------	---	---	------	------	-------	--------	-------------	------	-------------	---------	------	-------------	---------	-----------	-------	-------	--

*CI95% reported as lower limit and upper limit Numbers next each reference is in accordance with the trial arm number in Table 1, e.g. Abbotts 2022 3 means Abbotts et al 2022 study, trial arm number 3.


Table 4. Meta-Regression models of pharmacokinetic parameters in single-dose cannabidiol studies

Para	Mo	Route of	Num	Mode	CBD	*R	oute:	*Formu	lation	*Diet:	†Female	Duratio
mete r	del #	administrat ion	ber of arms	l fit R ²	Dose	Inhalatio n	Oromucos al	Nanotec h	Oil- based	Fed	/ Total Ratio	n
T_{max}	1	All routes	88	0		(-) <0.001	(-) 0.936				(+) 0.240	
	2	All routes- fair/good	85			(-) <0.001	(-) 0.831				(+) 0.331	
	3	Oral and oromucosal	78	0.35			(+) 0.828			(+) 0.090	(+) 0.166	
	4	Oral and oromucosal- fair/good	76	0.35			(+) 0.946			(+) 0.100	(+) 0.186	
	5	Oral	49	0.83				(-) <0.001	(-) <0.00 1	(+) 0.603	(-) 0.007	
	6	Oral- fair/good	48	0.83				(-) <0.001	(-) <0.00	(+) 0.821	(-) 0.004	
C _{max}	7	All routes	86	0.41	(+) <0.00 1	(+) 0.406	(-) 0.010				(+) 0.011	
	8	All routes- fair/good	83	0.41	(+) <0.00 1	(+) 0.822	(-) 0.014				(+) 0.009	
	9	Oral and oromucosal	75	0.49	(+) <0.00 1		(-) 0.050			(+) <0.00 1	(+) 0.011	
	10	Oral and oromucosal- fair/good	73	0.48	(+) <0.00 1		(-) 0.067			(+) <0.00 1	(+) 0.015	
	11	Oral	56	0.47	(+) <0.00 1					(+) <0.00 1	(+) 0.020	
	12	Oral- fair/good	55	0.47	(+) <0.00 1					(+) <0.00 1	(+) 0.021	
AU C _{0-t}	13	All routes	78	0.44	(+) <0.00 1	(-) 0.747	(-) <0.003				(+) 0.583	(+) 0.001
	14	All routes- fair/good	75	0.44	(+) 0.001	(-) 0.887	(-) <0.004				(+) 0.723	(+) 0.001
	15	Oral and oromucosal	72	0.52	(+) <0.00 1		(-) <0.010			(+) <0.00 1	(+) 0.302	(+) 0.094
	16	Oral and oromucosal- fair/good	70	0.51	(+) <0.00 1		(-) <0.012			(+) <0.00 1	(+) 0.348	(+) 0.094
	17	Oral	53	0.49	(+) <0.00 1					(+) <0.00 1	(+) 0.128	(+) 0.510
	18	Oral- fair/good	52	0.49	(+) <0.00 1					(+) <0.00 1	(+) 0.143	(+) 0.505
AU C _{0-inf}	19	All routes- fair/good	51	0.36	(+) 0.001	(-) 0.463	(-) 0.025				(+) 0.201	(+) <0.001
	20	Oral and oromucosal- fair/good	47	0.35	(+) 0.001		(-) 0.054			(-) 0.600	(+) 0.350	(+) <0.001

	21	Oral- fair/good	33	0.70	(+) 0.002			(-) 0.531	(+) 0.341	(+) 0.001
T _{1/2}	22	All routes	53	0.84					(+) 0.493	(+) <0.001
	23	All routes- fair/good	52	0.86					(+) 0.277	(+) <0.001
	24	Oral and oromucosal- fair/good	50	0.86					(+) 0.230	(+) <0.001
	25	Oral- fair/good	35	0.87					(+) 0.005	(+) <0.001

*Reference group for route of administration was "oral", for CBD formulation was "Epidiolex", and for diet was "fast" status.

⁺The number of female participants was divided by the total participants, and the result ratio was a number between 0 and 1, which was included in the model. This table does not include regression coefficients since they were in log scale and not interpretable in terms of effect size. Hereby only the sig of regression coefficients, i.e. negative or positive, and statistical significance level are reported.

		Tm arithr	,	C _{max} , ge	ometric	AU geom	,	AUC geom	,		^{1/2} , metic
		mean	SD	mean	CV%	mean	CV%	mean	CV%	mean	SD
	Arm1	0.64	0.42	1.38	83.33	2.55	59.12	4.05	73.56	2.22	0.45
	Arm2	1.89	1.18	2.65	44.83	6.10	42.15			4.14	5.08
A11 // / 1 0000	Arm3	1.94	1.27	0.46	40.00	0.95	47.62			4.68	2.36
Abbotts et al., 2022	Arm4	0.59	0.23	2.57	67.74	3.81	64.54	5.53	58.88	2.85	2.15
	Arm5	0.86	0.40	1.63	90.91	2.82	72.41	5.28	59.05	2.34	1.61
	Arm6	2.16	1.49	0.22	150.00	0.47	128.57			7.38	7.52
	Arm1a	2.50	1.18	12.19	106.40						
	Arm1b	3.30	1.58	17.90	55.80						
Democrie et al. 2022	Arm1c	3.20	1.18	1.99	98.57						
Bergeria et al., 2022	Arm2	0.00	0.00	82.90	76.95						
	Arm3	0.10	0.14	120.77	100.35						
	Arm4										
Dev1 et al. 2022	Arm1	0.96	0.72	1.56	80.00	2.84	77.78	3.32	67.50	1.10	0.40
Berl et al., 2022	Arm2	5.10	1.50	0.69	69.05	2.78	70.59	5.79	42.86	3.80	0.90
Busardo et al, 20		0.17	0.17	83.98	48.05	76.77	57.15			3.45	4.72
,	Arm1	4.5	2.2	7.33	73.63	28.73	41.48	30.94	41.49		
	Arm2	4.1	2.0	12.90	59.33	61.64	43.83	70.98	2.54		
Hosseini et al, 2021	Arm3	5.2	1.8	11.66	66.43	62.72	48.85	66.61	47.73		
	Arm4	4.5	2.0	4.08	52.17	24.52	42.11	27.02	41.98		
	Arm5*										
	Arm1	1	1.00	0.44	60.00	0.69	81.96			1.50	1.37
Vitetta et al., 2021	Arm2*										
	Arm1	3.29	0.61	1.67	85.46	3.50	84.72				
	Arm2	3.39	0.65	0.72	149.61	1.47	120.44				
Williams et al., 2021	Arm3	1.28	0.62	3.21	46.61	6.98	50.06	11.87	59.38	2.20	1.14
······································	Arm4	1.53	1.02	2.18	86.11	5.12	72.31	7.72	81.43	5.18	7.07
	Arm5	0.70	0.23	4.79	59.61	7.73	62.61	9.52	53.02	1.42	0.52
	Arm1	3.75	0.74	187	52.2	1077	49.6	1190	48.9	39.7	14.29
	Arm2	3.38	1.30	1050	56.0	4584	47.9	4870	46.8	41.3	6.86
Crockett et al., 2020	Arm3	5.26	2.35	722	41.8	3202	35.6	3394	35.0	39.4	9.57
eroenett et un, 2020	Arm4	5.88	3.02	527	51.2	2450	39.6	2588	40.6	36.5	7.81
	Arm5	5.76	2.02	354	59.9	1676	59.1	1782	57.8	34.0	7.62
	Arm1	0.90	0.90	1.87	112.80	245.62	132.69	329.82	104.10	2.54	3.47
Hobbs et al., 2020	Arm2	1.50	1.50	0.43	112.77	54.48	132.69	68.24	104.10	2.30	3.15
	Arm1	2.13	0.77	16.10	50.00	58.51	29.51	63.42	28.79	2.00	0.10
Izgelov, 2020	Arm2	4.38	1.99	12.52	50.00	60.76	42.42	65.73	40.85		
1280101, 2020	Arm3	10.45	7.06	0.60	87.50	6.40	75.00				
Pérez-Acevedo et al.,	Arm1	1.9	1.1	0.32	75.00	1.25	50.00			3.30	2.14
2020b	Arm2	2.0	0.7	1.07	50.00	5.43	58.73			4.4	2.14
	Arm1	4.00	2.19	255.55	58.45	1789.98	23.80	1902.99	22.60	70.3	7.2
Perkins et al., 2020	Arm2	3.67	0.82	622.08	52.98	3979.09	37.74	4177.25	37.82	67.1	14.1
	Arm3	4.06	0.02	1031.58	34.13	7636.37	23.13	8026.94	23.63	68.9	11.1
	Arm1	3.0	3.00	1.00	112.80	3.79	132.68	30 <u>2</u> 0,77	20.00	8.7	11.90
Pichini et al., 2020	Arm2	2	2.00	0.20	112.67	0.48	132.00			5.2	7.11
Tayo et al., 202		2.50	0.35	137.49	48.82	457.64	16.72	493.22	15.35	11.2	5.29
•	Arm1	1.00	0.00	11.02	71.31	29.17	50.17	170.00	10.00	11.4	
Knaub et al., 2019	Arm2	3.33	2.28	2.33	84.62	16.80	55.76		1	1	<u> </u>
	Arm1*	5.55	2.20	2.33	07.02	10.00	55.70		1	1	
	Arm2*								1	1	
	Arm3*								1		
Morrison et al., 2019	Arm4*										
	Arm5*										
	Arm6*										<u> </u>
	AIII0*										

	Arm7*										
	Arm8*										
	Arm1	2.17	0.93	19.28	45.76	2603.31	45.49				
	Arm2	1.83	0.68	68.76	52.32	9390.94	58.19				
Patrician et al., 2019	Arm3	1.88	0.95	13.98	66.67	1949.99	57.77				
	Arm4	2.05	0.68	50.15	43.04	6563.29	41.86				
Taylor et al., 20		2.78	1.23	148	65.0	449	73.5	474	73.8	8.58	5.87
Atsmon et al., 20		1.64	1.18	2.85	24.83	8.97	45.38	9.66	43.06	3.21	1.62
1 Hollion et un, 20	Arm1	3.10	0.46	2.99	39.75	8.91	41.39	9.57	40.16	2.95	2.58
Atsmon et al., 2018b	Arm2	3.38	1.01	43.67	42.45	145.75	22.96	149.25	22.67	3.59	0.26
7 Homon et un, 20100	Arm3	3.18	1.14	1.81	53.66	6.80	39.18	7.35	35.98	2.31	0.72
Meyer et al., 20		0.12	0.12	14.59	112.82	8.22	132.67	7.55	55.70	0.40	0.55
Meyer et al., 20	Arm1	5.16	1.41	304.62	46.70	1407.75	52.00	1525.18	46.70	0.10	0.55
Schoedel et al., 2018	Arm2	5.89	1.17	439.96	64.90	2169.62	70.10	2285.08	64.00		
Schoeder et al., 2010	Arm2 Arm3	5.62	2.33	283.20	112.80	1576.25	109.60	1586.63	104.10		
	Arm1	4.00	0.79	20 5.20 292.4	87.9	1570.25	78.2	1618	74.6	14.43	5.21
	Arm2	4.50	0.79	533	35.1	2669	36.4	2802	35.5	14.43	2.14
		5.00	0.79	722.1	52.3	3215	50.3	3426	48.3	16.61	3.11
	Arm3	4.52	0.80	722.1	83	3696					
Taylor et al., 2018	Arm4			782 290.8			79.9 74.6	3900	79.3	15.42	4.47
	Arm5	4.38	0.84		86.3	1070					-
	Arm6	4.38	0.84	361.8	105.8	1444	101.4	2100	40.0	20.22	0 (4
	Arm7	3.63	0.78	335.4	81.3	1987	53.6	2198	48.2	30.33	8.64
01 1 1	Arm8	3.13	1.07	1628	51.4	8347	34.1	8669	33.9	24.40	3.90
Cherniakov et al.,	Arm1	1.00	0.34	1.82	57.14	6.01	56.52				
2017	Arm2	3.00	1.35	0.43	60.00	2.89	38.71				
Haney et al., 20		3.00	1.41	49.69	120.73						
Desrosiers et al.,	Arm1	0.53	0.32	0.85	49.47						
2014	Arm2	0.13	0.16	0.42	77.36						
Sellers et al., 2013	Arm1*										
Seliers et al., 2015	Arm2*										
	Arm1	1.00	0.30	0.38	20.51	0.76	40.24	1.59	30.72	5.28	3.28
	Arm3	1.00	0.40	1.89	56.68	7.36	90.74	9.54	96.84	9.36	6.81
Stott et al., 2013a	Arm4*										
	Arm5*										
	Arm6*										
Statt at al. 2012h	Arm1	5.01	1.84	3.11	62.30	18.65	41.71	21.46	40.16	5.49	2.17
Stott et al., 2013b	Arm2	1.45	0.46	0.97	64.35	3.57	77.93	4.57	72.52	6.39	4.48
	Arm1	1.63	1.07	0.81	78.64	2.70	65.94	4.37	60.00	10.86	12.71
Stott et al., 2013c	Arm2	2.38	1.61	0.58	56.06	1.58	56.59	3.45	22.60	7.81	3.00
,	Arm3	1.46	0.77	0.52	68.25	1.53	65.03	2.71	47.67	5.22	4.51
	Arm1	0.83	0.51	0.24	69.93	0.78	109.16				
Eichler et al., 2012	Arm2	1.17	1.17	1.02	69.81	1.88	80.60		1	1	
	Arm1	3.7	1.50	1.28	75.00	3.97	53.33			1	1
Karschner et al., 2011	Arm2	4	1.50	6.67	8.96	15.54	59.67				1
Schwope et al., 20		0.31	0.08	1.61	86.36	10.07	27.07				
Nadulski et al., 2005a	Arm1	0.99	0.33	0.80	58.07	4.26	20.92				
1 autoristi et al., 2003a	Arm2	1.07	0.53	1.02	47.79	4.30	20.92				+
Nadulski et al., 20		1.07	0.32	0.81	61.37	4.50	21.37				
Traduiski et al., 20	Arm1	2.17	0.39	1.87	44.88	1.57	132.69				
				7.25	44.88 84.41	6.18	132.09	9.03	89.43	1 10	0.97
Guy and Flint, 2004	Arm2	0.60	0.39	2.30	53.08	0.18 3.68	108.29	9.03	89.43 26.90	1.10	
	Arm3	2.35	2.12							2.40	2.02
C	Arm4	1.67	0.82	2.50	26.36	2.78	75.93	8.91	41.66	1.97	0.62
Guy and Robson, 2		4.22	4.22	2.21	112.79	6.83	132.69	8.29	104.10	1.81	2.48
	Arm1	1.63	0.68	2.02	73.20	5.75	63.58	6.09	60.53	1.44	0.79
Guy and Robson,	Arm2	2.79	1.31	2.09	104.31	5.19	72.19	5.69	65.59	1.81	2.05
2004b	Arm3	2.04	1.13	2.11	73.18	6.53	65.69	6.97	64.25	1.76	0.80
	Arm4	1.27	0.84	1.83	90.28	4.37	85.76	4.65	82.42	1.09	0.46
Ohlsson et al., 1986	Arm1	0.05	0.05	647.81	34.84	275.38	13.38			24.00	6.00
	Arm2	0.05	0.05	98.39	50.00	76.19	35.46		1	31.00	4.00

* Multiple-dose arm

Originally reported values are in **bold** (simple conversions for unit of measurements may have been applied). Values that resulted from more complex conversions/estimations, i.e. median (range) to mean (SD) or arithmetic mean (SD) to geometric mean (CV%), are in *italic*.

Pharmacokinetics of Cannabidiol: A systematic meta-regression analysis to guide clinical trials

Section A_ Quality Assessment

Authors of this review chose a more precise approach to the overall rating of NHLBI tool toward a more objective unified replicable assessment. Given the unique characteristics of PK studies and their outcomes, it was decided that certain items from the tool bear more weight in determining the overall risk of bias and quality of the study; question 2 is concerned with description of study population, question 5 with sample size, and question 6 with description of the intervention. This difference in weighting was applied through the following logic:

-A study is rated as Poor if the answer to more than four questions is either NR/CD/NO,

or if the answer to exactly four questions is NR/CD/NO and one of them is among questions number 2, 5, or 6.

-A study is rated as Fair, if the answer to three or four questions other than 2,5, or 6 is NR/CD/NO,

or if the answer to two questions is NR/CD/NO and one of them is among questions number 2, 5, or 6.

-A study is rated as good if the answer to two or less than two questions is NR/CD/NO and none of them is among questions number 2, 5, or 6.

Section B_ Estimation/conversion of PK values

The formulas that are discussed in this section are based on highly cited published work and widely accepted methods by expert statisticians (Wan et al., 2014; Higgins et al., 2008) and in accordance with available guidelines (Cochrane Handbook 6.3, 2022). Meanwhile, they have been rarely used in reviews of PK studies which could be in part due to the complexity and time-consuming nature of such an approach. Hereby, we try to provide a simplified guide for recruiting these methods. We also showcase the level of accuracy of the results after arithmetic to geometric conversion, using arithmetic outcomes from Morrison et al., 2019, where authors reported both arithmetic and geometric values for 3 medication arms calculated originally from individual-participant data. More comprehensive showcases and evaulation of these methods are available elsewhere (Wan et al., 2014; Higgins et al., 2008).

Methods

For PK values reported as median (range), formula number 3 and 7 from Wan et al., 2014 were used to estimate arithmetic mean and SD respectively as following:

Sample mean = $\frac{\min + \max + 2 \cdot smaple \text{ median}}{4}$ Sample SD = $\frac{\max - \min}{\xi(n)}$

where $\xi(n)$ comes from Table1 in Wan et al., 2014, and it's value depends on the sample size.

For PK values reported as arithmetic mean (SD), a series of formulas presented on pages 6073-6075 from Higgins et al., 2008 was used, which are revised for simplicity and understandability (without any change to the original formula):

Step1 \rightarrow a z⁻ and S_z value are estimated as mean and standard deviation of log-transformed measurements respectively, using the following formula:

$$z^{-} = \ln \left(arithmetic \text{ mean}\right) - \frac{1}{2} \cdot \ln \left(\frac{SD^2}{arithmetic \text{ mean}^2} + 1\right)$$
$$Sz = \sqrt{\ln \left(\frac{SD^2}{arithmetic \text{ mean}^2} + 1\right)}$$

Step2 \rightarrow geometric mean can be estimated from arithmetic mean using the following formula:

Geometric mean = $e^{\overline{z}}$ or $Exp(\overline{z})$

Step3 \rightarrow calculation of geometric CV% from arithmetic data is not directly discussed in Higgins et al., 2008, and the authors of this review could not find an original paper directly discussing this estimation. Meanwhile, several statistical experts has further discussed, applied, and modified the concepts of "geometric measures of dispersion" proposed by Kirkwood et al., 1979. The final outcome has been a currently commonly used form (e.g. in SAS software) as geometric coefficient of variation= sqrt(exp((standard deviation of log-transformed data)²)-1) (https://blogs.sas.com/content/iml/2019/10/02/geometric-mean-deviation-cv-sas.html) where "standard deviation of log-transformed data" could be replaced by Higgins et al definition of Sz. As such, the following formula can be used for estimation of geometric CV%:

Geometric CV% =
$$\left(\sqrt{e^{(Sz)^2}-1}\right) \cdot 100$$

Step4 \rightarrow for the purpose of meta-regression analysis, z⁻ (CI95%) was calculated for all the values of all PK parameters in single dose arms, and was used as input for linear meta-regression analysis, using Higgins et al 2008 methods. It is noteworthy that z⁻ (CI95%) is in fact log-normal-transformed version of geometric mean (geometric confidence interval). Two possible scenarios are as following:

Scenario1- if data is reported as arithmetic mean (SD), then

Log-transformed geometric mean= z^{-}

Log-transformed geometric CI95% = $z^- - t$. $\frac{Sz}{\sqrt{n}}$ to $z^- + t$. $\frac{Sz}{\sqrt{n}}$

*t-score can be calculated using any statistical software or any of the numerous online t-score calculators

Scenario 2- if data is already reported as geometric mean (CV%), then

Log-transformed geometric mean= z^{-} = *ln* (*Geometric mean*)

Log-transformed geometric CI95% = $z^{-} - t$. $\frac{Sz}{\sqrt{n}}$ to $z^{-} + t$. $\frac{Sz}{\sqrt{n}}$

*t-score can be calculated using any statistical software or any of the numerous online t-score calculators *Sz in here cannot be calculated using the formula discussed before, since that was based on arithmetic data. Given the previous discussion of the work by Kirkwood et al 1997, and currently accepted methods, the following formula can be used to estimate Sz from geometric CV%:

$$Sz = \sqrt{\ln\left(\left(\frac{CV\% \text{ of }}{100}\right)^2 + 1\right)}$$

Step5→ for demonstration purposes, like Suppl Fig1, geometric CI95% can be simply estimated as following:

Geometric CI95%=
$$e^{\left(z^{-}-t\cdot\frac{Sz}{\sqrt{n}}\right)}$$
 to $e^{\left(z^{-}+t\cdot\frac{Sz}{\sqrt{n}}\right)}$

Showcase

			Arithmet originally	,	Ge		C _{max} , originally ported	Geomet	ric C _{max} , e arithmeti	stimated from c data
		N	mean	SD	mean	CV%	Estimated CI95%	mean	CV%	Estimated CI95%
	A	15					(614.981 to			(718.504 to
Mamiaan	Arm6		935	347	840	61.1	1147.351)	876.555	37.088	1069.372)
Morrison	Arm7	12					(607.630 to			(623.250 to
et al., 2019	AIIII/		969	515	852	57.3	1194.646)	855.768	53.173	1175.033)
2019	Arm8	14					(671.771 to			(688.508 to
	Allio		895	322	838	39.8	1045.361)	842.185	35.99	1030.162)

			Arithmetic originally		Geo		UC _{0-t} , originally ported	Geometr	ic AUC _{0-t} , arithmeti	estimated from c data
		Ν	mean	SD	mean	CV%	Estimated CI95%	mean	CV%	Estimated CI95%
	A	15					(2792.110 to			(3064.009 to
Maniaan	Arm6		3720	1060	3500	42.6	4387.362)	3575.999	28.451	4173.542)
Morrison	Arm7	12					(2988.233 to			(3015.697 to
et al., 2019	Ami/		3880	1260	3690	34.2	4556.572)	3688.591	32.513	4511.628)
2019	Arm8	14					(2913.755 to			(3032.098 to
	Anno		3740	1110	3560	35.8	4349.575)	3586.743	29.727	4242.846)

References

Wan, X., Wang, W., Liu, J., & Tong, T. (2014). Estimating the sample mean and standard deviation from the sample size, median, range and/or interquartile range. BMC medical research methodology, 14(1), 1-13.

Higgins, J. P., White, I. R., & Anzures-Cabrera, J. (2008). <u>Meta-analysis of skewed data: combining results reported on log-transformed or raw scales</u>. *Statistics in medicine*, 27(29), 6072-6092.

Higgins JPT, Thomas J, Chandler J, Cumpston M, Li T, Page MJ, Welch VA (editors). *Cochrane Handbook for Systematic Reviews of Interventions* version 6.3 (updated February 2022). Cochrane, 2022. Available from www.training.cochrane.org/handbook.

Kirkwood, T. B. (1979). Geometric means and measures of dispersion. Biometrics, 908-909.

Section C_ Considerations for meta-regression modeling

For each PK parameter, only the variables that were theoretically relevant based on the pharmacokinetics literature were included in the model, e.g. only duration of the PK session and female ratio but not CBD dose or route of administration were included in the model for T1/2. In order to prevent overfitting, high collinearity, or exclusively correlated variables that could result in misinterpretation, the following considerations were applied: - if coefficient of correlation was more than 0.6 for any of the two independent variables, only the one with more robust available evidence was included in the model. -any independent categorical variable that was included had to have all the different possible values present across other categorical variables, to prevent exclusive correlation arms with both abstinent participants and non-abstinent participants in all the routes of administration that were included in the model, e.g. oromucosal {abstinent, non-abstinent}, oral {abstinent, non-abstinent}. In this particular example, since there were only one non-abstinent medication arm among oral medication administration arms and none among oromucosal administration arms, this variable was not included in any of the models. Also, since all the medication arms with CBD dose of >100mg were conducted with Epidiolex, and some formulations were exclusive to either oral or oromucosal administration, we avoided including both the CBD dose and formulation simultaneously in the models for Cmax and AUC and therefore only included CBD dose. However, we could include the CBD formulation in the model for Tmax for oral administration arms, given that CBD dose was not conceptually relevant to Tmax to be included in that model, and thus there was no concern about dose-formulation collinearity for Tmax.