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Abstract 
Background: Diabetic retinopathy is a leading cause of blindness in adults worldwide. AI with 
autonomous deep learning algorithms has been increasingly used in the analysis of retinal 
images particularly for the screening of referrable DR. An established treatment for proliferative 
DR is pan-retinal or focal laser photocoagulation. Training AI autonomous models to discern 
laser patterns can be important in disease management and follow-up.  

Methods: A deep learning model was trained for laser treatment detection using the EyePACs 
dataset. Data was randomly assigned, by participant, into development (n= 18,945) and 
validation (n= 2,105) sets. Analysis was conducted at the single image, eye, and patient levels. 
The model was then used to filter input images for three independent AI models for various 
retinal indications, and changes in model efficacy were measured using AUC and MAE.  

Findings: On the task of laser photocoagulation detection: AUC of 0.981 (CI 95% 0.971-0.87) 
was achieved at the patient level. AUC of 0.950 (CI 95% 0.943-0.956) was achieved at the 
image level. AUC of 0.979 (CI 95% 0.972-0.984) was achieved at the eye level.  

When analyzing independent AI models, efficacy was shown to improve across the board on 
images of untreated eyes. DME detection on images with artifacts was AUC 0.932 (CI 95% 
0.905-0.951) vs. AUC 0.955 (CI 95% 0.948-0.961) on those without. Participant sex detection 
on images with artifacts was AUC 0.872 (CI 95% 0.830-0.903) compared to AUC 0.922 (CI 95% 
0.916-0.927) on those without. Participant age detection on images with artifacts was MAE 5.33 
vs. MAE 3.81 on those without.  

Interpretation: The proposed model for laser treatment detection achieved high performance 
on all analysis metrics and has been demonstrated to positively affect the efficacy of different AI 
models, suggesting that laser detection can generally improve AI powered applications for 
fundus images.  
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Introduction 
Laser photocoagulation is a common and established procedure, in which laser pulses are used 
to coagulate retinal tissue, used to treat multiple retinal diseases [1]–[3]. Ablative 
photocoagulation is mostly used to prevent leakage and ischemic neovascularization in vascular 
retinal conditions such as diabetic retinopathy (DR) [4], [5], diabetic macular edema (DME) [6]–
[8], retinal vein occlusion (RVO) [9], [10] and neovascular age-related macular degeneration 
(AMD) [11], [12]. 

Laser photocoagulation is generally divided into pan-retinal and focal; the former is delivered in 
the peripheral retina with deep ablative burns to stem the neovascular process [13], [14], while 
the latter is a lighter photocoagulative treatment delivered in the central macula to treat macular 
conditions [15], [16]. There are well established laser treatment protocols depending on disease 
severity and individual patient disease state [12], [17]–[19]. While laser photocoagulation is an 
effective treatment, it causes retinal scarring and is destructive to the retinal tissue leaving long 
term defects in the anatomy. [20]–[22]. 

Artificial Intelligence (AI) using fundus imaging has been increasingly employed in various 
ophthalmological applications [23], [24]. These applications include extraction of basic patient 
data, such as age and sex [25], detection of retinal pathologies, [26]–[28] and pathology 
development prediction [29]–[31]. AI methods rely on image pattern recognition, especially in 
areas in which the pathology is present. As such, laser photocoagulation may disrupt general 
pattern recognition by adding new patterns or artifacts, such as burns and scars, which the 
model is less trained to deal with. This is specifically problematic given that laser treatment is 
often done on areas of interest, such as leaky blood vessels, which are often the very areas that 
are most crucial to recognize. 

The effect laser photocoagulation has on AI systems suggests that a tool to identify images of 
eyes which have undergone photocoagulation may be beneficial for the autonomous retinal-
based diagnosis and follow-up treatment of patients. While previous methods of laser 
photocoagulation detection exist[32]–[36], this work, to the best of our knowledge, presents the 
first laser treated image detection method based on a large, diverse, and widely accepted 
database - in this case, EyePACS (https://www.eyepacs.org); the database contains images 
from a variety of manufacturers and patient populations, of varying image qualities. 

Methods 

Data 

The data consisted of a subsample of the EyePACs dataset, which contains 45° angle fundus 
photography images and expert readings of said images. All images and data were de-identified 
according to the Health Insurance Portability and Accountability Act “Safe Harbor” before they 
were transferred to the researchers. Institutional Review Board exemption was obtained. 

The dataset contained up to 6 images per patient visit: one macula centered image, one disc 
centered image, and one centered image, per eye. Each eye underwent expert reading, 
including but not limited to panretinal laser treatment presence, focal laser treatment presence, 
and image quality. All images of the subsample deemed readable by expert annotations were 
used. 
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The resulting dataset consisted of 21,050 images from 9,212 patients, of which 9,484 images 
(45%) had artifacts of panretinal laser treatment, 1,888 (9%) had artifacts of focal laser 
treatment, and 847 (4%) had both. This work combined focal and panretinal laser treatments 
into one category of laser treatment, resulting in an overall 10,525 (50%) images with laser 
treatment artifacts (table 1). Of these, roughly 77% of patients required dilation, where 54% of 
all patients received 1 gtt. tropicamide 1%, 17% received 1 gtt. tropicamide 0.5%, and 5% 
received other dilation agents.  

The average age of patients with laser treatment artifacts was 59.5 (10.0 SD) and 55% were 
female, compared to the patients who had not undergone laser treatment, for which the average 
age was 55.6 (11.3 SD) and 61% of which were female (table 2). The distribution of laser 
treatment images across DR levels is given in table 3; all laser treatment images were from 
patients with more than mild DR, and the majority were from patients with grade 4 DR.  

Quality assessment  

A tool for image quality assessment was developed based on detecting visibility of fundus-
specific characteristics. The given quality score for an image is an aggregation of the visibility 
from multiple areas within the fundus image. Figure 2 demonstrates a few examples of images 
and their respective scores, showing the correlation between score and visual image quality. 
This was done in order to remove low-quality images from the dataset, as the quality scores 
assigned by EyePACs are assigned to patients and not to individual images.  

Pre-Processing  

Image pre-processing was performed in two steps for both datasets. Firstly, image backgrounds 
were cut along the convex hull, which contains the circular border between the image and the 
background. Figure 1 shows an example of this process. Secondly, images were resized to 
512X512 pixels. Lastly, using the aforementioned quality assessment tool, bad quality images 
were filtered out before training. The image quality threshold was set at the point at which model 
performances were not improved by filtering additional images, resulting in 1,373 images 
filtered, approximately 6.5% of the data.  

Model training 

The data was then divided into training, validation, and test datasets at a ratio of 80%, 10%, and 
10% respectively. A binary classification neural network was trained. The model architecture 
was automatically fitted to best balance the model performance vs. model complexity tradeoff. 
Hyperparameter tuning was done on the validation set. 

Statistical analysis 

The metrics used for model assessment were accuracy, sensitivity, specificity, and area under 
the receiver operating characteristic curve (AUC). For each metric the bias corrected and 
accelerated bootstrap method [37] was used to produce a 95% confidence interval. 
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Analysis levels 

Laser detection was done on three different levels. The first, detection on the individual image 
level, was the basic task for which the model was trained. The second, detection on the eye 
level, used all images from a given eye and the image for which the model had the highest 
degree of confidence was selected for analysis. For the third, detection on the patient level, the 
results from both eyes were compared and the eye with the higher model confidence was 
selected to produce a patient-level result. 

Effect on imaging tasks 

The effect that laser treatment has on imaging tasks was measured by applying the laser 
detection model as a preprocessing step for a model for the detection of DME, which was 
developed based on the EyePACs dataset [38], and a model for age detection, also developed 
based on the EyePACs dataset. 

The performance on these tasks was measured in AUC on a separate validation set containing 
images both with and without laser treatment artifacts. The 95% confidence interval was 
calculated using the accelerated bootstrap method for each population and compared for 
significance. 

A regression model was additionally trained for age detection, and the mean absolute error 
(MAE) between the patient's age and predicted age was calculated on a separate validation set. 
The validation set was separated into patients with and without laser treatment artifacts, such 
that the mean age between these populations was the same. Significance in mean absolute 
error between the two populations was calculated using a student's T-test. Detailed patient 
statistics of these experiments are given in supplementary table 1. 

Results  
The results for the different analysis methods of laser artifact detection were as follows (table 
4): on the image level, sensitivity of 0.883 (CI 95% 0.868, 0.897) and specificity of 0.880 (CI 
95% 0.864, 0.894) were achieved. On the eye level, sensitivity of 0.925 (CI 95% 0.900, 0.945) 
and specificity of 0.931 (CI 95% 0.916, 0.944) were achieved. On the patient level, sensitivity of 
0.929 (CI 95% 0.881, 0.947) and specificity of 0.926 (CI 95% 0.911, 0.944) were achieved. 

The results of laser artifact detection for each DR level are displayed in table 5: the model 
achieved 0.910 AUC (CI 95% 0.866, 0.941) for DR level 2, 0.887 AUC (CI 95% 0.758, 0.954) for 
DR level 3, 0.929 AUC (CI 95% 0.918, 0.938) for DR level 4 and 0.772 AUC (CI 95% 0.904, 
0.968) for ungradable DR level. DR levels 0 and 1 did not have any laser treated examples, thus 
most metrics are not defined for these groups. 

Table 6 shows the difference in results in laser artifact detection between patients with and 
without DME. The model achieved 0.955 AUC (0.948, 0.962) for non DME patients vs. 0.908 
AUC (0.884, 0.927) for DME patients, demonstrating that these conditions do affect results, but 
the model achieves high performance irrespective of them.   
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Table 7 displays the results of laser artifact detection for images which passed (high quality) 
and didn't pass (low quality) the quality filter, showing a significant difference between the 
populations. The results for low quality images, which were filtered out, were 0.787 sensitivity 
(CI 95% 0.710, 0.849), 0.793 specificity (CI 95% 0.709, 0.860), and 0.857 AUC (CI 95% 0.803, 
0.898); compared to 0.854 sensitivity (CI 95% 0.838, 0.869), 0.904 specificity (CI 95% 0.890, 
0.917), and 0.948 AUC (CI 95% 0.941, 0.955) for high quality images which passed the filter.  

The effect of laser detection and subsequent filtration on the aforementioned three tasks of 
DME detection, age prediction, and sex detection, were as follows: DME detection results for 
images with no laser artifacts were 0.955 AUC (CI 95% 0.948, 0.961), compared to images with 
laser artifacts, on which the model achieved 0.932 AUC (CI 95% 0.905, 0.951). Age prediction 
results for images with no laser artifacts, after age adjustment, were 3.81 mean absolute error 
(MAE), compared to images with laser artifacts, on which the model achieved 5.33 MAE. T-test 
analysis shows a significance of p < 1e-4. Sex detection results for images with no laser 
artifacts were 0.922 AUC (CI 95% 0.916, 927), compared to images with laser artifacts for which 
the model achieved 0.872 AUC (CI 95% 0.830, 0.903). 

The aggregation of these results is shown in table 8.  

Discussion 
This work proposed a method for the automatic detection of laser treatment artifacts in fundus 
images, which may also serve as a component in the future development of AI systems for 
different diagnoses based on retinal imaging. Such tasks may need to consider images of laser-
treated eyes differently from non-treated eyes according to their design needs; some may 
choose to discard these images, while others may analyze them in a manner differently to 
images of untreated eyes. Accordingly, and in accordance with the degree to which laser 
treatment affects the task in question, the proposed system may be used at different operating 
points with different sensitivity-specificity balances. Discarding laser-treated images is a viable 
option for most automated retinal screening applications, as these patients should already have 
an awareness of the need for regular screening. 

Previous studies on the autonomous detection of laser burns from fundus images have been on 
a smaller scale (roughly 2 orders of magnitude) [32]–[36]. The importance of scale is in the 
better representation of real-life conditions; specifically, this study allows better representation of 
various image qualities, camera manufacturers, and populations. Additionally, a wider range of 
clinical conditions, such as DR and DME, are represented in this study both with and without 
laser treatment, and the proposed system shows high performance across these conditions.  

The effect laser treatment has on imaging tasks, and the model's ability to detect relevant 
images, were validated by checking the model's effect on different AI tasks involving retinal 
images. A significant difference was found for all three tasks, showing the relevance of the 
proposed method for future AI tasks.  

A limitation of this work is the lack of differentiation between focal and panretinal laser 
treatments that were grouped as one in this work. Future works may differentiate between the 
two, given increased data. Furthermore, even though the base characteristics of laser 

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted January 30, 2023. ; https://doi.org/10.1101/2023.01.30.23285179doi: medRxiv preprint 

https://doi.org/10.1101/2023.01.30.23285179
http://creativecommons.org/licenses/by-nd/4.0/


 

photocoagulation remain similar across conditions, the addition of AMD-specific databases to 
the training set may improve results. 

In addition, and in the same vein of the presented work, machine learning methods to detect 
patients with DME who will require future laser treatment may be developed. This would require 
training a model, similar to the one presented, on a dataset generated from a longitudinal study 
tracking the progression of patients with diabetes.  

 

 

Figures and tables 

 

 No laser treatment Focal laser Panretinal laser Both 

Count 10525 1888 9484 847 

Table 1. Laser treatment prevalence in the EyePACs dataset  

 

 

 Count Age (S.D) Gender (% female) Ethnicity (fraction) 

With laser 10525 59.5 (10.0) 51 White = 0.59 (Hispanic = 0.95 
non-Hispanic = 0.05) 

Indian subcontinent origin = 0.11 

African Descent = 0.07 

Asian = 0.02 

Not specified = 0.13 

Other = 0.08 

No laser 10525 54.7 (10.8) 52 White = 0.51 (Hispanic =0.90 
non-Hispanic = 0.10) 

African Descent = 0.13 

Indian subcontinent origin = 0.12 

Asian = 0.03 

Not specified = 0.14 

Other = 0.07 

Table 2. Patient demographics for patients who did and did not have laser treatment artifacts 
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DR grade 0 1 2 3 4 ungradable 

Total count 558,451 52,928 106,377 16,909 19,470 25,718 

With laser 0 0 365 175 9,607 136 

No laser 558,451 52,928 105,742 16,734 9,863 25,582 

Table 3. Distribution of laser treatment prevalence across different diabetic retinopathy grades  

 

 

 Accuracy (C.I) Sensitivity (C.I) Specificity (C.I) AUC (C.I) 

Image level 0.882 (0.870, 0.892) 0.883 (0.868, 0.897) 0.880 (0.864, 0.894) 0.950 (0.943, 0.956) 

Eye level 0.929 (0.916, 0.940) 0.925 (0.900, 0.945) 0.931 (0.916, 0.944) 0.979 (0.972, 0.984) 

Patient level 0.927 (0.910, 0.940) 0.929 (0.881, 0.947) 0.926 (0.911, 0.944) 0.981 (0.971, 0.987) 

Table 4. Laser treatment detection results on the EyePACs dataset for the three analysis levels 
performed, given in accuracy, sensitivity, specificity, and AUC with a 95% confidence interval. 
CI noted in parentheses. 

 

 

DR grade 2 3 4 Ungradable 

Sensitivity (C.I) 0.680 (0.591, 0.756) 0.667 (0.472, 0.806) 0.869 (0.853, 0.884) 0.846 (0.652, 0.957) 

Specificity (C.I) 0.958 (0.906, 0.984) 0.960 (0.791, 1) 0.845 (0.821, 0.866) 0.688 (0.400, 0.882) 

AUC (C.I) 0.910 (0.866, 0.941) 0.887 (0.758, 0.954) 0.929 (0.918, 0.938) 0.772 (0.904, 0.968) 

Table 5. Results on the EyePACs dataset across DR grades, given in accuracy, sensitivity, 
specificity, and AUC with a 95% confidence interval. CI noted in parentheses. 
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DME  No Yes 

Sensitivity (C.I) 0.873 (0.856, 0.889) 0.770 (0.727, 0.811) 

Specificity (C.I) 0.906 (0.890, 0.919) 0.897 (0.962, 0.925) 

AUC (C.I) 0.955 (0.948, 0.962) 0.908 (0.884, 0.927) 

Table 6. Results on the EyePACs dataset for patients with and without DME, given in 
accuracy, sensitivity, specificity, and AUC with a 95% confidence interval. CI noted in 
parentheses. 

 

 

 Sensitivity (C.I) Specificity (C.I) AUC (C.I) 

Filtered out 0.787 (0.710, 0.849) 0.793 (0.709, 0.860) 0.857 (0.803, 0.898) 

Remained 0.854 (0.838, 0.869) 0.904 (0.890, 0.917) 0.948 (0.941, 0.955) 

Table 7. Results for images who were filtered out and not filtered out by the image quality tool, 
given in accuracy, sensitivity, specificity and AUC with a 95% confidence interval 

 

 

 Metric for laser images Metric for no laser images % Laser treated 

DME 0.932 (CI 95% 0.905, 0.951) 
AUC 

 0.955 (CI 95% 0.948, 0.961) 

AUC 

12.5% 

Sex 0.872 (CI 95% 0.830, 0.903) 

AUC 

0.922 (CI 95% 0.916, 927) 

AUC 

3%  

Age 3.81 MAE 5.33 MAE 5%  

 

Table 8. Results for the three experiments conducted for the effect of laser treatment, showing 
the results in terms of AUC for sex and DME detection and mean average error for age 
detection. The percentage of filtered images is shown.  
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