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Abstract 51 
 52 
Background:  53 
Non-small cell lung cancer (NSCLC) is the most common type of lung cancer, and the median 54 
overall survival is approximately 2-3 years among patients with stage III disease. Furthermore, 55 
it is one of the deadliest types of cancer globally due to non-specific symptoms and the lack of 56 
a biomarker for early detection. The most important decision that clinicians need to make after 57 
a lung cancer diagnosis is the selection of a treatment schedule. This decision is based on, 58 
among others factors, the risk of developing metastasis.  59 
 60 
Methods:  61 
A cohort of 115 NSCLC patients treated using chemotherapy and radiotherapy with curative 62 
intent was retrospectively collated and included patients for whom positron emission tomogra-63 
phy/computed tomography (PET/CT) images, acquired before radiotherapy, were available. 64 
The PET/CT images were used to compute radiomic features extracted from a region of interest, 65 
the primary tumor. Radiomic and clinical features were then classified to stratify the patients 66 
into short and long time to metastasis, and regression analysis was used to predict the risk of 67 
metastasis.  68 
 69 
Results:  70 
Classification based on binarized metastasis-free survival (MFS) was applied with moderate 71 
success. Indeed, an accuracy of 0.73 was obtained for the selection of features based on the 72 
Wilcoxon test and logistic regression model. However, the Cox regression model for metastasis 73 
risk prediction performed very well, with a concordance index (c-index) score equal to 0.84.  74 
 75 
Conclusions: 76 
It is possible to accurately predict the risk of metastasis in NSCLC patients based on radiomic 77 
features. The results demonstrate the potential use of features extracted from cancer imaging in 78 
predicting the risk of metastasis. 79 
 80 
Keywords: NSCLC, metastasis, Cox regression, classification, radiomics 81 
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Introduction 92 

Lung cancer is one of the most frequently diagnosed cancer types worldwide, constituting over 93 
11% of all cancer cases. With 2.2 million new diagnoses in 2020 alone, it was surpassed in 94 
incidence only by breast cancer, making the lung the most prevalent cancer site in men (with 95 
over 1.43 million diagnoses) and the third most prevalent in women after breast and colorectal 96 
cancers, which had 0.77 million diagnoses (1). While tobacco smoking is recognized as the 97 
primary cause of lung cancer, it can also be attributed to environmental factors such as air pol-98 
lution, occupational exposure, and genetic predisposition (2–4). It is usually diagnosed at an 99 
advanced stage due to non-specific early-stage symptoms, which is reflected in the very high 100 
mortality rate. Indeed, the five-year survival rate for lung cancer does not exceed 20% (5–7), 101 
thus, it is the leading cause of cancer-related mortality and is responsible for 18% of all deaths 102 
from cancer (1). 103 

Diagnosis of lung cancer involves medical imaging, including X-ray and positron emission to-104 
mography/computed tomography (PET/CT), which allows for classification according to the 105 
tumor node metastasis (TNM) staging system. Detected lesions are sampled by endobronchial 106 
ultrasound (EBUS) guided bronchoscopy and undergo histopathological assessment. Manage-107 
ment is stage-specific (7), with clinical guidelines divided into early-stage, locally advanced, 108 
and metastatic cancer (8,9). In early-stage lung cancer, lobectomy is the preferred treatment 109 
option. If the tumor is not initially resectable, neoadjuvant chemotherapy can be implemented 110 
to downgrade the tumor, which would eventually allow for surgery. For selected patients with 111 
comorbidities, stereotactic radiotherapy (SABR) may also be considered. For locally advanced 112 
cancer with lymph node involvement, platinum-based chemotherapy administered concurrently 113 
or sequentially with radiotherapy is the most commonly used curative therapeutic option, and 114 
it can be followed by maintenance immunotherapy. For advanced metastatic cancer, immune 115 
checkpoint inhibitors, with or without chemotherapy, are a viable therapeutic option. As mo-116 
lecular diagnostics becomes routinely available, targeted therapies aimed at epidermal growth 117 
factor receptor (EGFR) (10), fibroblast growth factor receptor (FGFR) (11), anaplastic lym-118 
phoma kinase (ALK) (12), or Kirsten rat sarcoma virus (KRAS) (13) are being used to treat 119 
mutation carriers.  120 

One of the main reasons for the high mortality seen in lung cancer is its invasiveness, and most 121 
patients develop distant metastases. Unfortunately, metastatic tumors are often resistant to treat-122 
ment, which leads to much shorter survival times for these patients. Although the exact mech-123 
anisms of metastasis are still being investigated, it is known that cancer cells can spread by both 124 
blood and lymphatic vessels (14). Lung cancer metastases are most frequently observed in the 125 
brain, bones, liver, lung, and adrenal gland (15). Since the occurrence of distant metastasis is 126 
the turning point in the course of the disease, it might be considered an important endpoint in 127 
prognostic analysis, along with the standard endpoints. Furthermore, the ability to predict when 128 
lung cancer will metastasize could guide clinical decision-making and may be used to indicate 129 
the need for therapy intensification in high-risk patients.  130 

The search for accurate prognostic biomarkers in lung cancer is hindered by its high heteroge-131 
neity and complexity. Nonetheless, clinical and molecular characteristics have shown some 132 
promise in predicting metastasis. Metastasis-associated lung adenocarcinoma transcript 1 (MA-133 
LAT-1), a long non-coding ribonucleic acid (RNA), was demonstrated to be significantly asso-134 
ciated with metastasis in non-small cell lung cancer (NSCLC) (16). Meanwhile, cancer antigen 135 
125 (CA125) and neuron-specific enolase (NSE) were found to be indicative of liver metastasis 136 
(17). NSE, histological type, number of metastatic lymph nodes, and tumor grade were used to 137 
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construct a nomogram for use in brain metastasis prediction (18). Vimentin expression was also 138 
identified as a potential predictor of brain metastasis in EGFR-mutant NSCLC patients (19).  139 

Recently, medical imaging has gained attention as an alternative source of biomarkers (20–22). 140 
It has distinct advantages over molecular markers in that it is non-invasive, requires no addi-141 
tional assays, and utilizes information acquired during a routine diagnostic procedure. As such, 142 
imaging biomarkers are also the fastest to obtain, making them perfect for therapy planning. 143 
Two main strategies can be used to acquire biomarkers. The first is to directly analyze raw 144 
images. Another solution is radiomics, in which segmented images are subjected to feature ex-145 
traction. This method provides numerical variables that describe the shape and texture of the 146 
region of interest (ROI), which can then be used in statistical or machine-learning models.  147 

The radiomics-based approach has been successfully applied for different endpoints in lung 148 
cancer, including overall survival (OS) and progression-free survival (PFS) (23). It has also 149 
shown promising results for the prediction of distant metastases. Coroller et al. (24) selected a 150 
radiomic signature based on CT images to predict distant metastasis in lung adenocarcinoma. 151 
Wu et al. constructed and validated a Cox proportional hazards model using 18F-fluorodeoxy-152 
glucose PET (18F-FDG PET) imaging to predict freedom of distant metastasis in early-stage 153 
NSCLC patients (25). Fave et al. (26) demonstrated that adding pre-treatment radiomic features 154 
extracted from CT images could improve the ability of clinical prognostic models to predict 155 
distant metastasis (26). Meanwhile, Dou et al. (27) focused on locally advanced lung adenocar-156 
cinoma and investigated radiomic features from the primary tumor and peritumoral region (27).  157 

In this study, 115 NSCLC patients with various histological subtypes were retrospectively an-158 
alyzed. The prognostic value of standard clinical features, and radiomic features extracted from 159 
PET/CT images acquired for radiotherapy planning, were evaluated by determining if they 160 
could be used to predict time to distant metastasis. To answer this question, machine learning 161 
models were constructed for continuous and categorical metastasis-free survival (MFS) predic-162 
tion. 163 

 164 

Materials and Methods 165 

Study design 166 

A cohort of NSCLC patients was collated to investigate if PET/CT imaging routinely performed 167 
for radiotherapy planning could help in planning the future treatment strategy, with a focus on 168 
predicting the risk and time of relapse with distant metastases. MFS was defined as the time 169 
elapsed between diagnosis and the detection of distant metastasis or the time of death/last fol-170 
low-up if distant metastases did not emerge. In addition, classification algorithms were used to 171 
predict if MFS would be short or long. 172 

As the prediction of metastasis risk was the focus of the study, the primary lung cancer tumor 173 
was the ROI. Using the available PET/CT scans, radiomic features were extracted from the ROI 174 
and assessed.  175 

The specific clinical question considered in this work was whether or not a radiomic signature 176 
could be extracted that would help discriminate between a primary tumor that has the potential 177 
to metastasize early from one that metastasizes late or not at all. 178 
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Study population 179 

Data were collected retrospectively at the Maria Sklodowska-Curie National Research Institute 180 
of Oncology, Gliwice Branch (NRIO). The cohort consisted of 115 patients with NSCLC who 181 
were treated with curative intent at the Institute between 2009 and 2017. All patients in the 182 
cohort had been treated with a combination of chemotherapy and radiotherapy. Most of the 183 
patients received a platinum-based doublet with vinorelbine. Patients received between one and 184 
six cycles (median four), followed by radiotherapy (RT) with a total dose between 60 and 70 185 
Gray (Gy) in two Gy fractions. The study was approved by the Local Bioethical Committee of 186 
the NRIO in accordance with national regulations. Formal written consent was obtained from 187 
all participants of the study. The clinical data were anonymized before the computational anal-188 
ysis. 189 

All patients underwent PET/CT imaging for radiotherapy planning. Only patients with non-190 
detectable distant tumors at the onset of treatment were assessed. However, most patients had 191 
locally disseminated tumors to the lymph nodes, as they were diagnosed late due to non-specific 192 
symptoms. 193 

In the cohort, 72% of patients were males, and 28% were female. This is consistent with popu-194 
lation data showing that most lung cancer patients are male. The median age of patients in the 195 
cohort was 61 years, and over half of the patients had tumors located in the left lung. The most 196 
prevalent cancer subtype was squamous cell carcinoma, which constituted two-thirds of all 197 
cases, followed by large cell carcinoma (24.3%) and adenocarcinoma (7.0%). Detailed charac-198 
teristics of the cohort are presented in Table 1. 199 

The median time-to-metastasis was 2.77 years, with a secondary tumor observed most fre-200 
quently in the second lung, brain, bones, and liver.  201 

 202 

Positron emission tomography/computed tomography data acquisition and 203 
segmentation 204 

The PET/CT images were acquired at the NRIO using Philips GeminiGXL 16 (Philips, Am-205 
sterdam, Netherlands) (24 patients) and Siemens Biograph mCT 131 (Siemens AG, Munich, 206 
Germany) (88 patients) PET/CT scanners. For each patient, the ROI was contoured by the same 207 
experienced nuclear medicine specialist using Medical Image Merge (MIM) 7.0.1 software and 208 
the PET Edge™ tool (both MIM Software Inc., OH, USA).  209 

Extraction of radiomic features 210 

Feature extraction was performed with PyRadiomics version 3.0.1, a Python package designed 211 
to increase the reproducibility of radiomic studies (28). Using the PET dataset, 105 standard 212 
features were calculated. Radiomic features belong to one of three classes, including first-order 213 
statistics such as energy, entropy, and minimum, as well as shape features such as volume, 214 
surface area, and sphericity, and texture features including Gray Level Co-occurrence Matrix 215 
(GLCM), Gray Level Dependence Matrix (GLDM), Gray Level Run Length Matrix (GLRLM), 216 
Gray Level Size Zone Matrix (GLSZM), and Neighboring-Gray Tone Difference Matrix 217 
(NGTDM).  218 
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Metastasis-free survival categorization 219 

For the classification, a threshold of one year was used to create two classes, which included 220 
patients with MFS below and over this threshold. Due to the presence of censored observations 221 
(in the cohort this primarily signified the patient’s death), such stratification divided patients 222 
into a group who suffered either metastasis or death within a year (66 patients), and those who 223 
did not (49 patients). To create subgroups that were more related to the research question, the 224 
binary MFS was defined as “short” if the patient developed metastasis within a year (25 pa-225 
tients) and “long” if the patient developed metastasis or was censored after longer than a year 226 
(49 patients).  227 

Statistical analysis 228 

Statistical analysis was performed using the R environment (version 4.1.3). For survival analy-229 
sis, survival (version 3.2-13) was used, caret (version 6.0.93) and RandomForest (version 4.7-230 
1.1) were used for classification, and randomForestSRC (version 3.1.1) was used to perform 231 
random survival forest. A heatmap of the radiomic features was created with ComplexHeatmap 232 
(version 2.10.0). 233 

Filtering of the radiomic features was applied based on the Pearson correlation coefficient to 234 
avoid redundancy, with a cutoff threshold equal to 0.9 (see Supplementary Table 1). Since the 235 
PET images were acquired using two scanners, principal component analysis was applied to 236 
determine if there was any grouping of samples due to the scanner used (see Supplementary 237 
Figure 1). 238 

The clinical and radiomic features with potential for event-free survival (EFS) and MFS pre-239 
diction were assessed (see Supplementary Table 2). In addition, differences in the values of 240 
radiomic and clinical features between ‘short’ and ‘long’ MFS patient subgroups were investi-241 
gated statistically. Fisher’s exact test was performed for categorical variables, while the Mann-242 
Whitney U test was used for continuous variables (see Supplementary Table 3). A log-rank test 243 
was also conducted for both categorical and continuous features (see Supplementary Table 4). 244 
As the log-rank test assesses if there is a significant difference between two or more survival 245 
curves, continuous features were binarized with respect to the median value.  246 

Cross-validation 247 

The value of any type of predictive model lies in its applicability to unknown data, and not just 248 
its ability to fit the training data. Cross-validation enables evaluation of the model’s ability to 249 
generalize by removing part of the data from the cohort and applying them in the estimation of 250 
model performance. In addition, data partitioning at the beginning of each iteration prevents 251 
information leakage. 252 

For a more consistent comparison between the regression and classification results, modified 253 
k-fold data partitioning was applied. Firstly, the data was ordered according to (continuous) 254 
MFS values. Then, the observations were assigned consecutive numbers, from one to five, 255 
which were used as cross-validation folds. Such partitioning ensures proper stratification of 256 
both continuous and binarized MFS. 257 

Classification algorithms 258 
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The observed relationships between binary MFS and binary EFS and extracted features (both 259 
clinical radiomic) were verified by employing classification models. Firstly, three main feature 260 
selection methods were applied, including Student’s t-test, Wilcoxon test, and a mutual infor-261 
mation test. To investigate the impact of a varying number of features on classification quality, 262 
between 1 and 10 features were tested. Since only the mutual information method handles both 263 
categorical and continuous variables, a hybrid selection was used for the other two methods by 264 
applying the main method for continuous variables and Fisher’s exact test for categorical vari-265 
ables. The categorical variables that passed the significance threshold equal to 0.1 were added 266 
to the model. 267 

The following classification methods were tested: K Nearest Neighbor (KNN) with different K 268 
values (for clarity, only the best one, K=5, is presented), random forest, support vector machines 269 
(SVM) with linear and radial kernels, and logistic regression (LogReg). Considering the incon-270 
sistent orders of magnitude for radiomic features, a z-score transformation was used to scale 271 
the data. In each k-fold iteration, the scaling parameters (mean and standard deviation) were 272 
determined from the training set and applied to both the training and test sets. Classification 273 
accuracy was then used to assess model performance. 274 

Regression algorithms 275 

For the prediction of continuous MFS, Cox proportional hazards regression (using survival R 276 
package) and random survival forest (using randomForestSRC R package) were applied. Vari-277 
able selection was performed based on univariate analysis, with the Harrell Concordance index 278 
(C-index) adopted as a ranking metric. The model performance was validated using the k-fold 279 
partitioning described above. Again, models containing between 1 and 10 features were tested. 280 

 281 

Radiomic-based risk score 282 

Although cross-validation facilitates the estimation of prediction quality, the results and se-283 
lected features can be different in each iteration due to subsampling. Therefore, all selections 284 
were repeated on the entire dataset to obtain conclusive feature rankings. To demonstrate the 285 
validity of the obtained signature, the Cox model was chosen, which is the classic approach to 286 
survival data analysis with known interpretation. The patients were then divided into high-risk 287 
and low-risk groups based on the calculated median risk score, and MFS was compared using 288 
Kaplan-Meier curves. 289 

Results 290 

Patient characteristics 291 

The cohort included only NSCLC patients, as it is the most common type of lung cancer. Most 292 
patients (67%) had squamous histopathological subtypes, and almost two-thirds had an ad-293 
vanced stage of the primary tumor (T3 or T4). In total, 37 patients eventually developed distant 294 
metastases. Figure 2A shows a Kaplan-Meier plot for MFS probability in the entire patient 295 
cohort. 296 
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None of the clinical features of the cohort were informative in relation to the time to metastasis 297 
onset (Supplementary Table 2). This means that clinicians are unable to predict if a particular 298 
patient will develop metastatic cancer, based only on clinical variables at diagnosis. On the 299 
other hand, 34 radiomic features were statistically significant against continuous MFS, 36 fea-300 
tures against the binarized MFS, and 18 against EFS. 301 

 302 
Integration of clinical and radiomic data 303 

High correlations were observed between the radiomic features, which resulted in only 65 of 304 
105 features passing the initial correlation filtering. The highest redundancy was found for the 305 
first-order features (6 out of were18 kept) and the lowest for the GLSZM features (15 out of 16 306 
were kept) (see Supplementary Table 1).  307 

Correlations between radiomic and clinical features were mostly low, signifying that both da-308 
tasets carried independent information. Also, the hierarchical clustering of radiomic features 309 
did not correspond to any discernible grouping of clinical features (see Figure 2).  310 

Figure 2B shows the normalized z-score values of radiomic features for each patient. The pa-311 
tients were divided into short and long EFS groups. As can be seen from the results, the hierar-312 
chical clustering correctly divided patients into these two groups. Furthermore, it was observed 313 
that the radiomic feature spectrum varied between patients with short and long EFS. This 314 
demonstrates that there is potential for the use of radiomic features in predicting EFS. 315 

Classification of advanced non-small cell lung cancer  316 

As expected, no clinical features were selected by the models. The feature rankings obtained 317 
for EFS and MFS prediction differed, which aligns with the different interpretations of these 318 
endpoints. While the rankings varied with respect to feature selection and classification meth-319 
ods, there was some consistency among the top features. Indeed, TotalEnergy, ZoneEntropy, 320 
and RootMeanSquared favored EFS prediction, while Variance, TotalEnergy, RunLength-321 
NonUniformity (GLRLM), SizeZoneNonUniformityNormalized, and Maximum2DDiameter-322 
Column favored MFS prediction.  323 

The highest accuracy for EFS prediction (approx. 0.65) was achieved using the SVM classifier 324 
with linear kernels for the mutual information selection of eight features. The highest accuracy 325 
for MFS prediction (approx. 0.73) was achieved using the LogReg classifier for the five features 326 
selected using the Wilcoxon test. Due to the imbalanced classes, with “long” (treated as the 327 
negative class) being the predominant group, the models for MFS tended to yield high speci-328 
ficity and relatively low sensitivity. Most models performed better for a small number of fea-329 
tures. 330 

Prediction of risk of metastasis 331 

For regression-based models, the tendency was similar, with the highest predictive ability ob-332 
served for a small number of features. The highest median C-index across folds was reached 333 
for two features (GLRLM and NGTDM Business) in Cox regression and one feature (shapeMi-334 
norAxisLength) in the random survival forest.  335 
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The mean C-index for the best set of features using Cox regression was 0.84, whereas the C-336 
index for the random survival forest was 0.8. The inclusion of more features in the model re-337 
sulted in a loss of prediction quality due to overfitting. No clinical features were selected for 338 
the best models, which is consistent with the preliminary patient cohort analysis.  339 

Feature selection on the entire dataset revealed that the two top features for Cox regression, 340 
SmallAreaLowGrayLevelEmphasis (GLSZM) and GLRLM, also held high-ranking positions 341 
in the classification approach. Therefore, the Cox model was constructed using those two fea-342 
tures. The high-risk and low-risk groups (Figure 6) had significantly different MFS, with the 343 
log-rank test P<0.001.  344 

 345 
Discussion 346 

Lung cancer is the leading cause of cancer-related death worldwide, claiming over 1.7 million 347 
lives yearly. It is characterized by high invasiveness, and the occurrence of distant spread sig-348 
nificantly influences survival and treatment options. This necessitates the search for prognostic 349 
biomarkers that could help determine the time to metastasis onset. With the rapid development 350 
of the radiomics field, researchers have turned to medical imaging, which is routinely per-351 
formed and non-invasive, as a source of information that could shed some light on the tumor 352 
dissemination process and aid clinicians in therapy planning.  353 

A cohort of NSCLC patients with different subtypes and stages of the disease was collated. It 354 
was concluded that the standard clinical data available for the patients, except for higher meta-355 
static potential exhibited by the squamous subtype, were largely uninformative regarding me-356 
tastasis occurrence. To assess the potential of radiomics for MFS prediction, we extracted 105 357 
radiomic features from PET/CT scans, using the primary tumor as the ROI. Regression and 358 
machine learning methods were then used to select radiomic signatures that could predict the 359 
risk of metastasis and achieved a C-index of 0.84 for the Cox proportional hazards model and 360 
0.8 for the random survival forest, and an accuracy of 0.72 for the KNN classifier. These results 361 
confirm that medical images contain information that could be successfully applied to MFS 362 
prediction. 363 

Several studies have shown the potential of radiomic features in predicting distant metastasis 364 
in lung cancer, with most of them focusing on either a particular subtype or stage. Coroller et 365 
al. (24) investigated radiomic features extracted from CT images for predicting distant metas-366 
tasis in lung adenocarcinoma, which had a C-index of 0.61 on an independent validation set. 367 
Fave et al. (26) demonstrated that combining pre-treatment radiomic features with clinical in-368 
formation improved the ability of prognostic models to predict distant metastasis in stage III 369 
NSCLC patients, reporting a C-index of 0.63 (24). Wu et al. used features extracted from PET 370 
images to predict the freedom of distant metastasis, with a high C-index of 0.71 in independent 371 
validation (25). However, this work only focused on early-stage lung cancer. Dou et al. (27) 372 
presented an interesting approach, extracting features from both the tumor and tumor rim and 373 
achieving a C-index of 0.64 in a cohort of patients with locally advanced lung adenocarcinoma 374 
(27). In the current work, significantly better model quality was achieved in a cohort including 375 
patients with varying subtypes (squamous cell carcinoma, adenocarcinoma, large cell carci-376 
noma) and stages. 377 

While a regression approach, such as a Cox proportional hazards model, is typically used for 378 
survival-type analysis, the risk score it yields does not directly translate to the time of event 379 
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occurrence. The C-index only compares pairs of observations, resulting in a global assessment 380 
of whether a higher risk is related to a shorter time-to-event. Therefore, classification was also 381 
performed and achieved an accuracy of 0.72 in cross-validation.  382 

After testing several methods and approaches to variable selection, it was observed that similar 383 
predictive ability could be achieved for different feature sets, which indicates that even unre-384 
lated radiomic features carry equivalent information. Interestingly, the quality dropped drasti-385 
cally with increased feature numbers in all models. This suggests that features with high pre-386 
dictive potential perform much worse when combined than when used in isolation, and empha-387 
sizes the importance of selecting algorithms that are sensitive to feature interactions. 388 

Certain variables retained high positions across different selections. These included GLRLM, 389 
NGTDM Strength, and NGTDM Business. This demonstrates that these radiomic features are 390 
important for predicting if and when metastasis will occur in a lung cancer patient. 391 

This analysis was not without limitations. While the study design ensured all images were con-392 
toured by one expert, which prevented bias, this did not allow for an assessment of the repro-393 
ducibility of radiomic feature extraction. In addition, plans are in place to collect an independent 394 
patient cohort to validate the signature. Future work will also investigate tumor growth and 395 
dissemination dynamics, to achieve more clinically meaningful predictions.  396 

 397 
Conclusions 398 

Based on a cohort comprised of 115 NSCLC patients, clinical features routinely collected dur-399 
ing diagnostic procedures are not sufficient for the prediction of the risk of metastasis. Medical 400 
images (PET/CT scans) were investigated as a potential source of prognostic markers by as-401 
sessing radiomic features in various classes of predictive models. A model based on two texture 402 
features (GLSZM and GLRLM) was constructed, which divided the patient cohort into low-403 
risk and high-risk groups that significantly differed in MFS. The findings of this study have the 404 
potential to help clinicians make adjustments to therapy and create a rational basis for the in-405 
tensification of systemic treatment in high-risk lung cancer patients. 406 
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  546 
Tables 547 

Table 1.  Patient characteristics. For continuous variables, median and quartiles are listed. 548 

  N = 115 

Sex 
Male 83 (72.2%) 

Female 32 (27.8%) 
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Age  61 (57-67) 

 
Histopathology 

Squamous 77 (67.0%) 

Adenocarcinoma 8 (7.0%) 

Large cell 28 (24.3%) 

Other 2 (1.7%) 

 
Location 

Left 65 (56.5%) 

Right 50 (43.5%) 

T 

1 4 (3.5%) 

2 37 (32.2%) 

3 37 (32.2%) 

4 37 (32.2%) 

N 

0 19 (16.5%) 

1 6 (5.2%) 

2 83 (72.2%) 

3 7 (6.1%) 

M 
0 115 (100%) 

1 0 (0%) 

Zubrod score 

0 34 (29.6%) 

1 80 (69.6%) 

2 1 (0.9%) 

 549 
 550 
 551 
 552 
 553 
 554 
 555 
 556 
 557 
 558 
 559 
 560 
 561 
 562 
 563 
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Figures 565 

 566 

Figure 1: Project workflow. Positron emission tomography/computed tomography (PET/CT) 567 
images were acquired and radiomic features were extracted from regions of interest (ROI). In-568 
tegration of clinical and radiomic data led to the prediction of short-term and long-term metas-569 
tasis-free survival (MFS) and the risk of metastasis. The output from the workflow was a radi-570 
omic signature, which could be used for the prediction of metastasis risk in newly diagnosed 571 
NSCLC patients being treated with platinum-based chemotherapy. 572 
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 573 

Figure 2: The integration of clinical and radiomic data. A. Kaplan-Meier plot of metastasis-574 
free survival (MFS) for the entire population. B. Integration of clinical and radiomic data. Pa-575 
tients were split by the binary event-free survival (EFS).  576 
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 577 

Figure 3: Metastasis-free survival (MFS) prediction using the classification approach. Top 578 
row: Wilcoxon test; middle row: Student’s t-test; bottom row: mutual information test. Left 579 
column: feature selection in a 5-fold cross-validation. Features were ranked according to the -580 
log10(p-value) for the Wilcoxon test and Student’s t-test selections, and mutual information 581 
score for mutual information selection. Black dots indicate the median value across folds, green 582 
dots indicate the lowest value across folds, and red dots indicate the highest value. Right col-583 
umn: classification results for the test set in a 5-fold cross-validation for different models, de-584 
pending on the number of features.  585 
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 586 

Figure 4: Event-free survival (EFS) prediction using the classification approach. Top row: Wil-587 
coxon test; middle row: Student’s t-test; bottom row: mutual information. Left column: feature 588 
selection in a 5-fold cross-validation. Features are ranked according to the -log10(p-value) for 589 
the Wilcoxon test and Student’s t-test selections, and mutual information score for mutual in-590 
formation selection. Black dots indicate the median value across folds, green dots indicate the 591 
lowest value across folds, and red dots indicate the highest value across folds. Right column: 592 
classification results for the test set in a 5-fold cross-validation for different models, depending 593 
on the number of features. 594 
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 595 

Figure 5: Metastasis-free survival (MFS) prediction using a regression approach. Top row: Cox 596 
regression, bottom row: random survival forest. Left column: feature selection in a 5-fold cross-597 
validation. Features were ranked according to the concordance index value for the univariate 598 
model. Right column: Prediction results for the test set in a 5-fold cross-validation, depending 599 
on the number of features. 600 
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 601 

Figure 6: Kaplan-Meier plot of metastasis-free survival for the whole cohort. The patients were 602 
divided into high-risk and low-risk groups according to a Cox model constructed using the 603 
feature selection and number for which the cross-validation accuracy was highest. 604 

Supplementary appendix 605 

Supplementary Table 1. Summary of the correlation-based feature filtering. 606 
 607 
Supplementary Table 2. Potential of the data to predict EFS (clinical variables). Fisher’s ex-608 
act test was applied for p-value estimation. 609 
 610 
Supplementary Table 3. Potential of the data to predict MFS and EFS. For binary MFS and 611 
EFS, the Mann-Whitney U test was used. For the continuous MFS log-rank test. Variables 612 
statistically significant against continuous MFS are highlighted in bold. 613 
 614 
Supplementary Table 4. Log-rank test for continuous MFS. 615 
 616 
Supplementary Figure 1. Principal component analysis of the radiomic features (after corre-617 
lation filtering). Colors correspond to the PET/CT scanner. There is no visible grouping of 618 
samples according to the scanner. 619 
 620 
Supplementary Figure 2. Correlation between radiomic features. 621 
 622 
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Supplementary Figure 3. Kaplan-Meier plot for metastatic-free survival with high/low 623 
SmallAreaLowGrayLevelEmphasis value 624 
 625 
Supplementary Figure 4. Kaplan-Meier plot for metastatic-free survival with high/low Run-626 
LengthNonUniformity value 627 
 628 
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