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ABSTRACT 36 

Background: Irritable bowel syndrome (IBS) is a chronic disorder of gut-brain 37 

interaction frequently accompanied by mental conditions, including depression and 38 

anxiety. Despite showing substantial heritability and being partly determined by a 39 

genetic component, the genetic underpinnings explaining the high rates of comorbidity 40 

remain largely unclear and there are no conclusive data on the temporal relationship 41 

between them. Exploring the overlapping genetic architecture between IBS and mental 42 

conditions may help to identify novel genetic loci and biological mechanisms 43 

underlying IBS and causal relationships between them.  44 

Methods: We quantified the genetic overlap between IBS, neuroticism, depression and 45 

anxiety, conducted a multi-trait genome-wide association study (GWAS) considering 46 

these traits and investigated causal relationships between them by using the largest 47 

GWAS to date.  48 

Results: IBS showed to be a highly polygenic disorder with extensive genetic sharing 49 

with mental conditions. Multi-trait analysis of IBS and neuroticism, depression and 50 

anxiety identified 42 genome-wide significant hits for IBS, of which 38 are novel. Fine-51 

mapping risk loci highlighted 289 genes upregulated during early embryonic brain 52 

development and gene-sets related with psychiatric, digestive and autoimmune 53 

disorders. IBS-associated genes were enriched for target genes of anti-inflammatory and 54 

antirheumatic drugs, anesthetics and opioid dependence pharmacological treatment. 55 

Mendelian-randomization analysis accounting for correlated pleiotropy identified 56 

bidirectional causal effects between IBS and neuroticism and depression and causal 57 

effects of the genetic liability of IBS on anxiety.  58 

Conclusions: These findings provide evidence of the polygenic architecture of IBS, 59 

identify novel hits for IBS and extend previous knowledge on the genetic overlap and 60 

relationship between gastrointestinal and mental disorders. 61 
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INTRODUCTION 65 

Irritable bowel syndrome (IBS) is one of the most prevalent disorders of gut-brain 66 

interaction with a population lifetime risk of 11% 1 and a point prevalence of 4.1% 67 

according to the strict Rome IV criteria 2. IBS research is extremely challenging due to 68 

the multifactorial etiology of the disease and the heterogeneity of patients, who present 69 

high comorbidity rates for mental disorders, particularly, anxiety and depression, which 70 

impacts negatively on the patients’ quality of life 1,3,4.  71 

 72 

A recent systematic review revealed that the prevalence of anxiety and depression 73 

symptoms among IBS patients is 39.1% and 28.8%, respectively 5. In addition, IBS has 74 

been associated with more severe depressive symptoms compared to healthy controls 75 

and, when co-existing with psychiatric disorders, gastrointestinal symptoms are more 76 

severe and disabling 6–11. This close association between IBS, anxiety and depression is 77 

also supported by neuroimaging studies and might be related to the bi-directional 78 

communication between the brain and the digestive system, termed the brain-gut-axis, 79 

which occurs through microbiota, neural, neuroimmune and neuroendocrine pathways 80 

12–14. This idea agrees with evidence indicating that psychiatric interventions, including 81 

antidepressants or cognitive-behavioral therapy, improve IBS patients functioning and 82 

suggests that common pathophysiological mechanisms may be underlying these 83 

conditions 15.  84 

 85 

IBS, anxiety and depression are partly determined by a genetic component and show 86 

substantial heritability ranging from 6% for IBS to 30%-50% for anxiety and depression 87 

16–18. The largest GWAS on IBS conducted to date included 53,400 cases and 433,201 88 

controls and identified six genome-wide significant loci 18 which represents an 89 
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improvement over the previous study identifying four independent hits 19. Interestingly, 90 

among 173 traits, three mental conditions (neuroticism, depression and anxiety) were 91 

the most genetically correlated traits with IBS 18. Despite these strong genetic 92 

correlations, the genetic underpinnings explaining the high rates of comorbidity 93 

between IBS and mental conditions remain largely unclear and there are no conclusive 94 

data on the temporal and causal relationship between them 18,19.  95 

 96 

In the present study we investigated the shared genetic architecture and the nature of the 97 

relationship between IBS and three highly genetically correlated conditions 98 

(neuroticism, depression and anxiety) using summary statistics of the largest GWAS 99 

datasets available so far by (i) estimating the genetic correlation and overlap between 100 

them, (ii) conducting a Multi-Trait Analysis of GWAS (MTAG) to identify novel 101 

genetic loci for IBS and (iii) performing downstream analyses to explore the overlaping 102 

genetic basis with other disorders and traits as well as causal relationships between 103 

them.  104 

 105 

MATERIALS AND METHODS 106 

Samples 107 

We used publicly available SNP-level GWAS summary statistics for IBS 18, 108 

neuroticism 20, depression 21 and anxiety (Table 1). For further details see 109 

Supplementary Note 1. 110 

 111 

SNP-based heritability genetic correlation and overlap 112 

SNP heritability (h2
SNP) and pair-wise genetic correlation between IBS and each mental 113 

condition was calculated using linkage disequilibrium score regression (LDSC) analysis 114 
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22. Conversion of h2
SNP estimates from observed to liability scale was done using a 115 

population prevalence of 11% , 25%, 30% and 14% for IBS, neuroticism, depression 116 

and anxiety, respectively. Polygenic overlap between IBS and each mental condition 117 

was quantified using MiXeR 23. MiXeR caclulates the number of trait-influencing loci 118 

for each trait (univariate model) and for both traits (bivariate model) and the proportion 119 

of variants with concordant direction of effects for both traits. The proportion of SNPs 120 

shared by two traits is indicated by the Dice coefficient. Model fit was assessed using 121 

the Akaike Information Criterion (AIC). For further details see Supplementary Note 2.  122 

 123 

Multi-Trait Analysis of GWAS (MTAG)  124 

To identify new loci for IBS, SNP-level GWAS for IBS, neuroticism, depression and 125 

anxiety were meta-analyzed using MTAG 24. To discard inflation in our results we 126 

calculated the max-false discovery rate (max-FDR) using the default settings as 127 

previously described 24,25. Independent lead SNPs from MTAG-IBS results (P-value<5-128 

E08) were identified through clumping (r2=0.05, kb=5000) using the 1000 Genomes 129 

Project Phase 3 European reference panel (http://www.internationalgenome.org/) and 130 

PLINK1.09 as described by Eijsbouts et al. 18. We carried out conditional analyses to 131 

evaluate independence between secondary (within 5000kb and r2<0.2) and index 132 

variants within each locus using COJO implemented in Genome-wide Complex Trait 133 

Analysis (GCTA) 26. For further details on conditional analysis see Supplementary Note 134 

3.  135 

 136 

Credible variants and functional annotation 137 

Sets of credible variants (credible-sets) were identified by fine-mapping the independent 138 

lead SNPs of MTAG-IBS using three different tools , FINEMAP 1.3.1 27, PAINTOR 139 
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v3.0 28 and CAVIARBF v.0.2.1 29 following the pipeline available elsewhere 30. 140 

Variants located in a region of 5000 kb around the lead SNPs were included in the 141 

analysis and we assumed that there was only one causal variant per locus. We used the 142 

recommended parameters of each tool and only variants identified by all three methods 143 

were considered. Functional annotation of the credible variants was conducted using 144 

FUMA31. For further details see Supplementary Note 4.  145 

 146 

Gene-based and gene-set analyses of MTAG-IBS results 147 

Gene-based and gene-set analyses of MTAG-IBS risk loci were performed using 148 

MAGMA v1.08 32 implemented in FUMA 31. Tissue specific gene expression was 149 

explored using MAGMA gene-property analysis of expression data from GTEx v8 and 150 

BrainSpan available in FUMA (databases detailed in Supplementary Note 5). All gene 151 

sets were obtained from the Molecular Signatures Database (MSigDB v6.2) and 152 

included GO, KEGG, BIOCARTA and Reactome representing a total of 11,960 gene 153 

sets. The Bonferroni-corrected significance threshold was 0.05/11960 gene sets=4.18E-154 

06.  155 

 156 

Drug target identification 157 

To explore whether finemapped genes related with IBS were enriched for target genes 158 

of drugs (druggable genes) we performed enrichment analysis based on information 159 

from the PharmGKB using WebGestAlt 33. Identified drugs were classified according to 160 

available information from the Anatomical Therapeutic Chemical (ATC) classification 161 

system. 162 

 163 
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Partitioned heritability and genetic correlations 164 

We partitioned h2
SNP of MTAG-IBS results by functional annotation categories using 165 

stratified LDSC 34. We calculated whether any of the 28 specific genomic categories 166 

included in the analysis was enriched for variants that contribute to h2
SNP. Annotations 167 

for these functional genomic categories (e.g. coding or regulatory regions) were 168 

obtained from LDSC website (https://github.com/bulik/ldsc/wiki/Partitioned-169 

Heritability). We focused on categories extended by 500bp in either direction. 170 

Enrichment/depletion of heritability in each category is calculated as the proportion of 171 

heritability attributable to SNPs in the specified category divided by the proportion of 172 

total SNPs annotated to that category. The Bonferroni-corrected significance threshold 173 

was 0.05/28 annotations=0.0021. 174 

 175 

We explored genetic correlations between our MTAG-IBS results and gastrointestinal, 176 

immunological and psychiatric disorders using LDSC analysis 22. We selected all 177 

GWAS summary statistics of gastrointestinal/abdominal, immunological/systemic (UK 178 

Biobank: 21 phenotypes) and psychiatric disorders (PGC: 7 phenotypes) available in the 179 

MR-Base database  (Supplementary Table 14)  35. We used GWAS summary statistics 180 

including both males and females of European ancestry. If several GWAS were 181 

available for the same disorder, we chose the study with the largest effective sample 182 

size (N effective = 4NcaNco/(Nca+Nco)). The Bonferroni-corrected significance 183 

threshold used was 0.05/28 traits=0.0018. 184 

 185 

Causal analysis using summary effect estimates (CAUSE) 186 

Causal relationships between IBS and correlated traits were assessed considering 187 

independent variants (r2=0.05; kb=5000) associated with the exposure with P<1.0E-03 188 
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using CAUSE 36. Bidirectional relationships were tested considering IBS as exposure 189 

and depression, anxiety or neuroticism as outcomes and vice-versa. Given that SE was 190 

not available from the largest study on neuroticism to date 37, we used the GWAS 191 

dataset on neuroticism by Luciano et al. in 329,821 subjects as an alternative 38. The 192 

strengths of CAUSE involve accounting for correlated horizontal pleiotropic effects (i.e. 193 

when a variant affects the outcome and the mediator through shared heritable factors) 194 

and using a less stringent significance threshold (P<1.0E-3) allowing the incorporation 195 

of more variants to the analyses. CAUSE compares two nested models, a sharing and a 196 

causal model. Both models allow for horizontal pleiotropy (correlated pleiotropy (eta)) 197 

but only the casual model includes a causal effect parameter (gamma). The sharing and 198 

the causal model are compared against a null model and against each other. Model 199 

comparisons are carried out using the expected log pointwise posterior density (ELPD), 200 

a Bayesian model comparison approach that estimates how well the posterior 201 

distributions of a particular model are expected to predict a new set data. When P <0.05 202 

the second model fits the data better than the first model. There is evidence of causal 203 

effects when the causal model represents a significant improvement in the model fit of 204 

the sharing model. 205 

For further details see Supplementary Note 9. 206 

 207 

RESULTS 208 

SNP-based heritability, genetic correlation and overlap 209 

The latest GWAS on IBS 18, neuroticism 20, depression 21 and anxiety used herein are 210 

summarized in Table 1 and Supplementary Note 1. The estimated SNP heritability 211 

(h2
SNP) was 6.9% (SE=0.004) for IBS, 14.6% (SE=0.005) for neuroticism, 9.9% 212 

(SE=0.004) for depression and 8.3% (SE=0.011) for anxiety (Table 2). We found 213 
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evidence of strong genetic correlation between IBS and all three mental conditions, 214 

ranging from 53% to 68% (Table 2). Univariate MiXeR analysis revealed that IBS and 215 

neuroticism were highly polygenic, with around twelve thousand variants explaining 216 

90% of SNP heritability  (12,438 variants for IBS and 12,308 for neuroticism; 217 

Supplementary Table 1a). Bivariate MiXeR analysis showed that the majority of the 218 

variants influencing IBS were shared with neuroticism (10,793 (SE=1.094) out of 219 

12,438 (SE=1.305) variants, Dice coefficient=0.87), with a high proportion of variants 220 

being concordant (71%) (Supplementary Table 1a and Supplementary Figure 1). 221 

Unfortunately, MiXeR was unable to accurately quantify the genetic overlap between 222 

IBS and depression or anxiety according to the Akaike Information Criterion (AIC; 223 

Supplementary Table 1b). 224 

 225 

Multi-Trait Analysis of GWAS (MTAG)  226 

To identify novel loci for IBS, we combined the summary statistics from the GWAS on 227 

IBS, neuroticism, depression and anxiety using MTAG, increasing the estimated 228 

effective sample size from 486,601 in the original IBS dataset to 887,490. The max-229 

FDR of MTAG-IBS analysis was low (0.020) suggesting no inflation, consistent with 230 

the similar mean chi-square values for the different GWAS, ranging from 1.08 for 231 

anxiety to 1.69 for neuroticism. After MTAG analysis, the number of genome-wide 232 

significant SNPs for IBS increased from six in the original GWAS to 42 independent 233 

SNPs in 37 loci in the current study (Figure 1, Supplementary Figure  2, Table 3 and 234 

Supplementary Table 2). Comparing these results with the ones originally described for 235 

IBS 18, 38 out of the 42 SNPs identified herein were novel for IBS and all of them 236 

showed consistent direction of the association (Figure 1a  and Supplementary Table 3). 237 

Of them, 11 were not previously associated with neuroticism, depression or anxiety 238 
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(Figure 1d). The remaining signals, 27 in total, were novel risk loci for IBS but 239 

previously reported for neuroticism and/or depression (Table 3, Figure 1d) and overall 240 

showed consistent direction of association with that reported in the original studies 241 

(Figure 1a). Of the six loci previously identified in IBS 18, four of them, on chromosome 242 

3, 6, 9 and 11, were among the significant loci for IBS in the current study and the two 243 

additional ones, in chromosome 13, showed suggestive evidence of association (P<5E-244 

07; Table 3). Among top findings, we found lead SNPs nearby genes involved in 245 

transcriptional regulation, including non-coding RNAs (RP11-629G13.1 and MSH5-246 

SAPCD1), RNA splicing (CELF4), chromatin remodeling (EP300 and HIST1H3J), 247 

mRNA transport (FAM120A) or nucleic acid binding (TCF4 and ELAVL2), as well as in 248 

brain development (TMEM161B) or presynaptic activity (PCLO).  249 

 250 

Credible variants and functional annotation 251 

We identified a total of 1,818 Bayesian credible variants in the 37 independent loci for 252 

IBS (Supplementary Table 4). Their functional annotation revealed over-presentation of 253 

SNPs in introns (64.6%), intergenic regions (21.7%) or located in non-coding RNA 254 

(9.4%) (Figure 2 and Supplementary Table 5). A total of 75% of the variants within 255 

credible sets were located in open chromatin regions (minimum chromatin state ≤ 7), 256 

3% were likely to affect the binding of transcription factors (RegulomeDB scores from 257 

1b to 2c) and 0.05% may be deleterious (Combined Annotation Dependent Depletion 258 

(CADD) score > 12.37) (Figure 2 and Supplementary Table 5). Forty-eight variants 259 

were previously related by GWAS (P<5E-07) to digestive-related phenotypes (e.g. 260 

inflammatory bowel disease, gastroesophageal reflux or gut microbiota relative 261 

abundance), lifestyle factors (e.g. alcohol consumption, lifetime smoking, coffee 262 

consumption or moderate to vigorous physical activity levels) and brain and 263 
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neuropsychiatric phenotypes (e.g. neuroticism, depression, anxiety, cognition or brain 264 

morphology) (Supplementary Table 6). In addition, we found that more that half of the 265 

credible variants (n=953; 52%) were expression quantitative trait loci (eQTL) for at 266 

least one gene in one brain area (n=895; 49%) and/or digestive tissue (n=690; 38%; 267 

Supplementary Table 7). 268 

 269 

Credible variants were mapped to 289 unique genes (Supplementary Table 8) that were 270 

significantly enriched in genes upregulated during early embryonic brain development 271 

(8th post conceptual week; Supplementary Figure 3) and in several gene-sets 272 

(Supplementary Table 9). Among the most significant ones, we found psychiatric 273 

disorders (GWAS catalog: autism spectrum disorder or schizophrenia, P-274 

adjusted=4.96E-193), digestive disorders (GWAS catalog: ulcerative colitis, P-275 

adjusted=1.13E-57 and inflammatory bowel disease, P-adjusted=7.05E-40), 276 

autoimmune disease (KEGG: Systemic lupus erythematosus, P-adjusted=7.91E-61) and 277 

histone deacetylases (Reactome: HDACS deacetylate histones, P-adjusted=3.09E-46) 278 

(Supplementary Table 9).   279 

 280 

Gene-based and gene-set analyses of MTAG-IBS risk loci 281 

The gene-based analysis identified 76 significant genes, which were associated with 282 

expression changes in the cerebellum (P=5.2E-09), frontal cortex (P=9.8E-07), anterior 283 

cingulate cortex (P=1.8E-05), basal ganglia nuclei (nucleus accumbens: P=6.9E-05; 284 

caudate: P=9.7E-04) and hypothalamus (P=4.3E-04) (Supplementary Table 10, 285 

Supplementary Figure  4) as well as with gene expression during the 21st post 286 

conceptual week (P=8.5E-04) (Supplementary Figure 5). Among top findings, we found 287 

genes with a role in brain development and synaptic function, including CADM2 and 288 
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NCAM1, previously identified in the latest GWAS on IBS, and also genes involved in 289 

transcriptional regulation through mRNA transport or chromatin structure, including 290 

FAM120A, PHF2 and different histone coding genes. When we conducted the gene-set 291 

analysis we found the branching morphogenesis of a nerve pathway significantly 292 

associated with IBS (gene-set size=10 genes; P= 1.7E-06) (Supplementary Table 11).  293 

 

Drug target identification 294 

The enrichment analysis on druggable genes showed enrichment of MTAG-IBS-295 

finemapped credible genes in druggable genes for 21 drugs (Supplementary Table 12), 296 

being l-lysine (P < 2.2E-16), belinostat (P=8.6E-10), s-adenosylmethionine (P=7.0E-297 

09) and allopurinol (P=1.5E-07), the top ones (Supplementary Table 12). They also 298 

included drugs related to musculo-skeletal system, such as anti-inflammatory and 299 

antirheumatic drugs, or related to the nervous system, such as anesthetics and drugs 300 

used in opioid dependence (Supplementary Table 12). 301 

 302 

Partitioned heritability and genetic correlations 303 

When we partitioned the h2
SNP of IBS, we observed significant heritability enrichment 304 

in seven functional categories (Figure 2 and Supplementary Table 13), with the 305 

strongest enrichment of variants in conserved regions (enrichment=2.01; P=4.0E-09), 306 

DNase I hypersensitive sites (DHSs) regions (enrichment=1.66; P=9.1E-08) and histone 307 

H3 lysine 9 acetylation (H3K9ac) peaks (enrichment=6.88; P=1.1E-07).  308 

 309 

We found significant genetic correlations between IBS and 13 gastrointestinal, 310 

immunological or psychiatric disorders using GWAS summary statistics available in the 311 

MR-Base database 35, including gastric reflux (rg=0.51; P=2.6E-36), the cross-disorder 312 
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GWAS from the PGC involving schizophrenia, bipolar disorder, major depressive 313 

disorder, autism spectrum disorders (ASD) and attention-deficit/hyperactivity disorder 314 

(ADHD) (rg=0.44, P=9.7E-46), diverticulitis (rg=0.44, P=7.4E-22), hiatus hernia 315 

(rg=0.43; P=4.7E-20) and chronic fatigue syndrome (rg=0.39, P=2.0E-04), among 316 

others (Figure 2 and Supplementary Table 14).  317 

 318 

Causal analysis using summary effect estimates (CAUSE) 319 

CAUSE 36 showed consistent evidence for a causal effect of the genetic liability of IBS 320 

on neuroticism (ΔELPD=-3.6, SE=1.9, P=0.031), depression (ΔELPD=-5.9, SE=1.8, 321 

P=5.4E-03) and anxiety (ΔELPD=-2.9, SE=1.7, P=0.049). We also found evidence for 322 

reverse causality with a causal effect of the genetic liability of neuroticism and 323 

depression on IBS (ΔELPD=-7.3, SE=1.4, P=1.5E-07 and ΔELPD=-6.3, SE=1.4, 324 

P=1.8E-06 respectively) but there was no evidence for a causal relationship when 325 

anxiety was considered as exposure and IBS as outcome (Figure 2, Supplementary 326 

Table 15a and 15b and Supplementary Figure  6). 327 

 328 

  329 
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DISCUSSION 330 

In the present study we found extensive genetic sharing between IBS, neuroticism, 331 

depression and anxiety, and identified 42 genome-wide significant hits for IBS, of 332 

which 38 are novel. Our findings confirm the polygenic architecture of the disorder, 333 

with more than 12,000 variants explaining 90% of the h2
SNP, and represent a great 334 

advance over the previously reported six genome-wide risk loci 18. Significant signal 335 

enrichment was found in genes showing heightened expression in the brain during early 336 

embryonic development and playing prominent roles in mental and digestive disorders, 337 

autoimmune diseases and transcription regulation.  338 

 339 

Our results confirm a role on IBS of genes involved in brain development and synaptic 340 

function as well as genes previously associated with psychiatric conditions 18. We 341 

detected 27 loci for IBS also associated with at least one of the three mental conditions 342 

under study, and found evidence supporting that IBS and neuroticism, which is 343 

genetically correlated with many psychiatric disorders 39, share a considerable 344 

proportion of their genetic background. The widespread common genetic risk sharing 345 

with mental conditions was further supported by the positive genetic correlation found 346 

between IBS and many psychiatric disorders (i.e. schizophrenia, ADHD, autism or 347 

depression) and by the IBS associated variants being located within genes significantly 348 

expressed in the brain. These results are in agreement with the higher burden of mental 349 

disorders often co-existing in IBS patients, add further evidence of substantial 350 

pleiotropy of contributing loci and underscore that genetic influences on IBS may 351 

transcend diagnostic boundaries.  352 

 353 
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Among top findings we identified genes associated with IBS in previous GWAS, such 354 

as CADM2 and NCAM1, members of the synaptic cell adhesion molecules that play a 355 

role in synapse organization and plasticity 40,41. Interestingly, NCAM peptide mimetics 356 

have been proven to have both antidepressant and anti-inflammatory effects 42,43, 357 

pointing them as a potential therapeutic target for IBS. Novel loci for IBS include 358 

interesting genes previously associated with depression and other mental disorders, such 359 

as RERE, that regulates retinoic acid signaling during development 44–46,  PCLO, 360 

involved in synaptic vesicle trafficking, TMEM161B 47,  a brain-expressed 361 

transmembrane protein 48, RBFOX1, a splicing regulator mainly expressed in neurons, 362 

that is one of the most pleiotropic genes among psychiatric disorders 49 or DRD2, 363 

encoding the dopamine receptor D2R and one of the strongest candidates for psychiatric 364 

disorders and traits 50
. Interestingly, several studies in animal models suggested an 365 

important role for dopamine signaling both in the development and progression of 366 

inflammatory bowel disease 51 and treatment with D2R agonists decreased the severity 367 

of ulcerative colitis in mice and rats 52. 368 

 369 

We also provide new insights underlying IBS, showing strong evidence of 370 

transcriptional regulation mechanisms playing a role in the disorder, including non-371 

coding RNAs and histone modification. We found genes encoding histones and histone 372 

modifying enzymes among top findings, and enrichment of IBS associations in histone 373 

acetylation and methylation peaks and in target genes for the histone deacetylase 374 

inhibitor belinostat 53. These findings are in agreement with previous results involving 375 

chromatin modifications in maintenance of anxiety behavior and nociception and in 376 

visceral hypersensitivity induced by early-life stress 54,55. Additionally, top findings also 377 

include non-coding RNAs, an epigenetic mechanism that has been involved in 378 
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regulation of genes related with visceral pain response and intestinal permeability 56–58. 379 

These results add additional evidence towards the role of epigenetic programming in 380 

inflammation, visceral pain as well as in intestinal permeability, sensibility and motility 381 

in both humans and animal models of IBS 54,55,59,60. 382 

 383 

Despite many of the findings pointing out neurobiological processes and mental 384 

disorders, we also detected links between IBS and gastrointestinal-related phenotypes. 385 

Fine mapping showed that 38% of the credible variants were eQTLs for at least one 386 

digestive tissue and that credible sets were located in genes enriched in different 387 

digestive disorders, including ulcerative colitis and inflammatory bowel disease. In 388 

addition, positive genetic correlations were found between IBS and gastric reflux, 389 

diverticulitis, hiatus hernia, cholelithiasis/gallstones and gastric/stomach ulcers, among 390 

others, which adds evidence on the overlap between the genetic risk for IBS and for 391 

other digestive-related disorders and traits. These findings may reflect the multi-392 

factorial etiology proposed for IBS involving psychological factors, abnormal brain 393 

functioning and dysregulation of brain-gut interactions 15,61–63, as previously proposed in 394 

different psychiatric disorders such as depression 64.  395 

 396 

IBS-associated signals were also enriched in target genes of relevant drugs, including l-397 

lysine or S-adenosylmethionine. L-lysine acts as partial serotonin 5-HT4 receptor 398 

antagonist and inhibits serotonin-mediated intestinal pathologies in rats, including 399 

anxiety and stress-induced fecal excretion and severity of diarrhea 65. Interestingly, l-400 

lysine, and other 5-HT4 receptor antagonists, are promising targets for the treatment of 401 

diarrhea-predominant IBS 66,67 and may aminorate serotonin disturbances in gut and 402 

brain that account for part of intestinal and mental disorders 65. Additional drugs of 403 
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interest include S-adenosylmethionine, involved in neurotransmission signaling that has 404 

a putative antidepressant effect68,69 or allopurinol that improves inflammatory bowel 405 

disease clinical outcomes 70, among others. 406 

 407 

Despite the high prevalence of psychiatric comorbidities reported in patients with IBS, 408 

particularly anxiety and depression, a clear temporal relationship between them has not 409 

been well established. We found evidence for a bidirectional causal effect between IBS 410 

and neuroticism or depression when accounting for correlated pleiotropy, which 411 

strengthens previous evidence 18. In addition, we found evidence for a causal effect of 412 

the genetic liability of IBS on anxiety. These findings support that IBS increases the risk 413 

of subsequent depressive and anxiety disorders described in longitudinal study designs 414 

71 and also previous evidence supporting that prior depression raises the risk of 415 

developing IBS 72,73. We found, however, no evidence for a causal effect of the genetic 416 

liability of anxiety on IBS when accounting for correlated pleiotropy, in line with 417 

previous results 18. Although the sample size for anxiety was more limited and these 418 

results may also reflect lack of statistical power. Long term follow-up studies as well as 419 

larger datasets and sensitivity analyses are required to confirm the robustness of these 420 

results and to better understand the temporal relationship between IBS and comorbid 421 

mental conditions. 422 

 423 

A major strength of our study is the substantial larger sample size compared with 424 

previous studies. By conducting meta-analysis of GWAS summary statistics for IBS 425 

and comorbid mental conditions with MTAG we increased the effective sample size 426 

from 486,601 in the original IBS dataset to 887,490 individuals and the number of IBS 427 

genome-wide significant loci from six in the single-trait analysis to 42. Thirty-eight of 428 
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them were novel for IBS and 11 were not associated with any of the mental conditions 429 

under study, which highlight that MTAG combining GWAS on IBS and mental 430 

conditions is a robust strategy to identify trait specific genetic associations. In addition, 431 

four of the previously six identified loci were also significant in the present study 18. 432 

Even though two identified loci demonstrated less association here, their associations 433 

were still suggestive (P<5E-07) and in concordance in the direction of the effect with 434 

the original GWAS study on IBS, which supports validity of the findings across studies.   435 

 436 

The study, however, should be considered in the context of some limitations: (i) We did 437 

not account for phenotypic overlap and cannot discard that comorbid conditions may 438 

have biased the observed results. Also, IBS is considered a highly heterogenous 439 

disorder with pathophysiological differences observed among clinical subtypes, 440 

between genders, and across age groups and geographic locations 1. Accounting for 441 

such factors may contribute to better characterize the disorder, capture its genetic 442 

background and identify overlap with other comorbid disorders that may impact on IBS 443 

risk, prognosis and clinical outcome 6; (ii) Despite the strong genetic correlation 444 

between IBS and the three mental conditions under study, MiXeR was unable to assess 445 

the genetic overlap between IBS, depression and anxiety probably due to the high 446 

polygenicity and low SNP heritability estimates for these traits (0.083 and 0.099, 447 

respectively) and the limited sample size of the original GWAS on anxiety. We cannot 448 

discard, either, that due to lack of power we did not detect IBS signals previously 449 

reported for anxiety in the original GWAS or evidence for anxiety increasing the risk 450 

for IBS in the causality analyses; (iii) Combining GWAS that differ a great deal in 451 

power may lead to inflation of FDR, according to MTAG authors 24. In this study we 452 

combined GWAS with different sample sizes, however their mean chi-squared was 453 
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similar and accordingly the max-FDR estimated in our IBS analysis was 0.02, which 454 

suggested no inflation of our results. Moreover, despite increasing considerably the 455 

effective sample size for IBS through the addition of multiple mental conditions, a 456 

number of outcomes were related with gastrointestinal-related phenotypes, which 457 

further supports this approach.  458 

 459 

In summary, we identified novel risk loci for the IBS, reveal new insights of its 460 

polygenic architecture and extended previous knowledge on the genetic overlap and 461 

causal relationships between IBS, neuroticism, depression and anxiety. Overall, we 462 

advance our understanding of the biological mechanisms underlying IBS, highlighted 463 

candidate genes related to brain development and function as well as transcriptional 464 

regulation and provide insight into the association between IBS and comorbid mental 465 

disorders. 466 

 467 
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Figure legends 763 

 764 

Figure 1. MTAG results of IBS and overlap with previous GWAS on IBS, 765 

neuroticism, depression and anxiety. a) Z-scores of MTAG-IBS and original GWAS 766 

on IBS, neuroticism, depression and anxiety for each of the independent lead SNPs 767 

(n=42) found in MTAG-IBS results. Dotted grey line indicates 0 Z-score and solid grey 768 

lines indicate statistical significance at P<5-E08. b) Manhattan plot of the MTAG-IBS 769 

results. Dotted grey line indicates statistical significance at P<5-E08. c) QQ plot of the 770 

MTAG-IBS results. d) Venn diagram depicting overlap among MTAG-IBS independent 771 

lead SNPs and genome-wide significant hits in the original GWAS. 772 

 773 

Figure 2. Follow-up analysis of MTAG-IBS results and causal analysis. a) 774 

Functional annotation of the credible variants associated with MTAG-IBS. b) 775 

RegulomeDB scores of the credible variants associated with MTAG-IBS. Low scores 776 

indicate increasing likelihood of having regulatory function. c) Distribution of the 777 

credible variants associated with MTAG-IBS across 15 categories of minimum 778 

chromatin state. Lower state indicating higher accessibility and states from 1 to 7 refer 779 

to open chromatin states. d) Genetic correlations (rg) between MTAG-IBS results and 780 

17 phenotypes involving digestive, immunological and psychiatric disorders. Only 781 

significant correlations after Bonferroni correction are displayed. e) Bar graphs 782 

depicting the size of the genomic locus (left), number of candidate SNPs in the locus 783 

(center) and number of mapped genes in the genomic locus (right). Genomic loci are 784 

displayed by “chromosome: start position-end position”. f) Partitioning of the SNP 785 

heritability of the MTAG-IBS results using LD Score regression. Enrichment was 786 

calculated by dividing the partial heritability of a category by the proportion of SNPs in 787 
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that category (proportion indicated by color). Only significant enrichments are 788 

displayed. g) Causal relationships between IBS and neuroticism, depression and anxiety 789 

assessed using Causal Analysis Using Summary Effect estimates (CAUSE). Only 790 

associations with evidence of causal relationship are displayed.   791 
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Table 1. Summary of the GWAS datasets used in the current study.  

Phenotype N cases N controls N total N effective a GWAS Hitsb Reference 

IBS 53,400 433,201 486,601 190,159 6 18 

Neuroticism - - �390,278c �390,278 136 d 20 

Depression 170,756 329,443 500,199 c 449,856 102d 21 

Anxiety nerves or GAD 16,730 101,021 117,751 57,412 1 UKBB phenotype code: 20544_15 

NOTE: GAD generalized anxiety disorder; UKBB UK Biobank.  
a N effective sample sizes were calculated following the equation: Neff=4/(1/Ncases+1/Ncontrols). 
b Number of genome-wide significant independent loci. 
c Sample size excluding the 23andMe cohort. 
d Hits including the 23andMe cohort.  
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Table 2. Genetic correlation estimates for IBS and neuroticism, depression and anxiety using Linkage Disequilibrium Score Regression (LDSC). 

Trait 1  Trait 2  
Genetic 

Correlation 
SE Z P-value Intercept (SE) 

Trait 1 Trait 2 

h2 (SE) h2 (SE) 

IBS Neuroticism 0.526 0.027 19.298 5.54E-83 1.013 (0.013) 0.069 (0.004) 0.146 (0.005) 

IBS Depression 0.587 0.026 22.714 3.23E-114 0.992 (0.01) 0.069 (0.004) 0.099 (0.004) 

IBS Anxiety 0.677 0.065 10.360 3.75E-25 0.999 (0.74) 0.068 (0.004) 0.083 (0.011) 

NOTE: SE, standard error; h2, heritability. 

A
ll rights reserved. N

o reuse allow
ed w

ithout perm
ission. 

(w
hich w

as not certified by peer review
) is the author/funder, w

ho has granted m
edR

xiv a license to display the preprint in perpetuity. 
T

he copyright holder for this preprint
this version posted F

ebruary 1, 2023. 
; 

https://doi.org/10.1101/2023.01.30.23285080
doi: 

m
edR

xiv preprint 

https://doi.org/10.1101/2023.01.30.23285080


 38

Table 3. Results for the 42 independent lead SNPs identified in the MTAG-IBS analysis.  

Locus Lead SNP CHR A1/A2 BP 

Cross-trait analysis 

FRQ Nearest Gene  
Functional 

category  

Overlap 

with 

original 

GWAS 

IBS  

Overlap with 

previous GWAs 

on psychiatric 

traits   

Overlap 

with 

previous 

GWAs 

CADD RDB 

Beta  SE P 

1 rs301806 1 T/C 8482078 -0,009 0.002 1.67E-09 0.58 RERE intronic NO Neuroticism Known 0.117 4 

2 rs11206127 1 A/G 53713549 -0.009 0.002 1.42E-08 0.43 LRP8 intronic NO No Novel 0.128 6 

3 rs12755507 1 T/C 176164865 0.01 0.002 8.03E-10 0.625 RFWD2 intronic NO Depression Known 6.038 4 

4 rs113198479 1 A/G 191347803 -0.02 0.004 2.48E-08 0.953 
RP11-

309H21.2 
intergenic NO No Novel 1.241 6 

5 rs72740550 1 A/G 197342380 -0.011 0.002 6.02E-09 0.219 CRB1 intronic NO 
Neuroticism & 

depression 
Known 5.063 7 

6 rs115962846 2 A/G 58967058 -0.015 0.003 3.68E-08 0.912 LINC01122 
ncRNA_intr

onic 
NO Neuroticism Known 2.103 7 

7 rs28496790 2 A/C 161950047 0.01 0.002 3.70E-09 0.708 AC009313.1 intergenic NO No Novel 6.027 5 

8 rs138218528 2 T/C 212676884 0.009 0.002 2.84E-08 0.667 ERBB4 intronic NO 
Neuroticism & 

depression 
Known 8.481 6 

9 rs62246276 3 T/G 9445173 -0.011 0.002 2.28E-08 0.179 SETD5 intronic NO No Novel 1.944 5 

10 rs67416405 3 T/C 85539234 -0.009 0.002 8.27E-09 0.353 CADM2 intronic YES No Known 3.769 6 

11 rs1729951 3 T/G 136500733 -0.009 0.002 9.01E-09 0.389 
RP11-

102M11.2 
intergenic NO Neuroticism Known 0.078 NA 

A
ll rights reserved. N

o reuse allow
ed w

ithout perm
ission. 

(w
hich w

as not certified by peer review
) is the author/funder, w

ho has granted m
edR

xiv a license to display the preprint in perpetuity. 
T

he copyright holder for this preprint
this version posted F

ebruary 1, 2023. 
; 

https://doi.org/10.1101/2023.01.30.23285080
doi: 

m
edR

xiv preprint 

https://doi.org/10.1101/2023.01.30.23285080


 39

12 rs1442129 4 A/G 90849446 -0.009 0.002 1.22E-08 0.453 MMRN1 intronic NO No Novel 5.378 NA 

13 rs77087420 4 A/G 123122856 0.018 0.003 2.64E-08 0.945 KIAA1109 intronic NO No Novel 4.579 7 

14 rs12513440 5 A/G 7259853 0.01 0.002 2.73E-08 0.243 RP11-404K5.3 intergenic NO No Novel 0.327 5 

15 rs3099439 5 T/C 87545318 -0.011 0.002 1.14E-12 0.539 TMEM161B intronic NO Depression Known 1.562 NA 

16 rs4481363 5 A/C 164474719 0.009 0.001 1.01E-09 0.524 CTC-340A15.2 
ncRNA_intr

onic 
NO 

Neuroticism & 

depression 
Known 6.522 6 

16 rs180928232 5 A/G 166185949 -0.012 0.002 4.46E-08 0.149 CTB-7E3.1 intergenic NO Neuroticism Known 2.692 6 

17 rs200977 6 T/C 27854301 0.015 0.002 1.04E-11 0.873 HIST1H3J intergenic NO 
Neuroticism & 

depression 
Known 1.251 NA 

17 rs2534664 6 A/G 31469591 0.01 0.002 2.63E-10 0.456 MICB intronic NO Depression Known 3.484 NA 

17 rs1144708 6 T/C 31710020 -0.01 0.002 7.49E-10 0.357 
MSH5:MSH5-

SAPCD1 
intronic YES No Known 0.372 6 

18 rs12374612 6 T/C 100955752 0.009 0.001 1.02E-08 0.478 ASCC3 downstream NO Neuroticism Known 0.29 6 

19 rs2189246 7 A/G 82444372 0.01 0.001 1.98E-10 0.523 PCLO intronic NO Depression Known 1.139 7 

20 rs6956352 7 A/G 109131367 0.009 0.002 1.64E-08 0.458 AC073071.1 intergenic NO Depression Known 9.195 7 

21 rs4726814 7 T/C 146691924 -0..01 0.002 1.30E-08 0.275 CNTNAP2 intronic NO No Novel 1.37 7 

22 rs4478545 8 A/G 94672542 -0.01 0.002 4.77E-09 0.285 LINC00535 
ncRNA_intr

onic 
NO No Novel 1.326 6 

23 rs3793577 9 A/G 23737627 -0.01 0.002 3.46E-10 0.463 ELAVL2 intronic NO Neuroticism Known 19.76 5 

24 rs4744242 9 T/G 96236711 -0.011 0.002 8.68E-13 0.336 FAM120A intronic YES Neuroticism Known 2.858 6 

25 rs10123941 9 T/C 120518162 -0.01 0.002 3.96E-09 0.727 snoZ13_snr52 intergenic NO Neuroticism Known 1.108 6 
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26 rs6584631 10 T/C 106656137 -0.01 0.002 7.23E-09 0.244 SORCS3 intronic NO Depression Known 0.167 4 

27 rs4937872 11 A/G 112827715 -0.012 0.002 7.15E-15 0.589 
RP11-

629G13.1 
intergenic YES Neuroticism Known 0.044 6 

28 rs9530139 13 T/C 31847324 -0.011 0.002 2.11E-08 0.194 B3GALTL intronic NO Depression Known 0.529 6 

29 rs9597797 13 T/G 59183795 -0.01 0.002 1.42E-09 0.251 CTAGE16P intergenic NO Neuroticism Known 0.278 7 

30 rs2121708 14 A/G 42146572 -0.009 0.001 8.26E-10 0.517 LRFN5 intronic NO Depression Known 0.043 NA 

31 rs35641442 14 A/G 75207263 0.009 0.002 6.65E-09 0.459 FCF1 intergenic NO 
Neuroticism & 

depression 
Known 11.4 7 

32 rs1862743 16 A/C 60743834 -0.009 0.001 1.08E-08 0.492 GNPATP intergenic NO No Novel 1.06 6 

33 rs2978362 18 T/C 32959397 -0.008 0.001 2.65E-08 0.527 ZNF396 intergenic NO Depression Known 1.024 NA 

33 rs11877758 18 T/G 35138110 -0.012 0.002 1.28E-13 0.692 CELF4 intronic NO 
Neuroticism & 

depression 
Known 2.718 7 

34 rs17410557 18 T/C 50776391 -0.009 0.002 1.13E-08 0.606 DCC intronic NO 
Neuroticism & 

depression 
Known 4.502 7 

34 rs12958048 18 A/G 53101598 0.01 0.002 4.76E-11 0.333 TCF4 intronic NO Neuroticism Known 2.08 5 

35 rs2111530 19 A/G 31891006 -0.009 0.002 9.47E-09 0.602 AC007796.1 
ncRNA_intr

onic 
NO No Novel 17.04 7 

36 rs2024568 20 T/C 44732089 0.011 0.002 1.52E-10 0.246 RPL13P2 intergenic NO 
Neuroticism & 

depression 
Known 0.149 6 

37 rs11090039 22 A/G 41496800 0.012 0.002 2.87E-13 0.284 EP300 intronic NO Neuroticism Known 9.707 5 

NOTE: CHR, chromosome; A1, effect allele with respect to the Beta; A2, alternate allele; BP, base pair position; SE, standard error; FRQ, frequency of the A1; CADD, Combined 

Annotation Dependent Depletion score; RDB, RegulomeDB score.   
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Overlap with previous GWAS was examined by identifying hits within +/-5000kb in the MTAG-hits for IBS and original GWAS hits for each trait (i.e. neuroticism, depression and 

anxiety). If there were overlapping SNPs within this distance, they were considered independent signal if r2>0.2. The independent signals identified (indicated as novel) were further 

confirmed using conditonal analysis. 
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