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Abstract: 

Gastrointestinal bleeding (GIB) is a clinical challenge in kidney failure. The INSPIRE group assessed if 

machine learning could assist with determining a hemodialysis (HD) patient’s 180-day GIB 

hospitalization risk. Model was developed using adult HD patient data from United States (2017-2020). 

Patient data was randomly split (50% training, 30% validation, and 20% testing). HD treatments ≤180 

days before GIB hospitalization were classified as positive observations, and others were negative 

observations. Datasets were randomly sampled to build an XGBoost model that considered 386 

exposures initially and was refined to the top 50 exposures. Unseen testing dataset was used to 

determine final model performance. Incidence of 180-day GIB hospitalization was 1.18% in the HD 

population (n=451,579), and 1.16% among patients in the testing dataset (n=27,991). Model showed an 

area under the curve=0.69, sensitivity=57.9%, specificity=68.9%, accuracy=68.8% and balanced 

accuracy=63.4%. Exposures with largest effect size per Shapley values were older age (group mean GIB 

event=68.2 years vs no GIB event=63.4 years), shorter days since last all-cause hospital admission (group 

mean GIB event=203.2 days vs no GIB event=253.2 days), and higher serum 25-hydroxy (OH) vitamin D 

levels from most recent lab (group mean GIB event=33.4 ng/mL vs no GIB event=30.5 ng/mL). Other 

important predictors included lower hemoglobin and iron indices, longer dialysis vintage, and proton 

pump inhibitor use. Model appears suitable for early detection of GIB event risk in HD, yet prospective 

testing is needed. The association between higher 25OH vitamin D and GIB events was unexpected and 

warrants investigation. 

Key Words: Bleeding, Gastrointestinal, Predictive Modeling, Hospitalization, Hemodialysis, Kidney 

Failure 
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Introduction: 

INitiativeS on advancing Patients’ outcomes In REnal disease (INSPIRE) is an academia and industry 

collaboration set forth to identify critical investigations/models needed to advance the practice of 

medicine in nephrology. At the inaugural INSPIRE meeting, a Core Group of nephrology professionals 

chose major gastrointestinal bleeding (GIB) events as a top priority. The consensus was severe bleeding 

events represent potentially preventable complications that occur more frequently in people with 

kidney disease as compared to the general population.1-6 

Major bleeding events have a 2% to 6% incidence per year among dialysis patients.7-9 Bleeding events 

differ by modality, with higher rates seen in hemodialysis (HD) compared to peritoneal dialysis (PD).10 

Most bleeding events in dialysis patients are due to a gastrointestinal bleed (GIB), with about 20% 

requiring hospitalization.7, 11 The incidence of GIB hospitalizations has been increasing over time in the 

dialysis population.11 Dialysis patients who experienced a prior GIB have an 90% higher risk of death, and 

this risk increases with each subsequent GIB event.11 

Although bleeding risk scores have been developed for various patient populations (e.g., GBS,12 HAS-

BLED,13 ATRIA,14 HEMORR2HAGES,15 ORBIT16), they have poor performance in dialysis patients. 8, 17, 18 

Machine learning methods have been evaluated as a way to help identify dialysis patients at higher risk 

for an all-cause bleeding event, yet have so far had inadequate performance to improve detection.8 The 

inability to identify a dialysis patient’s risk for an ensuing bleeding event might be due to the 

classification for all-cause events, rather than specific types of bleeding events that can have distinct 

clinical characteristics defining the condition. The INSPIRE Core Group aimed to develop a machine 

learning model to determine if artificial intelligence-based methods may be able to provide suitable 

identification of a HD patient’s risk for hospitalization due to a GIB event. 
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Methods: 

Patient Population: 

To identify a unique patient’s risk of a GIB hospitalization in the next 180 days, we utilized real-world 

retrospective data from adults (age ≥18 years) who received ≥1 outpatient HD treatment at an 

integrated kidney disease company with approximately 2,500 dialysis centers (Fresenius Kidney Care, 

Waltham, United States) during 01-Jan-2017 through 31-Dec-2020. 

This project was reviewed and approved by New England Independent Review Board (Needham Heights, 

MA, United States; Work Oder# 1-1502098-1). It was determined by the Independent Review Board that 

this analysis was exempt due to deidentification of data and consent was not required per title 45 Code 

of Federal Regulations part 46.104(d)(4) in the United States. The analysis adhered to the Declaration of 

Helsinki. 

Outcome and Predictor Variables: 

The outcome (dependent variable) was defined as a GIB event requiring hospitalization as determined 

from the discharge diagnosis ICD10 codes: K22.6, K25.0, K25.2, K25.4, K25.6, K26.0, K26.2, K26.4, K26.6, 

K27.0, K27.2, K27.4, K27.6, K28.0, K28.2, K28.4, K28.6, K29.0, K62.5, K66.1, K92.0, K92.1, K92.2. The at-

risk exposure time for the prediction of the outcome was investigated and chosen to be within 180 days 

before the prediction date. The prediction date was based on each HD treatment observation date 

across the study period. 

We used a data driven approach to investigate differing exposures (independent variables) considering 

both clinical factors based on a priori assumptions, as well as an array of various parameters routinely 

captured in dialysis care. We chose this approach since the risk factors for an ensuing GIB hospitalization 
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have not been clearly defined in the dialysis population. Also, the machine learning model we utilized 

had a favorable attribute of being able to select the exposures with the most importance to an outcome 

prediction in an individualized manner for each patient.19 The exposure variables included an array of 

demographics, comorbidities, environmental attributes, laboratories, HD treatment data, medications, 

and prior events (Supplementary Table 1). For each unique parameter (n=145) we included the most 

recent value/status as of the prediction date, and for continuous data, also included the mean values in 

the prior 7, 30, 90, and/or 180 days as it was appropriate considering data availability (Figure 1). 

Erythropoietin stimulating agent (ESA) doses were converted into continuous erythropoiesis receptor 

activator (CERA) equivalent units for analysis using previously established ratios.20 Intravenous vitamin D 

medications were converted to doxercalciferol equivalent units for analysis using a conversion ratio of 

1:1.54 from paricalcitol (i.e. 65% of the paricalcitol dose) and a conversion ratio of 1:1.375 from calcitriol 

(i.e. 73% of the calcitriol dose).21, 22 Proton pump inhibitor (PPI), anticoagulant, and antiplatelet 

medication classes were defined using the United States Food and Drug Administration’s National Drug 

Code Directory.23 

Overall, the model assessed 386 exposure variables for individualized predictions (both unique and 

calculated variables). For the final model developed and evaluated in this report, we refined the 

exposure variables using a data driven approach that considered the top 50 exposure variables 

determined to exhibit the highest importance in the initial model. This method was selected to optimize 

exploratory assessments, while using a practical number of exposure variables that typically have the 

most meaning for making the prediction. 

Model Development: 

We organized data for model development by splitting patient records and sampling observations. Data 

from distinct patients was randomly split into a training (50% of patients), validation (30% of patients), 
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or testing (20% of patients) dataset. In these datasets, each HD treatment observation within 180 days 

before a GIB hospitalization was classified as a positive observation (i.e., experienced a GIB event in next 

180 days). All other HD treatment observations were classified as a negative observation (i.e., did not 

have GIB event in next 180 days). We then randomly selected a subset of observations to be used for 

model development, considering samples from the positive and negative observations within these 

three datasets (Supplementary Figure 1). This sampling considered an equivalent number of 

observations with positive and negative GIB events in the training dataset, and an incidence that 

matched the overall population in the validation and testing datasets. 

We used Python version 3.7.7 (Python Software Foundation, Delaware, United States) with the XGBoost 

package for constructing the machine learning model.24 For model development, XGBoost first used the 

training dataset and constructed decision trees for the exposure variables in every possible combination 

and established a series of thresholds, splitting variables to maximize the information gain. This 

ensemble of decision trees was constructed iteratively, and new decision trees were added to predict 

prior errors. The model was inherently able to manage missing values without imputation by including 

the variables presence for each patient when establishing variable splits. The model was next run on the 

validation dataset, where it was adjusted and tuned until no further improvements in performance were 

achieved. This model was used to identify the importance of the predictors and establish the top 50 

exposure variables to be considered in the final model. The model construction then started over again 

including only the top 50 exposure variables, and the training and validation steps were repeated in the 

same manner. This ensemble of decision trees produced the final model that was used to assess the 

model’s performance on the unseen data in a testing dataset. 
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Importance of Predictor Variables: 

The importance of exposure variables was determined using Shapley (SHAP) values 25, 26 computed using 

the SHAP python package 27, 28. SHAP values determined each exposure variable’s importance by 

assessing the effect size of each unique variable, and the overall combination of variables, on the 

prediction. The levels of importance (i.e., the effect size) found by SHAP values were used for the 

selection of the top 50 predictor variables to be included in the final model, and show the relative 

meaningfulness of each top predictor. 

The logic behind the calculation of SHAP values included a measurement of impact (positive or negative 

value) for each variable at each observation for each individual patient’s prediction. SHAP methods 

withheld and included individual variables in all combinations to compute the mean values for 

attributing the importance for each exposure variable. SHAP values show the effect size as log odds (i.e., 

the logarithm of the odds ratio) and represent non-linear additive explanations for variable importance. 

SHAP values for each variable were summed for each patient and can be converted from log odds to 

probability for each patient’s individualized prediction. Basically, the SHAP value shows the effect size 

and the direction of the effect (positive log odds value show higher risk and negative value show lower 

risk) for each exposure variable from each unique patient’s individualized prediction. The top predictors 

for each patient include those with the greatest effect size/importance for that patient’s prediction. 

The overall effect size/importance of the exposure variables on the patient population was determined 

using an absolute value (non-negative value) of the SHAP value for each exposure variable, taking the 

mean value for all distinct patients. Therefore, the overall population mean SHAP value shows the effect 

size for each exposure variable based on the predictions from all patients. The mean SHAP value was 

used for ranking the overall risk attributable to each exposure variable and defined the top predictors of 

the outcome of a GIB hospitalization in the next 180 days. 
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Assessment of Model Performance: 

Model performance was measured by the area under the receiver operating characteristic curve 

(AUROC), sensitivity, specificity, accuracy, and balanced accuracy; these were assessed in the training, 

validation, and testing datasets used for model development. The final performance assessment was 

considered for only the unseen testing dataset considering a cutoff threshold of 0.50. The details of the 

performance metrics are denoted below. 

AUROC: this metric shows the rate of true and false positives classified by the prediction model across 

probability thresholds. True and false positives and negatives are defined in Supplementary Table 2. 

Sensitivity (also known as recall): this metric shows the rate of true positives classified by the model at a 

specified threshold and was calculated as follows: 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 = (
𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

(𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝑓𝑎𝑙𝑠𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠)
) ∗ 100  

Specificity: this metric shows the rate of true negatives classified by the model at a specified threshold 

and was calculated as follows: 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 = (
𝑡𝑟𝑢𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠

(𝑡𝑟𝑢𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠 + 𝑓𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠)
) ∗ 100 

Accuracy: This metric shows the rate of true positives and true negatives classified by the model at a 

specified threshold (i.e., the fraction of correct predictions) and was calculated as follows: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = (
(𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 +  𝑡𝑟𝑢𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠)

(𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝑡𝑟𝑢𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠 +  𝑓𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝑓𝑎𝑙𝑠𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠)
) ∗ 100 
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Balanced accuracy: This metric shows the mean of the sensitivity and specificity of the model and was 

calculated as follows: 

𝐵𝑎𝑙𝑎𝑛𝑐𝑒𝑑 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = (
(𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 +  𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦)

2
) ∗ 100 

The metrics for AUROC, sensitivity, specificity, accuracy, and balanced accuracy computed scores on a 

scale of 0 (lowest) to 1 (highest). Sensitivity, specificity, accuracy, and balanced accuracy are presented 

as a percentage. As an example, a model performing at random chance would have an AUROC = 0.5 and 

a balanced accuracy = 50%. 

Results: 

Patient Population Characteristics: 

We considered a patient population of 451,579 adults treated by HD during 2017 throughout 2020. The 

characteristics of the patient population are shown in Table 1 for those who experienced ≥1 GIB 

hospitalization or no GIB hospitalization. The incidence of GIB hospitalization within 180 days of a given 

HD treatment was 1.18% (1,249,108/105,838,571 observations) in the patient population. 

We split the patient population into three groups, randomly assigning each distinct patient’s data into a 

training (n=225,793), validation (n=135,490), or testing (n=90,296) dataset. We then randomly selected 

subset of observations for the training (patient n=76,441), validation (patient n=31,288), and testing 

(patient n=27,991) datasets used to construct the model. This sampling considered an equivalent 

number of observations with positive and negative GIB events in the training dataset, and an incidence 

that matched the overall population in the validation and testing datasets. The patient characteristics in 
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the subset of data used were reasonably consistent with the overall patient population, albeit there 

were some small differences in parameters after random splitting/sampling (Table 1). 

Model Performance: 

The machine learning prediction model was developed using distinct groups of patients who had their 

data randomly assigned to training and validation datasets. Initially, the model used 145 distinct 

exposure variables and considered the most recent values to the prediction date, as well as mean values 

for continuous variables in prior 7, 30, 90, and 180 days (i.e., 386 distinct & calculated exposure 

variables; Supplementary Table 1). The final model was refined to include only the top 50 variables that 

showed the highest importance for outcome prediction (Table 2). The performance of the prediction 

model was evaluated on the testing dataset, which was unseen by the model during development. The 

prediction model was found to have suitable performance in the classification of patients at a higher risk 

of being hospitalized for a GIB in the following 180 days (Table 3). In the testing dataset, the model 

showed an AUROC of 0.69, a sensitivity of 57.9%, a specificity of 68.9%, and an accuracy of 68.8%. 

Predictors of GIB Hospitalization: 

SHAP values were computed to determine the effect size for each variable in the prediction. In the 

unseen data in the testing dataset, the top three predictors of a GIB hospitalization in the next 180 days 

were older age (group mean GIB event = 68.2 years vs no GIB event = 63.4 years), shorter days since the 

last all-cause hospital admission (group mean GIB event = 203.2 days vs no GIB event = 253.2 days), and 

surprisingly, higher total serum 25-hydroxy (OH) vitamin D levels from the most recent lab (group mean 

GIB event = 33.4 ng/mL vs no GIB event = 30.5 ng/mL). Other top predictors included lower levels of 

hemoglobin and iron indices, longer dialysis vintage, lower estimated dry weight, and lower albumin 

levels. Albeit the 26th most important predictor, we found use of a PPI was a risk factor for GIB 
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hospitalization. Other medications in the top 50 predictors were higher ESA dose and higher IV iron 

dose. No other in-center or home medications were among the top 50 predictors (e.g., heparin, 

anticoagulants, antiplatelets, active vitamin D analogs) and were not included in the final model since 

they did not exhibit a great enough effect size. Nonetheless, a longer prothrombin time was the 32nd 

most important predictor and represents the anticipated connection between anticoagulation and GIB 

events. 

Figure 2 shows the top 25 predictors with the greatest effect on classification of 180-day risk for a GIB 

hospitalization in the testing dataset. The bar chart (left panel) shows the mean absolute SHAP value (a 

non-negative/absolute value), which is the non-linear magnitude of the effect size for each variable in 

log odds. The top predictors are shown in descending order. The SHAP value plot (right panel) shows 

additional information on the direction as well as the magnitude of the effect size for each exposure 

variable from each patient’s individualized prediction. The SHAP value assigned to each dot represents 

the value from each individual patient for that specific exposure variable. The position of the dot on the 

x-axis corresponds to the effect size for that specific patient, either positive (showing more risk) or 

negative (showing more protection). The color each dot corresponds to the value of the exposure 

variable is for that specific patient. Dots with warmer colors show a higher value for a specific patient, 

while dots with cooler colors show a smaller value for a specific patient, and gray dots show a missing 

value for a specific patient. 

To provide an example, the mean SHAP value for the top predictor of age found this exposure has the 

greatest effect size in the prediction of a GIB hospitalization in the next 180 days overall considering the 

entire group evaluated. The SHAP value plot further found the dots became warmer colors with more 

positive SHAP values (showing more risk with older ages) and the dots became cooler colors with more 

negative SHAP values (showing more protective effects with younger ages). Albeit age was found to 
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contribute the most to the risk of a GIB hospitalization, there were many exposures that had a large 

effect size for specific patients, and this can be seen by the log odds values and the distributions of risks 

in SHAP value plots that show the results from individual predictions. 

Discussion: 

Major GIB events are potentially avoidable, yet underrecognized in the HD population. To improve the 

ability for early detection, we developed a machine learning model to identify a HD patient’s 180-day 

risk for a GIB hospitalization. Model showed suitable performance and found the most important risk 

factors for GIB hospitalization in the patient population were older age, shorter days since the last all-

cause hospitalization, and higher total 25OH vitamin D levels from the most recent lab. Albeit many of 

the top predictors have been previously suggested to be associated with GIB risk in HD,11, 29 the strong 

association between higher total 25OH vitamin D levels and GIB events was unexpected and warrants 

further investigation. 

We found a 1.2% incidence of 180-day GIB hospitalization. This is consistent with other reports in the 

literature that show a 2% to 6% incidence per year.7-9 Despite a low incidence, experiencing a GIB 

hospitalization can increase the risk of death by 90% in a kidney failure patient,11 emphasizing the need 

to enhance early detection and treatment. GIB can be detected by fecal occult blood tests and 

endoscopy.30-32 However, there is little information to guide the use and frequency of fecal occult blood 

screening in the dialysis population and early detection of a suspected GIB is largely dependent on a 

timely referral to a gastroenterologist. Many GIBs can be effectively managed by pharmaceutical 

regimens or treated during screening procedures, with about 40% of upper GIBs being treated in an 

outpatient setting.33 Our model found PPI use was a meaningful predictor of a major GIB event, which is 

likely an observation by indication. Nonetheless, it shows some preventative measures taken among 

those with known gastroesophageal complications. A recent study of >200,000 hospitalized patients 
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showed kidney failure patients had lower endoscopy rates and higher mortality rates than matched 

patients without kidney failure.4 Furthermore, this study showed kidney failure patients with a major 

GIB who had an endoscopy exhibited lower mortality rates than those who did not receive an 

endoscopy. This supports the potential benefits of endoscopy for diagnostic evaluation and treatment as 

appropriate. Notably, kidney failure itself is a significant risk factor for GIB.5, 29, 34 A study of dialysis 

patients who received an endoscopy during kidney transplant evaluation showed >60% of patients had 

abnormal endoscopic findings.35 

There are traditional and machine learning risk models available for guiding treatment and prognosis of 

GIB among patients presenting to the emergency department/hospital. Despite this, these models often 

include kidney failure and/or markers altered in kidney disease as inputs, and thus can yield convoluted 

insights in the dialysis population.36-40 The appropriate identification and risk classification in patients 

with kidney failure remains a clinical challenge. The Glasgow Blatchford score (GBS) has been evaluated 

for predicting the need for admission and endoscopic intervention in kidney failure patients presenting 

to the hospital with a suspected GIB; this model was found to have reasonable performance 

(AUROC=0.63, sensitivity=81.2%, and specificity=42.3%) with a GBS cutoff score of ≥14.34 However, in 

comparison, a GBS cutoff score of >0 (zero) is considered appropriate to define the need for admission 

and endoscopy in patients without kidney failure.12 To our knowledge, there are presently no GIB risk 

prediction models specific to the outpatient kidney failure population. Nonetheless, all-cause bleeding 

risk models have been tested in kidney failure patients, yet none have had suitable performance to be 

considered in care.8, 17, 18 Rather than using the outcome of all-cause bleeding, we focused on the most 

frequent class of bleeding events and were able to build a model with reasonable performance. 

We identified an unexpected and potentially important association between higher total serum 25OH 

vitamin D levels and major GIB. This observation is consistent with findings in warfarin users without 
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known kidney disease who have a higher GIB risk when total serum 25OH vitamin D levels are in the 

range of 30-100 ng/mL versus all other levels.41 KDOQI guidelines suggest total serum 25OH vitamin D 

levels should be maintained at ≥30 ng/mL in kidney disease.22 Despite this, the United States Food and 

Nutrition Board recommends avoiding total serum 25OH vitamin D levels >50 ng/mL and suggests 

careful considerations for levels 30 to 49 ng/mL since they are associated with higher rates of mortality, 

cardiovascular events, falls/fractures and cancer.42 KDIGO guidelines state further research is needed to 

determine the benefits or risks associated with vitamin D analogs.43 A preliminary investigation of this 

signal by the INSPIRE Core Group presented as an abstract found unadjusted GIB event rates were 

qualitatively higher among HD patients with total serum 25OH vitamin D levels >30 ng/mL, and the 

highest at levels of ≥50 to <60 ng/mL.44 Further analyses are needed to confirm this observation. 

There is a growing body of evidence suggesting both anticoagulant and antithrombotic actions of serum 

vitamin D levels and use of vitamin D derivatives.45 For instance, in vitro 1,25-dihydroxyvitamin D 

induces the secretion of tissue plasminogen activator from rat heart cells,46 down-regulates the 

expression of plasminogen activator inhibitor 1 in rat osteoblast cells 47 and human breast cancer cells,48 

and down-regulates the expression of tissue factors in human leukemia cells.49 Vitamin D may also play 

a role in impairment of platelet aggregation with vitamin D receptor knockout mice exhibiting enhanced 

platelet aggregation.50 Consistent with our observation of a potential anticoagulant effect of vitamin D, 

high total 25OH vitamin D levels in the general population have been associated with a reduced venous 

thromboembolism risk,51 and use of 1,25-dihydroxyvitamin D is associated with a decreased incidence of 

deep vein thrombosis among prostate cancer patients.52 

Although we were able to construct a model that may be suited for further evaluation, there are several 

limitations to be considered. We used a subset of historic data for model development and prospective 

evaluations will be needed to substantiate the model’s performance and generalizability. We used a 
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cluster of comorbidity codes to define GIB that did not differentiate between types and does not include 

all possible bleeding codes. Given visceral and non-visceral bleeds in the upper-, middle-, and lower-GI 

system can have differences in etiology, onset, treatment strategies, and outcomes,31, 32, 53 predictive 

models could be designed for specific GIB types. However, this would yield lower incidence rates and 

could hinder model performance. Our model can inherently account for collinearity and missingness, 

which is a strength. Nonetheless, the model determines associations and thereby predictors may not 

represent causal relationships and need to be interpreted within this context. There is always some give 

and take with regards to optimizing the sensitivity and specificity of any model, and our prediction 

model provides a more specific than sensitive prediction, which should also be considered in 

interpretation of results. A sufficient bleeding risk model may provide early detection of a HD patient’s 

ensuing GIB event in hopes that timely assessment and referral could limit avoidable hospitalization and 

the risk attributable to experiencing a major GIB. 

Overall, we developed a machine learning model with suitable performance in classifying the 180-day 

risk of a GIB hospitalization for a HD patient. This model offers a potential method for early detection 

and prospective evaluations appear warranted. Figure 3 shows a hypothetical workflow we propose for 

testing the model in clinical decision support. We suggest routine predictions of GIB risk on a quarterly 

basis with reporting after comprehensive labs that include total serum 25OH vitamin D. Reports could 

include binary classification (high vs low risk), or several risk classifications based on defined cutoff 

thresholds (e.g., >90%, ≤90% to >80%, ≤80% risk for GIB hospitalization). For each patient classified at a 

higher risk, we recommend the report should show at a minimum the top five predictors attributable to 

that patient’s prediction. Optimally, the reporting could be incorporated into everyday practice and 

considered at routine visits, just as lab values would be. 
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Tables: 

TABLE 1: CHARACTERISTICS OF THE HD PATIENT POPULATION, RANDOM SUBSET OF PATIENTS, AND TEST DATASET OF PATIENTS 

 
GIB Admission 
Mean±SD or % 

No GIB Admission 
Mean±SD or % 

Parameter Population Subset Test Dataset 
Patient 

Population 
Subset Test Dataset 

Patient n 28644 4107 436 422935 207184 27555 
Observation n 1,249,108 98,244 468 104,589,463 178,725 39,720 
Age (years) 67.3 ± 13.0 68.2 ± 12.7 68.2 ± 12.6 62.8 ± 14.6 63.3 ± 14.2 63.4 ± 14.2 
Male 55% 55% 51% 58% 57% 57% 
White Race 48% 47% 47% 44% 47% 47% 
Black Race 28% 31% 31% 22% 30% 30% 
Asian Race 20% 17% 18% 30% 18% 19% 
Other Race 3% 3% 3% 2% 3% 3% 
Unknown Race 1% 1% 1% 1% 2% 2% 
Hispanic Ethnicity 67% 68% 67% 56% 65% 65% 
Not Hispanic Ethnicity 9% 10% 11% 10% 13% 13% 
Unknown Ethnicity 24% 22% 22% 34% 23% 23% 
Dialysis vintage (years) 3.9 ± 4.1 4.5 ± 4.2 4.4 ± 4.0 2.3 ± 3.6 4.2 ± 4.1 4.2 ± 4.1 
Catheter HD access 28% 19% 20% 43% 18% 18% 
Arteriovenous HD access 70% 81% 80% 46% 81% 82% 
Diabetes 39% 40% 41% 30% 39% 40% 
Ischemic heart disease 24% 25% 19% 15% 19% 19% 
GIB (comorbidity) 2% 3% 3% 0.4% 1% 0.8% 
Self-reported energy level‡ 45.3 ± 27.8 45.5 ± 27.5 46.8 ± 26.8 46.3 ± 27.3 50.2 ± 27.8 50.1 ± 27.8 
‡ KDQOL-36 score for question 10: “Did you have a lot of energy?” 
GIB: gastrointestinal bleed; HD: hemodialysis 
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TABLE 2: PREDICTORS OF 180-DAY GI BLEED HOSPITALIZATION IN THE TEST DATASET 

Parameter 
Mean SHAP 

value 
GIB Admission 
Mean (SD) or % 

No GIB Admission 
Mean (SD) or % 

Patient n (test dataset) N/A 436 27,555 
Observation n (test dataset) N/A 468 39,720 
Age (years) 0.071 68.2 (12.6) 63.4 (14.2) 
Days since start of last all-cause hospitalization 0.045 203.2 (245.7) 253.2 (268.7) 
25OH Vitamin D (ng/mL): last lab 0.044 33.4 (17.0) 30.5 (16.0) 
25OH Vitamin D (ng/mL): mean 180 days 0.025 32.8 (15.6) 30.4 (15.9) 
Hgb (g/dL): last lab 0.024 10.3 (1.4) 10.8 (1.3) 
Ferritin (ng/mL): mean 180 days 0.021 948.7 (529.8) 1005.3 (553.3) 
TSAT (%): mean 180 days 0.020 31.0 (9.8) 32.8 (9.9) 
Hgb (g/dL): mean 180 days 0.020 10.3 (1.0) 10.7 (1.0) 
Dialysis vintage (years) 0.017 4.4 (4.0) 4.2 (4.1) 
EDW: mean 7 days 0.013 78.3 (22.4) 82.8 (23.5) 
Albumin (g/dL): last lab 0.012 3.7 (0.5) 3.8 (0.4) 
Hgb (g/dL): mean 90 days 0.012 10.4 (1.1) 10.7 (1.1) 
Albumin (g/dL): mean 180 days 0.012 3.7 (0.4) 3.8 (0.4) 
Vitamin B12 (pg/mL): last lab 0.011 786.2 (411.4) 716.4 (367.6) 
Vitamin B12 (pg/mL): mean 180 days 0.011 773.6 (401.9) 719.9 (363.9) 
QB (mL/min): mean 90 days 0.011 406.4 (47.8) 411.6 (49.7) 
Lymphocytes (%): mean 180 days 0.010 18.6 (7.1) 20.1 (7.3) 
Ferritin (ng/mL): last lab 0.010 953.7 (538.3) 1026.6 (566.9) 
Chloride (mEq/L): mean 90 days 0.010 98.7 (3.7) 99.0 (3.6) 
Hgb (g/dL): mean 7 days 0.010 10.3 (1.4) 10.8 (1.3) 
Pre-HD DBP: mean 90 days 0.010 74.1 (12.5) 77.1 (11.9) 
Bicarb (mEq/L): mean 180 days 0.009 24.2 (2.4) 24.0 (2.3) 
Platelets (1000/mcL): mean 180 days 0.009 192.9 (69.8) 199.8 (67.5) 
Lymphocytes (%): mean 90 days 0.009 18.4 (7.4) 20.1 (7.5) 
TSAT (%): mean 90 days 0.009 31.0 (11.1) 33.0 (11.1) 
PPI Use 0.009 23.3% 20.5% 
EDW: last HD 0.008 78.2 (22.3) 82.8 (23.5) 
Hgb A1C: mean 180 days 0.008 6.2 (1.3) 6.6 (1.5) 
BUN to Cr ratio: mean 90 days 0.008 7.6 (3.1) 7.4 (3.1) 
WBC (1000/mcL): mean 180 days 0.007 6.8 (2.3) 6.9 (2.6) 
Monocytes (%): mean 180 days 0.007 6.5 (1.6) 6.3 (1.6) 
Prothrombin Time (seconds): last lab 0.007 24.5 (9.1) 21.2 (8.1) 
CERA dose (mcg): mean 90 days 0.007 156.8 (147.2) 89.8 (71.8) 
Non-Hispanic Ethnicity 0.006 67.3% 64.6% 
Platelets (1000/mcL): mean 90 days 0.006 191.5 (73.9) 199 (69.3) 
Post-HD stand SBP: mean 30 days 0.006 137.2 (19.9) 135.3 (18.6) 
Hgb A1C: last lab 0.006 6.2 (1.4) 6.6 (1.6) 
Post-HD pulse: mean 7 days 0.006 75.8 (11.2) 76.5 (11.1) 
Pre-HD stand DBP: mean 90 days 0.005 76.4 (13.2) 78.3 (12.6) 
HD session stopped against med advice: mean % 90 days 0.005 2.5% 1.8% 
IV iron sucrose: mean 90 days 0.005 85.0 (24.2) 75.8 (26.6) 
Intact PTH: mean 180 days 0.005 439.6 (346.2) 467.6 (336.4) 

Basophils (%): mean 90 days 0.005 0.7 (0.4) 0.7 (0.4) 
Lymphocytes (%): mean 30 days 0.005 18.5 (8.2) 20.1 (8.1) 
KECN: mean 90 days 0.005 253.7 (26.6) 254.3 (27.6) 
Ferritin (ng/mL): mean 90 days 0.005 943.9 (525.8) 1018.3 (551.8) 
HD session stopped unexpectedly: mean % 90 days 0.004 8.5% 7.3% 
BUN to Cr ratio: last lab 0.004 7.7 (3.4) 7.4 (3.2) 
Creatinine (mg/dL): last lab 0.003 7.9 (2.7) 8.4 (3.0) 
Length of stay (days) for last hospitalization 0.003 5.0 (6.0) 4.6 (9.2) 
GIB: gastrointestinal bleed; EDW: estimated dry weight; CERA: continuous erythropoiesis receptor activator; Bicarb: bicarbonate; IV: 
intravenous; Hgb; hemoglobin; TSAT: transferrin saturation; PPI: proton pump inhibitor; Hgb A1C: hemoglobin A1C; QB: blood flow rate; 
BUN to Cr ratio: blood urea nitrogen to creatinine ratio; PTH: parathyroid hormone; WBC: white blood cells; HD: hemodialysis; SD: standard 
deviation; Stand: standing; SBP: systolic blood pressure; DBP: diastolic blood pressure; KECN: effective clearance of sodium 
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TABLE 3: MODEL PERFORMANCE IN PREDICTING 180-DAY GI BLEED HOSPITALIZATION RISK 

Model Dataset Training Validation Testing 
Patient n 76,441 31,288 27,991 
Observation n 196,589 40,192 40,188 
Incidence of GI bleed hospitalization 
observations per 180 days 

49.5% 1.17% 1.16% 

AUROC 0.738 0.714 0.691 
Sensitivity (Recall) 65.4% 58.3% 57.9% 
Specificity 69.1% 69.9% 68.9% 
Accuracy 67.3% 69.7% 68.8% 
Balanced accuracy 67.2% 64.1% 63.4% 
GI: gastrointestinal; AUROC: area under the receiver operating characteristic curve 
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Figures and Legends: 

 

Figure 1: Data ascertainment and outcome follow up timeframes. 
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Figure 2: Top 25 predictors of 180-day GIB hospitalization in descending order. Bar plot on the left panel show the mean absolute SHAP values 

that estimate the average effect size of each exposure variable’s contribution to predicting the outcome on the x-axis (calculated from the 

average absolute value for all patients). SHAP value plots in the right panels show the size and direction (more positive=higher risk or more 
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negative=lower risk/more protection  of each variable’s influence on the outcome for each unique patient on the x-axis, with warmer colors 

representing higher observed values for that measurement, cooler colors indicating lower values for that measurement, and gray representing a 

missing value for that measurement. SHAP values are presented in the unit of log odds (i.e. logarithm of the odds ratio). GIB: gastrointestinal 

bleed; EDW: estimated dry weight; Bicarb: bicarbonate; Hgb; hemoglobin; TSAT: transferrin saturation; QB: blood flow rate; HD: hemodialysis; 

DBP: diastolic blood pressure. 
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Figure 3: Hypothetical Workflow for Decision Support 
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