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Abstract

Motivation: Acute Myeloid Leukemia is a highly heterogeneous disease. Although current classifications

are well-known and widely adopted, many patients experience drug resistance and disease relapse. New

biomarkers are needed to make classifications more reliable and propose personalized treatment.

Results: We performed tests on a large scale in 3 AML cohorts, 1112 RNAseq samples. The accuracy

to distinguish NPM1 mutant and non-mutant patients using machine learning models achieved more than

95% in three different scenarios. Using our approach, we found already described genes associated with

NPM1 mutations and new genes to be investigated. Furthermore, we provide a new view to search for

signatures/biomarkers and explore diagnosis/prognosis, at the k-mer level.

Availability: Code available at https://github.com/railorena/npm1aml and https://osf.io/4s9tc/. The cohorts

used in this article were authorized for use.

Contact*: therese.commes@inserm.fr

1 Introduction

Acute Myeloid Leukemia (AML), the most common acute leukemia

among adults, is a hematopoietic disorder characterized by neoplastic

proliferation of myeloid-lineage cells. Most patients are not cured

with current therapies, and despite targeted therapeutic proposals, drug

resistance and disease relapse remain persistent problems. AML is also a

complex disease with a diversity of cell phenotypes. Several classifications

are used to improve clinical outcomes, including French-American-

British (FAB) (Bennett et al., 1976) and European LeukemiaNet (ELN)

(Döhner et al., 2017). Despite that, new biomarkers are required for more

confident classification and to refine treatment follow-up.

Exploration of RNAseq data provides a deep investigation potential

to identify a large diversity of biomarkers and to target key molecular

mechanisms that drive the AML pathogenesis and progression, thus,

offering potential benefits for diagnosis and prognosis applications.

However, RNAseq data can produce large and complex amounts of data,

often not human-understandable. Methods such as Machine Learning

(ML) have been supporting large-scale analysis of RNAseq data for

precision medicine (MacEachern and Forkert, 2021).

In the last years, ML has been largely used in the field of human

health for diagnosis and prognosis of diseases, including AML context

(Eckardt et al., 2020). The use of ML to guide analyzes on large amounts

of data offers us a way to interrogate specific parts of RNA, at the k-

mer level. K-mers are k-length substrings extracted from a raw sequence

file and are revolutionizing large-scale RNAseq data analysis by allowing

reference-free queries (Marchet et al., 2021). The investigation of k-mers

can reveal alterations in certain parts of the gene and links with other

genes in a deep-seated way, providing a new view of the investigated

scenarios. Also, one of the advantages of using k-mers is to account for the

vast diversity of transcriptional events such as splicing events, alternative

polyadenylation, intron retention, or mutations making the analysis a

reference-free approach.

In this context, we investigated gene expression using k-mers and

Machine Learning methods to yield a better understanding of prognosis

classification and key mechanisms of AML pathogenesis. To apply a

reference-free method in the context of AML, we started looking into

NPM1 mutation, one of the most common mutations in this pathology,

to define distinct patient groups and to find linked genes by searching

at the k-mer level from public AML RNAseq cohorts. Furthermore,

our approach provides support for indexing k-mers which constitutes an

interesting solution for interrogating "Omics data" instead of extracting

the presence/absence or absolute count of k-mers directly from the raw

data.

2 Materials and methods

In this section, we present how we designed the analysis to identify

the genes with different expressions in mutated and non-mutated NPM1

AML patients. For that, we applied a k-mer based approach and machine

learning classification in different AML cohorts to select the k-mers, and

consequently the genes, that distinguish the NPM1 mutation condition.

2.1 Cohorts

We analyzed three RNAseq AML cohorts. Beat-AML (Tyner et al.,

2018), Leucegene (BCLQ, 2019), and Beat-AML2 (Bottomly et al., 2022)
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cohorts with 462, 437, and 213 samples (phs001657.v1.p1, GSE49642,

and phs001657.v2.p1 accession IDs), respectively. From these cohorts, the

analyzed samples are Bone Marrow and Peripheral Blood sample types.

For each sample, we have information about the presence or absence of

NPM1 mutation that allows us to investigate the difference between these

two conditions and provide a selection of k-mers. Table 1 presents an

overview of information from these AML cohorts.

Table 1. Overview of AML cohorts. Number of NPM1 mutated and non-

mutated patients and samples types.

Mutated Non-Mutated Total

Beat-AML 112 350 462

Bone Marrow 60 183 243

Peripheral Blood 52 167 219

Leucegene 139 297 436

Bone Marrow 72 155 227

Peripheral Blood 67 142 209

Beat-AML 2 58 148 206

Bone Marrow 35 83 118

Peripheral Blood 23 65 88

Additionally, we used five wild-type cohorts, totalizing 132 healthy

samples, which in this paper, we treat as a single cohort, the healthy cohort

that includes CD34+ cells (37 samples), purified monocytes (50 samples)

and mononuclear cells (45 samples). We sought to understand the behavior

of the selected k-mers in healthy samples. For that, we searched the k-mers

expression in the healthy cohort, considering that the healthy cohort does

not have an NPM1 mutation. We interpreted that the k-mers expression

needs, at least, to be close to zero to have a link to AML conditions.

More information about the five wild-type cohorts can be found in the

supplementary material.

To complete the analysis, we analysed at the leukemia cell level. We

used 34 RNAseq samples from mature and immature blasts cells obtained

from 17 AML patients (https://www.ncbi.nlm.nih.gov/bioproject/PRJEB54896

accession ID). We analyze the k-mers expression to have a closer

understanding of the genes. For this task, we searched the selected k-mers

from the 3 AML cohorts.

2.2 Generating and selecting the k-mers

We checked the quality of the raw downloaded data using fastQC version

0.11.9 (Andrews et al., 2010) and MultiQC version 1.9 (Ewels et al.,

2016). As a complementary quality control, we checked sequencing

protocol information and contamination with KmerExplor (Riquier et al.,

2021)).

Then, we used Kmtricks to build a k-mer count matrix for each

cohort, totaling five matrices (three AML, one healthy, and one mature and

immature blasts cells). Kmtricks (Lemane et al., 2022) is a tool to count k-

mers efficiently in large datasets and produce a k-mer count matrix across

multiple samples. For example, the Beat-AML cohort has 7 terabytes of

fastq files, Kmtricks reduced to a k-mer count compressed matrix of 78

gigabytes. To generate the matrices, in the AML cohorts, we considered

that the k-mer needs to have a minimum abundance of 4 (which means,

the k-mer has to be found at least 4 times in the sample) and be present in

at least 5% of the cohort samples to be counted. In the healthy and mature

and immature blasts cells cohorts, we only considered that the minimum

abundance was 2. The k-mer size applied was the tool default, size 31nt.

The parameters used in Kmtricks for each matrix can be found in the

supplementary material.

After building the matrices, we implemented a C++ code to select the k-

mers with significant differences between NPM1 mutated and non-mutated

samples, based on the coefficient of variation of these two conditions.

Due to the k-mers expression variation across the cohorts, for each AML

cohort we selected manually the coefficient of variation based on the gene

investigated. For that, we analyzed the k-mers coefficient of variation of

NPM1 across the AML cohorts. We designed all the specific and unique k-

mers of the NPM1 gene with Kmerator (Riquier et al., 2021) and counted

their occurrence in the 3 AML cohorts with a request from the TranSipedia

website (https://transipedia.montp.inserm.fr/). From the k-mers counts,

we computed the k-mer coefficient of variation across the entire cohort.

Figure 1 shows the coefficient of variation of the k-mers for each cohort.

Leucegene and Beat-AML 2 showed less variation, thus, we define the

coefficient of variation threshold as 0.98, for Beat-AML we define a 0.95

threshold.

Fig. 1: The coefficient of variation of k-mers in the AML cohorts for NPM1

gene.

In addition to the coefficient of variation between the conditions, to

select the k-mer, we understood that it is interesting if, at least, half of one

condition is different from zero, in this way, avoiding a k-mer containing

a sample with an outlier expression.

2.3 Classifier models

To analyze if the selected k-mers are distinct between NPM1 mutated

and non-mutated patients, we applied six of the most used Machine

Learning algorithms to built the models and predict the conditions. For

this task, considering that often the highest performing model are the least

explainable and the most explainable are the least accurate (Gunning et al.,

2021), we used two less complex models: K-nearest neighbors (KNN)

and Logistic Regression (LR); and four complex models: Neural Network

(NN), Random Forest (RF), Support Vector Machine (SVM), and eXtreme

Gradient Boosting (XGB). We implemented the algorithms using Scikit-

learn package (Pedregosa et al., 2011) in Python, applying for each model

a grid search and a stratified cross-validation with 5-folds. We build

models with normalized and non-normalized features. The k-mers count

are considered the features, and the samples are the instances.

To understand how the k-mers can generalize between the cohorts, we

constructed three settings to train and test the models, as shown in Figure 2,

training on one cohort and testing on another cohort. The Setting A, where
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the models were trained on Beat-AML and tested on Leucegene. Setting B,

where the models were trained on Leucegene and tested on Beat-AML2.

Setting C, where the models were trained on Beat-AML and tested on

Beat-AML2.

BEAT AML LEUCEGENE BEAT AML 2

training set test set

training set test set

training set test set

Setting A

Setting B

Setting C

Fig. 2: Schema to predict NPM1 mutated and non-mutated patients in

cross-study scenarios.

The models were evaluated by area under the receiver operating

characteristic (AUC) for each setting. Additionally, we evaluated the

models by Accuracy, Kappa, F1-Score, Precision, and Recall metrics.

Reproducible scripts can be found in https://osf.io/4s9tc/.

2.4 Mapping and Annotation

Our main objective was to identify the influence of the NPM1 mutation

on k-mers and, consequently, on genes. To identify the genes belonging to

the k-mers, we applied STAR 2.7.8a (Dobin and Gingeras, 2015) to map

the k-mers to a reference human genome, GRCh38 assembly. After, we

used Samtools 1.11 (Homer et al., 2009) to generate flexible alignment

formats, SAM, BED, and BAM files.

Next, we implemented a script in R using the Ensembl REST API

Yates et al., 2015 to request the genes annotation for each k-mer using

the SAM and BAM files. Also, we generate BAM files for 27 samples:

9 NPM1 mutated and 9 NPM1 non-mutated (for every 9 samples, we

selected 3 from Beat-AML, 3 from Leucegene, and 3 from Beat-AML 2),

and 9 healthy samples (random selected). The 27 BAM files and the BED

file from the k-mers were visualized using Integrative Genomics Viewer

(IGV) version 2.13 (Robinson et al., 2011).

2.5 Model interpretation

An understanding of classifiers models is desirable when applying ML to

health problems, however, most of the classifiers models are not easily

explainable, requiring the use of Explainable Artificial Intelligence (XAI)

tools. Seeking to get closer to the interpretation of the model and the

selected k-mers, we applied the SHAP (Shapley Additive Explanations)

tool (Lundberg and Lee, 2017) on the model with the best results to classify

NPM1 mutated and non-mutated patients. SHAP is a tool to explain,

by use of Shapley value (Winter, 2002), the prediction of each instance

(sample) and the contribution of each feature (k-mer) to prediction. In

addition, SHAP allows us to see the impact of these features across multiple

instances, which means, showing the more important k-mers considering

all the samples.

To see the important k-mers, and genes, we built a model with the

intersection of k-mers between A, B, and C. We used only the annotated

k-mers and the k-mers that do not belong to genes with high expression in

the healthy cohort. After, we applied SHAP to the model. Reproducible

scripts can be found in https://osf.io/4s9tc/.

3 Results

3.1 Model performance

As mentioned early, we constructed 5 classifier models to predict in three

different settings. Figure 3 shows the performance of models using the

AUC, in which, the XGB model had the best performance in the settings

A, B, and C, with 97.3%, 94.2%, and 94.2%, respectively.

Fig. 3: ROC curve and AUC metric applied to K-nearest neighbors (KNN),

Logistic Regression (LR), Neural Network (NN), Random Forest (RF),

Support Vector Machine (SVM), and eXtreme Gradient Boosting (XGB)

models in the setting A, B, and C.

When analyzing the performance by Accuracy, Kappa, F1-Score,

Precision, and Recall metrics, the XGB model achieves the best

performance in all the metrics in setting A, as shown in Table 2.

Table 2. Accuracy, Kappa, F1-Score, Precision, and Recall metrics applied to

K-nearest neighbors (KNN), Logistic Regression (LR), Neural Network (NN),

Random Forest (RF), Support Vector Machine (SVM), and eXtreme Gradient

Boosting (XGB) models in the setting A.

Model KNN LR NN RF SVM XGB

Accuracy 0.899 0.970 0.947 0.972 0.942 0.979

Kappa 0.753 0.930 0.875 0.935 0.865 0.952

F1-Score 0.822 0.952 0.913 0.955 0.906 0.967

Precision 0.927 0.962 0.952 0.984 0.937 0.977

Recall 0.739 0.942 0.876 0.927 0.876 0.956

In setting B, the XGB model achieves the best performance in all the

metrics. However, for the Recall metric, KNN, NN, and SVM have the

same performance as XGB, as shown in Table 3.

In setting C, the XGB model achieves the best performance in almost

all the metrics, the exception was the Recall metric, where SVM has 93.1%.

The XGB model has the second-best performance of Recall with 89.6%,

as shown in Table 4.

The majority of metrics were best performed by XGB models. The

different results for the Recall metric can be explained due to the
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Table 3. Accuracy, Kappa, F1-Score, Precision, and Recall metrics applied to

K-nearest neighbors (KNN), Logistic Regression (LR), Neural Network (NN),

Random Forest (RF), Support Vector Machine (SVM), and eXtreme Gradient

Boosting (XGB) models in the setting B.

Model KNN LR NN RF SVM XGB

Accuracy 0.948 0.953 0.924 0.938 0.896 0.957

Kappa 0.874 0.884 0.821 0.848 0.761 0.896

F1-Score 0.910 0.916 0.875 0.890 0.835 0.925

Precision 0.918 0.948 0.848 0.929 0.777 0.949

Recall 0.903 0.887 0.903 0.854 0.903 0.903

Table 4. Accuracy, Kappa, F1-Score, Precision, and Recall metrics applied to

K-nearest neighbors (KNN), Logistic Regression (LR), Neural Network (NN),

Random Forest (RF), Support Vector Machine (SVM), and eXtreme Gradient

Boosting (XGB) models in the setting C.

Model KNN LR NN RF SVM XGB

Accuracy 0.917 0.951 0.912 0.956 0.931 0.960

Kappa 0.785 0.877 0.774 0.888 0.836 0.901

F1-Score 0.841 0.910 0.833 0.918 0.885 0.928

Precision 0.918 0.944 0.900 0.962 0.843 0.962

Recall 0.775 0.879 0.775 0.879 0.931 0.896

different proportions of imbalanced classes, once for imbalanced learning,

Recall is typically used to measure the coverage of the minority class

(Haibo and Yunqian, 2013). Between the three settings, setting B has the

most balanced classes to train (31% to 68% in Leucegene), reflecting the

learning of the minority class and being the easiest setting to measure by

Recall, allowing KNN, NN, and SVM to perform well, as well as XGB.

On the other hand, setting C has the two most imbalanced cohorts to

train (24% to 75% in Beat-AML) and test (28% to 71% in Beat-AML

2), making this the more difficult setting to measure by Recall. The

good performance of SVM is due to the basic parameters of the SVM

model, such as the C value, being able to treat the imbalance classes.

In contrast, the XGB model needs specific parameters for imbalanced

classes. The parameters and reproducible scripts for each model can be

seen at https://osf.io/4s9tc/.

The results presented here belong to normalized models, performing

better than non-normalized models. However, the results for non-

normalized models only differ in 1% or 2% and can be found in the

supplementary material.

3.2 Annotated genes

The selection step produced a different quantity of k-mers by setting, where

the number of selected k-mers corresponded to the k-mers selected in the

training cohort and found in the test cohort. For setting A, we selected

11,119 k-mers, of which 10,359 are completely aligned in the human

genome, belonging to 93 annotated genes. For setting B, we selected

11,089 k-mers, of which 10,790 are completely aligned in the human

genome, belonging to 58 annotated genes. For setting C, we selected

11,120 k-mers, of which 10,358 are completely aligned in the human

genome, belonging to 93 annotated genes.

Figure 4 shows the number of genes by setting and the intersection

between them. Setting A and C have the same 93 genes. The intersection

genes between A and B, and B and C, are the same 30 genes. Thus, the

intersection between the three settings is 30 genes.

We analyzed the gene expression (based on k-mers average values) of

the 30 intersection genes in the 3 AML cohorts (1112 samples), Figure 5.

From 30 genes, 15 genes (in blue) show a different expression based on the

statistical Wilcoxon test (comparison of average values) between NPM1

mutated and non-mutated patients. We presume that the other 15 genes
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Fig. 4: The number of genes annotated in setting A, B, and C. And

intersections between them.

influence the prediction indirectly, which means, the influence of these

genes is not explained by the presence or absence of NPM1 mutation and

needs to be studied in more detail.
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Fig. 5: Gene expression (based on k-mers average values) of the

intersection genes between the setting A, B, and C in the 3 AML

cohorts. In blue, the genes with differential expression by statistical

approach (comparison of average values by Wilcoxon test with Wilcoxon

test P-Value less than 0.001) between NPM1 mutated and non-mutated

patients.

Considering that we are looking for the genes directly impacted by

NPM1 mutation for AML, we analyzed the 15 genes with differential

expression in the healthy cohort, Figure 6. From 15 genes, 13 have gene

expression (based on k-mers average values) less than 1. Even though we

can not assume the suppression of these genes is linked with the presence

or absence of NPM1 mutation, we can presume that these genes are linked

with AML conditions.

We then analyzed the gene expression of the 13 genes in a dataset

of 34 samples corresponding to purified mature and immature blasts

separated with specific surface markers from 17 AML patients. The

expression analysis, Figure 7, shows that the 13 genes are expressed in the

AML patients with a significant difference between mature and immature

leukemia cells. Figure 7.A shows a tSNE (t-Distributed Stochastic

Neighbour Embedding) analysis where the genes were able to group the

mature and immature leukemia cells in different clusters. Figure 7.B
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Fig. 6: Gene expression (based on k-mers average values) of the

intersection genes in the healthy cohort. In red, the genes with expression

more than 1. The intersection genes that do not have differential expression

between NPM1 mutated and non-mutated patients were removed in this

analysis.

presents that the genes are more expressed in immature leukemia cells.

As AML cells with an immature phenotype play a central role in disease

progression and relapse, the differential expression observed reinforces

the involvement of these genes in AML.
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Fig. 7: tSNE(A) and gene expression(B) analyses (based on k-mers average

values) of the intersection genes in purified mature and immature blasts

cells. The intersection genes that do not have differential expression

between NPM1 mutated and non-mutated patients, and the genes with

expression more than 1 in healthy cohort were removed in this analysis.

3.3 Model interpretation results

We constructed an XGB model using only the genes that the k-mers

belonged to the 13 genes (we removed the k-mers from the genes without

differential expression between the conditions and the genes with an

expression of more than 1 in the healthy cohort). With this model, we used

SHAP to identify the main k-mers, and genes, that impact the prediction

of NPM1 mutation.

Figure 8 shows the 20 more important k-mers to the XGB model and

their impact on prediction. On the left, we have the gene name belonging

to each k-mer and the average SHAP value impact of the k-mer on the

model. On the right, we have the impact of the k-mer on the model, where

each point is a value for a k-mer and a patient. The colors are the values of

the points (red for higher value, blue for lower value) and the X axis is the
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Fig. 8: Top 20 more important k-mers, and the belonging genes, to XGB

model by SHAP tool.

impact of SHAP value. Thus, analyzing the two more important k-mers,

belonging to the SDK2 gene, the lower values of these k-mers have an

impact on classification. However, regarding the third more important k-

mer from the SDK2 gene, SHAP shows that the lower values of this k-mer

have a negative impact.

Once the best performance was achieved by one of the complex models,

we tried to understand the k-mer selection by a more explainable model,

the LR model. We build a LR model in the same conditions as the XGB

model used by SHAP. After, we selected the more important k-mers by

the coefficient of logistic regression, as showed in the Figure 9, presenting

the coefficient weights for each k-mers, and the belonging genes.

Fig. 9: Top 20 more important k-mers, and the belonging genes, to LR

model by coefficient of logistic regression.

SHAP interpreted that the more important k-mers to the XGB

model belong to SDK2, APP, BAALC/BAALC-AS2, LRP6/BCL2L14,

LINC00865, S1000A9, and TRH genes. LR model shows that the more

important k-mers belong to APP, SDK2, LRP6/BCL2L14, and S100A9

genes. The two analyses have only the 3 k-mers in common, two belong

to APP gene and one to LRP6/BCL2L14 gene. That shows us the need

to further investigate the reasons for the choices made by the models and

encourages us to understand the link between the most important k-mers.

3.4 Genes and k-mers expression

To get a better understanding of the selected k-mers at the gene level,

we used IGV to visualize the distribution of the k-mers and reads in the

groups of patients and healthy samples. We first compared the NPM1
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expression and present a IGV view of 9 patients for each group (Figure 10).

The NPM1 expression profile shows a read distribution similar between

healthy, non-mutated, and mutated patients.
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Fig. 10: NPM1 gene expression at the gene level for healthy (a), non-

mutated (b), and mutated (c) patients.

When analyzing the 13 genes from the selected k-mers, we observed

a simple pattern for the TRH gene. As shown in Figure 11, the selected

k-mers (the purple line at the bottom) cover almost the entire gene (the

blue line at the bottom) at the exonic regions. Also, we observe a different

profile in the TRH gene when comparing NPM1 mutated and non-mutated

groups. Moreover, NPM1 non-mutated group presented the same profile

as healthy donors.

Investigating the APP gene, the gene with important k-mers in XGB

and LR models, we could not find a simple pattern in the gene level as

in the TRH gene. Thus, we investigated the APP gene at the k-mer level,

as shown in Figure 12. We observed the same behavior, different profile

for NPM1 mutated and non-mutated groups, and similar profile for NPM1

non-mutated and healthy groups. Also, at the k-mer level is possible to

observe a low gene expression in NPM1 non-mutated patients.
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Fig. 11: TRH gene expression at the gene level for healthy (a), non-mutated

(b), and mutated (c) patients.

Additionally, to understand the effect of NPM1 mutation in the APP

gene, we analyzed the expression of NPM1 mutations and APP selected k-

mers in Beat-AML cohort. The NPM1 mutations are at k-mer level (31nt),

provided by Vizome, a platform with Beat-AML information. As showed

in the Figure 13, in most cases, the patients that have a NPM1 mutation

present low expression of APP selected k-mers as well as the patients that

express the selected k-mers do not present the NPM1 mutation. That gives

us a clear view of the interaction between the NPM1 mutation and APP at

the k-mer level, interaction that we did not see at the gene level.

4 Conclusion

Publicly available human RNA-seq datasets are precious resources for

biomedical research and the analysis of existing datasets can be used to

find a new information and search specific transcriptional events across

patient cohorts. This required efficient tools and pipelines. As shown in

our results, our pipeline, using k-mers, performed large datasets analyses

corresponding to 1112 RNAseq samples. To predict and extract biological

information, we constructed six classifier models with K-nearest neighbors

(KNN), Logistic Regression (LR), Neural Network (NN), Random Forest
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Fig. 12: APP gene expression at the k-mer level for healthy (a), non-

mutated (b), and mutated (c) patients.

(RF), Support Vector Machine (SVM), and eXtreme Gradient Boosting

(XGB) algorithms applied on AML conditions based on the presence or

absence of an NPM1 mutation. Comparing different settings built from

the 3 cohorts, the XGB model achieves the best performance in the most

metrics (AUC, Accuracy, Kappa, F1-Score, Precision, and Recall).

The pipeline works to find different gene expressions between

conditions and the prediction models are able to be applied in

different AML cohorts, once the models learned the diversity of the

samples collected from bone marrow and peripheral blood, in different

AML subtypes. Also, the pipeline can be further applied to other

conditions defined by the presence of one or combined mutations

described in AML groups, or to test new ones. Furthermore, the

selected genes were not a random selection once some of them are

already described in the literature as prognosis biomarkers or in link

with NPM1 mutation deregulated pathways. Recently, Thyrotropin-

Releasing Hormone (TRH) was identified as a novel AML prognosis

biomarker downregulated in patients with NPM1 mutation (Gao et al.,

2022). Alterations of BAALC expression are linked with molecular risk

stratification (Prada-Arismendy et al., 2017) and have a possible linkage

with a BCL2 family gene (Akhter et al., 2018). SETBP1 is an oncogene

1
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Fig. 13: App and NPM1 mutation expression in Beat-AML patients.

closely expressed in leukemia (Makishima, 2017). LRP6 and MARK2P16

belong to the WNT pathway required for leukemia stem cells development

(Wang et al., 2010). Finally, CLEC9A is a lectin specifically expressed in

immune cell subsets of the tumor microenvironment (Modak et al., 2022).

Additionally, the genes found have different behaviors in AML and cohorts

from healthy donors, showing specific deregulation in AML regardless of

the NPM1 mutation condition.

As a perspective, the study requires an in-depth analysis of the

selected genes, especially those with differential expression to find

potential mechanisms of the NPM1 pathway from public chromatin and

transcriptional regulation data (ReMap, JASPAR, Encode, FANTOM).

Moreover, the k-mer level approach might be useful to detect complex

transcriptional profiles, as shown for the APP gene, where the different

expression can be seen only in the k-mer level. Thus, we will investigate

more deply the dependence between the k-mers and to extend the analysis

to search for differential events like splicing or intron retention.
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