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Abstract 1 

Early diagnosis of breast cancer remains a major clinical challenge. Liquid biopsy has 2 

become a powerful tool for cancer diagnosis by the aid of various the state-of-the-art 3 

detection technologies and artificial intelligence (AI) methods. Although the 4 

prediction performance is superior, the clinical application of existing AI models is 5 

greatly limited due to their poor interpretability. Here, we designed a miRNA-Gene-6 

Module-Pathway-Disease biological decoding path, and developed BioDecoder 7 

thereof, a miRNA bio-interpretable neural network model for breast cancer early 8 

diagnosis. We demonstrated that BioDecoder could achieve early non-invasive 9 

diagnosis of breast cancer with a remarkable performance (AUC = 0.989) and showed 10 

strong generalizability in an external cohort (AUC = 0.890). Meanwhile, the 11 

biologically interpretable results of BioDecoder revealed that significant changes in 12 

metabolic pathway and oxidative phosphorylation were the main action pathways of 13 

circulating miRNA in breast cancer. Our study indicates that BioDecoder offers the 14 

promise of non-invasive early diagnosis of breast cancer and can be generalized to 15 

other cancers and corresponding biomarkers. 16 

 17 

Keywords: breast cancer, circulating miRNA, biological interpretability, noninvasive 18 

diagnosis, liquid biopsy 19 
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Introduction 21 

Breast cancer is one of the most common malignancies worldwide. According to the 22 

data released by GLOBOCAN 2020, female breast cancer has surpassed lung cancer 23 

as the most commonly diagnosed cancer with about 2.3 million (11.7%) new cases in 24 

2020, being the leading cause of cancer mortality among women 1. Published research 25 

has revealed that the 5-year average survival rate of in situ female breast cancer 26 

reaches 99.0%, while those of regional- and distant-stage breast cancer are only 86.0% 27 

and 29.0%, respectively 2. Lokong et al. 3 also reported that delayed diagnosis was an 28 

important reason for the higher breast cancer mortality in low-income countries. 29 

Therefore, early screening and diagnosis are essential to improve the overall survival 30 

rate of breast cancer. Tissue biopsy is the gold standard for clinical diagnosis of breast 31 

cancer; however, as an invasive test it is not suitable for early detection 4. Currently, 32 

mammogram screening has been commonly used for early diagnosis of breast cancer 33 

but with risks of overdiagnosis and radiation exposure 5-7. Hence, it is imperative to 34 

develop an accurate and non-invasive alternative tool for the early detection of breast 35 

cancer. 36 

Liquid biopsy has become an important means of clinical early screening of cancer8, 
37 

9. It can detect and analyze circulating tumor DNA (ctDNA), RNA (i.e., mRNA, 38 

miRNA), circulating tumor cells (CTC), and exosomes in plasma, urine, and other 39 

body fluids, providing information that is difficult to capture in medical imaging10, 11. 40 

Compared with tissue biopsy, liquid biopsy is non-invasive and easier to monitor 41 

tumor oncogenesis, metastasis and treatment response in real time 12, 13. Although the 42 
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diagnosis of breast cancer is challenging due to heterogeneity 14, circulating 43 

carcinoma proteins, circulating tumor cells, ctDNA, circulating miRNA, and other 44 

biomarkers have been applied in liquid biopsy research of breast cancer and achieved 45 

good predictive performance 15, 16. Among them, the circulating miRNA plays an 46 

important role in tumor pathogenesis as oncogenes or tumor suppressors 12, 17, making 47 

it a promising biomarker for breast cancer diagnosis. In previous research, using 48 

machine learning algorithms, a panel of five miRNAs (miR-1246, miR-1307-3p, miR-49 

4634, miR-6861-5p and miR-6875-5p) was demonstrated to detect breast cancer with 50 

89.7% accuracy 18, and another set of seven miRNAs including has-miR-126-5p and 51 

has-miR-144-3p showed predictive power for triple-negative breast cancer with an 52 

area under the receiver operating characteristic curve (AUC) of 0.814 19. 53 

Artificial intelligence (AI), including traditional machine learning algorithms and 54 

deep learning architectures, has greatly altered the research paradigm in medical 55 

science, and has brought new breakthroughs in precise diagnosis, treatment and 56 

prognosis of cancer 20. Relying on the development of AI, liquid biopsy has become a 57 

powerful tool for cancer diagnosis 21. The inherent black-box nature of most AI 58 

models, however, hinders their interpretability and widespread clinical application 22. 59 

To help alleviate this problem, eXplainable AI (XAI) 23 has been introduced. Research 60 

have revealed that feature importance, model perturbation, feature association, and 61 

prior knowledge, etc., can be utilized to improve the interpretability of AI models 24, 25. 62 

By integrating prior biological knowledge, bio-interpretable models (white-box 63 

solution) can be constructed to capture potential causality and uncover the underlying 64 
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biological process of diseases with better model credibility and generalizability, 65 

thereby promoting the research of disease mechanisms and the identification of 66 

therapeutic targets. For example, a recent study by Elmarakeby et al. 26 have 67 

demonstrated the capacity of biological XAI model for revealing novel molecularly 68 

altered candidates and predicting the staging of prostate cancer patients. Consequently, 69 

development of a breast cancer early diagnostic biological XAI model promises great 70 

benefits for further popularizing the clinical application of breast cancer liquid biopsy. 71 

This study was undertaken to design a miRNA biological decoding path (miBDP) 72 

and develop BioDecoder, a miRNA bio-interpretable neural network model, for breast 73 

cancer early screening and diagnosis. Integrating prior biological knowledge and AI 74 

technology, BioDecoder dramatically ameliorated its biological interpretation ability 75 

under the premise of ensuring prediction performance. The findings drawing from 76 

BioDecoder provide new insights into the pathogenesis and treatment of breast cancer. 77 

 78 

Results 79 

A set of 4113 serum samples, including 2833 control samples (i.e., 2686 non-cancer 80 

samples, 93 prostate disease samples and 54 benign breast disease samples) and 1280 81 

breast cancer samples, and corresponding profiles of 2540 circulating miRNAs were 82 

obtained as the discovery cohort (Table S1) 18. We developed a miRNA bio-83 

interpretable neural network model (BioDecoder) to diagnose breast cancer, whose 84 

performance was compared with traditional black-box models (i.e., random forest [RF] 85 

and fully connected neural network [FCN]). The potential mechanism of miRNA in 86 
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breast cancer was then explained through BioDecoder. Finally, the predictive 87 

performance of BioDecoder was validated on an external cohort (11 control samples 88 

and 122 breast cancer samples, Table S2) by transfer learning (Figure 1A).  89 

 90 

Differential circulating miRNAs as biomarkers for breast cancer diagnosis 91 

Circulating miRNAs in serum have potential for breast cancer diagnosis 27, 28, which 92 

was confirmed in our discovery cohort (Figure 1B). Seven hundred and ten miRNAs 93 

with significant differences between breast cancer and control samples were screened 94 

out (|log2FC| > 1 and FDR < 0.05; FC: fold change), including 704 up-regulated 95 

miRNAs and 6 down-regulated miRNAs (Table S3). Among them, has-miR-1246 and 96 

has-miR-1307-3p, which were significantly overexpressed in breast cancer patients, 97 

have been proven to be potent combined markers for early detection of breast cancer 98 

in published studies, with a sensitivity of 97.3%, a specificity of 82.9%, and an 99 

accuracy of 89.7% 18, 29. 100 

These 710 differential miRNAs were mapped to 11,418 target genes in the 101 

miRTarBase database (Table S4). As shown in Figure 1C, the results of Kyoto 102 

encyclopedia of genes and genomes (KEGG) pathway enrichment analysis revealed 103 

that proteoglycans in cancer, hippo signaling pathway and signaling pathway 104 

regulating pluripotency of stem cells, etc. were regulated by differential miRNAs and 105 

might participate in the onset and progression of cancer. In particular, these target 106 

genes were also significantly enriched in breast cancer pathway (FDR < 0.001; Table 107 

S5), which was consistent with the results of gene set enrichment analysis (GSEA) 108 
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(enrichment score = 0.758, FDR < 0.001; Figure 1D, Table S6). 109 

 110 

BioDecoder enabled precise diagnosis of breast cancer 111 

By leveraging the prior biological knowledge, a miRNA-Gene-Module-Pathway-112 

Disease biological decoding path (miBDP) was extracted from databases to 113 

characterize the biological process of miRNAs in the body (Figure 2A). Based upon 114 

miBDP, we constructed the miRNA bio-interpretable neural network model 115 

(BioDecoder) for breast cancer diagnosis. The 710 differential miRNAs were fed into 116 

BioDecoder as input, and then 11,418 targeted genes, 116 modules and 70 pathways 117 

from miRTarBase and KEGG were used as hidden layers for information extraction 118 

(Table S4), followed by a disease layer that outputs the probability of breast cancer 119 

(Figure 2A and Figure S1). For comparison, similar neural network architecture was 120 

used in FCN. However, different from FCN, each neuron in BioDecoder represented a 121 

specific biological entity, and the links between adjacent layers were partially 122 

connected according to the real biological relationship, rather than fully connected 123 

(Figure S1). Moreover, in view of the class imbalance issue in the discovery cohort, 124 

the synthetic minority oversampling technique (SMOTE) was performed to balance 125 

the sample size of the two classes (i.e., control and cancer), thereby improving model 126 

stability (Figure 2B, C). 127 

After 100 epochs training, the validation losses were minimized (Figure 2D) and the 128 

area under the receiver operating characteristic curves (AUC) was stable at the highest 129 

scores (Figure 2E). The results confirmed that RF, FCN and BioDecoder all had 130 
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excellent prediction performance (AUC > 0.97; Table 1, Figure 2F and G, and Figure 131 

S2). Nevertheless, the validation AUC of RF was significantly higher than its test 132 

AUC, suggesting an overfitting problem. BioDecoder showed a comparable 133 

performance to FCN although it had more restrictions on model architecture (Table 1). 134 

BioDecoder with oversampling achieved the best performance for predicting risk of 135 

breast cancer on the test set (AUC = 0.989, balanced accuracy = 0.960, precision = 136 

0.949, recall = 0.943) and was used for subsequent analysis. 137 

 138 

BioDecoder revealed the underlying pathological mechanisms of miRNA in 139 

breast cancer 140 

BioDecoder is a neural network architecture with bio-entity connections between 141 

adjacent layers (i.e., miRNA, gene, module and pathway), which can reflect the 142 

specific changes of these bio-entities in breast cancer. Ranking the pathways in 143 

BioDecoder by weights, it was found that several pathways, such as metabolic 144 

pathway, ribosome, oxidative phosphorylation, and DNA replication, were 145 

significantly different between the control and cancer samples (P < 0.001), and were 146 

of prime importance to breast cancer early diagnosis (Figure 3A, B).  147 

Specifically, hsa-miR-3659 and hsa-miR-190a-3p had high weights in the metabolic 148 

pathway (including 97 modules, 406 genes, and 403 miRNAs, Figure S3A) that has 149 

an important influence on breast cancer occurrence 30. The ribosome pathway is 150 

involved in the proliferation and metastasis of breast cancer cells 31-35, in which hsa-151 

miR-17-3p and hsa-miR-3622b-3p were the key factors (Figure S3B). Oxidative 152 
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phosphorylation contained 10 energy metabolism modules (e.g., F-type ATPase and 153 

V-type ATPase), 84 genes, and 81 miRNAs (Figure 3C). A subset of miRNAs 154 

targeting these modules also obtained good diagnostic capabilities for breast cancer. 155 

For instance, a set of 38 miRNAs (such as hsa-miR-3146 and hsa-miR-330-3p) in the 156 

F-type ATPase module achieved excellent diagnostic performance (AUC = 0.953), 157 

while the only miRNA (hsa-miR-3664-3p) in the V-type ATPase module yielded an 158 

AUC up to 0.868 (Figure 3C). Interestingly, we found that some target genes of 159 

miRNAs could affect the prognosis of breast cancer (Figure 3D, E). Low expression 160 

of ATP5F1B (P < 0.001) and ATP6AP137 (P < 0.001) significantly improved the 161 

breast cancer prognosis, and the 5-year survival increased from 70% and 77% to 85%, 162 

respectively. 163 

 164 

Extended application and validation of BioDecoder 165 

The superior biological interpretability of BioDecoder opens up encouraging 166 

prospects in its clinical practice. As presented in Figure 4A, besides significantly 167 

distinguishing non-cancer and breast cancer samples (P = 2.666e-224), BioDecoder 168 

could also accurately identify other diseases, such as prostate disease (P = 2.302e-9) 169 

and benign breast disease (P = 1.539e-12). Meanwhile, although patients with benign 170 

breast disease were highly likely to develop cancer at miRNA level, the probability 171 

was still significantly lower than that of breast cancer patients (P = 0.040, Figure 4A). 172 

It indicated that BioDecoder has the potential for early screening of breast cancer. 173 

BioDecoder contained the biological decoding path of miRNA, and the sample 174 
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distribution of each level in miBDP is presented in Figure 4B. At the miRNA level, 175 

the model could roughly distinguish between control and breast cancer samples; 176 

nevertheless, disease samples were chaotic at principal component analysis (PCA) 177 

space. As the decoding proceeded, the distinctions between different categories 178 

increased gradually. At the module and pathway levels, there were significant 179 

differences among breast cancer, prostate disease and non-cancer samples, while 180 

benign breast disease samples were close to breast cancer samples (Figure 4B). 181 

To evaluate the robustness and generalization ability of BioDecoder, an external 182 

validation was performed by transfer learning. The external validation cohort included 183 

miRNA expression profiles of breast tissue from 122 breast tumor patients and 11 184 

healthy individuals 36. The first four layers of BioDecoder were frozen, and only the 185 

weights of the output layer were updated in transfer learning (Figure 4C). Taking into 186 

consideration different sampling proportions (10%–70%) of the external training set, 187 

BioDecoder exhibited better generalizability than FCN—BioDecoder achieved an 188 

excellent diagnostic performance with only a few external training samples, yielding 189 

AUC up to 0.890 (Figure 4D, E).  190 

 191 

Discussion  192 

Breast cancer is the most common malignant cancer in women and its early diagnosis 193 

can effectively reduce mortality 37. The accuracy of breast cancer early screening has 194 

always been the coalface of research 2, 38. In this study, we designed a miRNA bio-195 

interpretable neural network model, BioDecoder, for noninvasive diagnosis of breast 196 
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cancer. Based upon miRNA expression profile of serum sample, BioDecoder achieved 197 

superior predictive performance for breast cancer (area under the receiver operating 198 

characteristic curve [AUC] = 0.989). In addition, BioDecoder showed strong 199 

robustness and clinical generalizability (AUC = 0.890) through transfer learning, even 200 

for breast tissue samples. 201 

Liquid biopsy has been commonly used in cancer diagnosis due to its high 202 

sensitivity and specificity, especially with the aid of artificial intelligence (AI) 39, 40. 203 

Such black-box models, however, could hardly integrate into daily clinical practice 204 

owing to their poor bio-interpretability 22. To alleviate this issue, here we developed 205 

BioDecoder based on the architecture of miRNA biological decoding path (miBDP, 206 

miRNA-Gene-Module-Pathway-Disease) 24, 41. The bio-interpretable miBDP 207 

architecture not merely considerably reduces the number of parameters and enhances 208 

modeling efficiency (Figure S1) 26, but also guarantees BioDecoder great benefits in 209 

digging into the pathogenesis of breast cancer and discovering potential therapeutic 210 

targets (Figure 2, 3). The construction of Biodecoder is a decoding process of miRNA 211 

expression information according to miBDP, in which different diseases and their 212 

stages can be effectively distinguished (Figure 4B). Besides the excellent predictive 213 

power, BioDecoder exhibited outstanding performance in transfer learning (Figure 214 

4D), implying that biologically interpretable architecture has an edge in terms of 215 

model generalizability and clinical application. 216 

 Clinically, circulating miRNAs has been proved to be related to the pathogenesis 217 

of breast cancer 28, 42, and can be used as biomarkers for breast cancer diagnosis, such 218 
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as has-miR-1246 and has-miR-1307-3p 18, 29. In our results, 710 differential miRNAs 219 

were significantly enriched in breast cancer related pathways. Through the biological 220 

interpretation of miBDP, metabolism and oxidative phosphorylation were found to be 221 

the key pathways for miRNA to regulate the development of breast cancer, which 222 

indicates that metabolism may be reprogrammed in breast cancer 27, 43, 44. Moreover, 223 

under the regulation of miRNAs, some genes, such as ATP5F1B and ATP6AP1, could 224 

affect the prognosis of breast cancer. Studies have shown that the increased 225 

expression of genes in oxidative phosphorylation pathway plays an major role in the 226 

immunotherapeutic drug resistance of breast cancer, which could be reversed by the 227 

knockdown or inhibition of ATP synthase 45. Our findings suggests that BioDecoder’s 228 

interpretability can offer new thoughts for refining clinical diagnosis and precise 229 

treatment of breast cancer.  230 

Although BioDecoder uncovered the key pathways for the onset and progression of 231 

breast cancer, the mechanism of miRNA targeting these pathways still needs 232 

experimental verification. In essence, the interpretability of BioDecoder comes from 233 

prior biological knowledge, and therefore detailed biological knowledge (e.g., genetic 234 

information, clinical characteristics, and various molecular experimental data) can 235 

improve model performance in capturing the real causality. Also, the transferability 236 

and predictive performance of similar architecture applied to other biomarkers and 237 

diseases need to be further evaluated.  238 

 239 

Conclusions 240 
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Our study proposed a bio-interpretable neural network architecture, namely 241 

BioDecoder, which can accurately diagnose breast cancer and reveal the potential 242 

mechanism of miRNA in breast cancer. Based on reliable prior knowledge, this bio-243 

interpretable architecture has great potential to be applied to other types of biomarkers 244 

and diseases. 245 

 246 

Methods 247 

Discovery cohort 248 

The data used in this work can be acquired from the ArrayExpress database 249 

(https://www.ebi.ac.uk/biostudies/arrayexpress). The discovery cohort (E-GEOD-250 

73002, Table S1) consists of 1280 serum samples from breast cancer patients and 251 

2833 serum samples from control samples (i.e., 2686 non-cancer samples, 93 prostate 252 

disease samples and 54 benign breast disease samples) 18. Samples from breast cancer 253 

patients with the following characteristics were excluded: (1) given drugs before 254 

serum collection and (2) with concurrent or previously diagnosed advanced cancer in 255 

other organs. Serum samples of control samples with no history of cancer or 256 

hospitalization within the past 3 months were included for analysis. The miRNA 257 

expression profiles of all samples were obtained by microarray analysis and verified 258 

by quantitative Reverse Transcription-Polymerase Chain Reaction (RT-PCR). 259 

 260 

External validation cohort 261 

The external cohort includes 133 Spanish breast tissue samples (i.e., 122 breast cancer 262 
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samples and 11 control samples, Table S2), which was reported by Matamala et. al. 263 

(https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE58606) 36. The miRNA 264 

expression profiles of all tissue samples were obtained by microarray analysis and 265 

verified by quantitative RT-PCR. 266 

 267 

Experimental setup 268 

A stratified random sampling was performed to divide the discovery cohort into two 269 

subsets: 60% for training set (768 breast cancer samples and 1700 control samples) 270 

and 40% for test set (512 breast cancer samples and 1133 control samples). Then the 271 

training set was oversampled to balance the number of positive and negative samples 272 

using the synthetic minority oversampling technique (SMOTE) algorithm of the 273 

imblearn package (version 0.9.1) 46. 274 

 275 

Construction of artificial intelligence (AI) models 276 

Random Forest (RF) model 277 

The RF model was constructed by the scikit-learn (version 0.21.3) package. In the 278 

training set, we performed feature selection through recursive feature elimination 279 

using cross-validation. Subsequently, a 5-fold cross-validation and grid search were 280 

used for model training and hyperparameter tuning. Area under the receiver operating 281 

characteristic curve (AUC) was used as the primary evaluation measure for model 282 

selection. Finally, the RF model was constructed using the optimal features and 283 

hyperparameters (max_features = 0.1, n_estimators = 101, max_depth = None, 284 
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max_samples = None, criterion = gini, and class_weight = balanced). 285 

BioDecoder and Fully Connected Neural Network (FCN) models 286 

The neural network models were constructed by the pytorch (version 1.13) package 47. 287 

The architecture of neural network consisted of one input layer (miRNA), three 288 

hidden layers (gene, module and pathway), and one output layer (disease). The input 289 

and hidden layers included linear function, rectified linear unit (ReLU) function, 290 

batch normalization (BatchNorm1d) function and dropout function, while the output 291 

layer contained only linear and BatchNorm1d functions, followed by the softmax 292 

function for classification (Figure S1). To make each layer biologically interpretable, 293 

we fixed the number of neurons according to the corresponding miRNA, gene, 294 

module and pathway, and links between adjacent layers were partially connected 295 

through a mask matrix, which was a boolean matrix representing real biological 296 

connections between layers, thereby providing biological meaning for the neurons 297 

between each layer. Notably, FCN had the same configuration as BioDecoder, except 298 

that the layers of FCN were fully connected and were not biologically meaningful 299 

(Figure S1). 300 

The model was trained by Adam optimizer 48 (learning rate = 0.01, batch size = 64, 301 

and minimal epoch = 100) with batch gradient descent, and used cross entropy as the 302 

loss function. To prevent overfitting, the model was early stopped when the validation 303 

loss was minimized. The model was then applied to the test set to assess model 304 

performance. Evaluation metrics such as balanced accuracy, precision, recall and 305 

AUC were reported. 306 
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 307 

Assessment of transfer learning robustness 308 

Transfer learning 49, 50 was used to validate the predictive performance of BioDecoder 309 

on an external cohort. The first four layers of the BioDecoder were frozen, while the 310 

weights of pathway-disease were retrained by external training set (Figure S1). By the 311 

stratified random sampling, the external cohort was divided into two unequal parts—312 

that is, the external training set and external test set. The training set was used to tune 313 

the transfer learning model (at the sampling proportion from 10% to 70%), and the 314 

test set was used to evaluate the model performance. 315 

 316 

Statistics Analysis 317 

All statistical analysis was performed using R software (version 4.2.1) or Python 318 

software (version 3.9.6). Statistical significance was assessed using the Wilcoxon 319 

signed-rank test, unless otherwise specified. The differentially expressed miRNAs 320 

between breast cancer samples and control samples were established using a linear 321 

regression model in the R package limma 51. The resulting P values were corrected 322 

using the Benjamini-Hochberg (BH) method. The biomarkers that were differentially 323 

expressed miRNAs were screened by false discovery rate (FDR) < 0.05 and fold 324 

change (FC) > 2, or FDR < 0.05 and FC < 0.5. The corresponding target genes of 325 

differential miRNAs were obtained from miRTarBase database 52, and module and 326 

pathway information were extracted from the Kyoto encyclopedia of genes and 327 

genomes (KEGG). Pathway enrichment analysis was performed using the R packages 328 
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clusterProfiler 53 and GESA 54. The PCA method from the python package scikit-learn 329 

was applied for principal component analysis (PCA). Gene expression data for breast 330 

cancer survival analysis were collected from the Human Protein Atlas 331 

(https://www.proteinatlas.org/). The network graph was visualized by Cytoscape 332 

(https://cytoscape.org/, version 3.9.0). 333 

 334 

Abbreviations 335 

AI, Artificial Intelligence;  336 

AUC, Area Under the ROC Curve 337 

BH, Benjamini-Hochberg; 338 

CTC, Circulating Tumor Cells; 339 

ctDNA, circulating tumor DNA; 340 

ctRNA, circulating tumor RNA; 341 

GSEA, Gene Set Enrichment Analysis 342 

FC, Fold Change; 343 

FCN, Fully Connected Neural Network; 344 

FDR, False Discovery Rate; 345 

KEGG, Kyoto Encyclopedia of Genes and Genomes; 346 

miBDP, miRNA Biological Decoding Path; 347 

OS, Oversampling;  348 

RF, random forest; 349 

ROC, Receiver Operating Characteristic;  350 

RT-PCR, Reverse Transcription-Polymerase Chain Reaction; 351 

SMOTE, Synthetic Minority Oversampling Technique; 352 

XAI, eXplainable Artificial Intelligence; 353 

 354 

Key Points 355 

� Artificial intelligence technology combines prior biological knowledge greatly 356 
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improves the model interpretability while ensuring the prediction performance. 357 

� BioDecoder achieved accurate early diagnosis of breast cancer and showed strong 358 

robustness and clinical expandability. 359 

� The pathways, such as metabolic, ribosome, oxidative phosphorylation and DNA 360 

replication, played key roles in the pathogenesis of breast cancer. 361 
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 533 

Table 534 

Table 1. The predictive performance of random forest, fully connected neural 535 

network, and BioDecoder. 536 

  Training Validation Test 
Model Loss Loss AUC AUC Accuracy* Precision Recall 

Raw data 
RF NA NA 0.991 0.977 0.980 0.967 0.969 

FCN 0.128 0.352 0.990 0.989 0.964 0.960 0.945 
BioDecoder 0.889 0.359 0.988 0.986 0.955 0.948 0.934 
Oversampled data 

RF NA NA 0.995 0.977 0.979 0.963 0.971 
FCN 0.125 0.348 0.989 0.988 0.958 0.951 0.938 

BioDecoder 0.246 0.353 0.988 0.989 0.960 0.949 0.943 

* Balanced accuracy; RF: random forest; FCN: fully connected neural network; NA: not 537 
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applicable. 538 

 539 

Figure Legends 540 

Figure 1. Differential changes of circulating miRNAs in breast cancer. (A) The 541 

workflow of this study for breast cancer diagnosis based on circulating miRNAs. (B) 542 

Principal component analysis (PCA) of miRNA profiles showed different distribution 543 

between breast cancer and control samples in the discovery cohort. (C) The top 25 544 

KEGG pathways enriched by the target genes of differential miRNAs. (D) Gene set 545 

enrichment analysis results of differential miRNA target genes in breast cancer 546 

pathways. 547 

Figure 2. The architecture and performance of BioDecoder. (A) BioDecoder 548 

framework. This figure was created with BioRender.com (https://biorender.com/). (B) 549 

The distribution of control samples and breast cancer samples in the discovery cohort. 550 

(C) The distribution of control samples and breast cancer samples in the discovery 551 

cohort after oversampling. (D) The validation loss calculated by cross_entropy 552 

function during model training. (E) The AUC scores obtained during model training. 553 

(F) AUC of BioDecoder-OS on the test set. (G) Confusion matrix of BioDecoder-OS 554 

on the test set. SMOTE: synthetic minority oversampling technique; FCN: fully 555 

connected neural network; OS: oversampling; AUC: area under the receiver operating 556 

characteristic curve.  557 

Figure 3. Biological interpretation of BioDecoder. (A) The pathway importance 558 

ranked by weights. (B) Boxplot of differential expression between control and breast 559 
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cancer samples for the four important pathways (metabolic pathway, ribosome, 560 

oxidative phosphorylation, and DNA expression). (C) The biological network of 561 

oxidative phosphorylation pathway. Logistic regression was performed using 562 

miRNAs in each module and the receiver operating characteristic curves (ROC) were 563 

showed. (D). Survival curves of breast cancer patients based on ATP5F1B expression. 564 

Survival curves of breast cancer patients based on ATP6AP1 expression. ***，P < 565 

0.001. 566 

Figure 4. Application and validation of BioDecoder. (A) The probability of breast 567 

cancer predicted by BioDecoder in non-cancer, prostate disease, benign breast disease 568 

and breast cancer samples. The differences between groups were shown. (B) The 569 

distribution of test set samples at different miRNA biological decoding path levels of 570 

BioDecoder. (C) The flow chart of transfer learning for applying BioDecoder on the 571 

external cohort. (D) The transfer learning performance of BioDecoder and fully 572 

connected neural network on external cohort with different sampling proportions of 573 

the training set. (E) The receiver operating characteristic curve of BioDecoder’s 574 

transfer learning performance on the full external cohort. OS: oversampling. 575 

 576 

Supplementary material 577 

Figure S1. The neural network architecture of fully connected neural network, 578 

BioDecoder and transfer learning. 579 

Figure S2. The receiver operating characteristic curve and confusion matrix of 580 

random forest, fully connected neural network and Biodecoder in raw data and 581 

oversampling data. 582 

Figure S3. The biological network of metabolic pathway and ribosome pathway. 583 
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Table S1. Discovery cohort (E-GEOD-73002). 584 

Table S2. The external validation cohort (GSE58606). 585 

Table S3. The 710 miRNAs with significant differences between breast cancer and 586 

control samples. 587 

Table S4. The correspondence of biological entries in miBDP. 588 

Table S5. Pathway enrichment of miRNA targeted genes by clusterProfiler. 589 

Table S6. Pathway enrichment of miRNA targeted genes by GSEA. 590 

 591 
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