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 2 

Abstract 25 

Profiling of cell-free DNA (cfDNA) has been well demonstrated to be a potential non-invasive 26 

screening tool for early cancer detection. However, limited studies have investigated the 27 

detectability of cfDNA methylation markers that are predictive of cancers in asymptomatic 28 

individuals. We performed cfDNA methylation profiling using cell-free DNA methylation 29 

immunoprecipitation sequencing (cfMeDIP-Seq) in blood collected from individuals up to seven 30 

years before a breast cancer diagnosis in addition to matched cancer-free controls. We identified 31 

differentially methylated cfDNA signatures that discriminated cancer-free controls from pre-32 

diagnosis breast cancer cases in a discovery cohort that is used to build a classification model. 33 

We show that predictive models built from pre-diagnosis cfDNA hypermethylated regions can 34 

accurately predict early breast cancers in an independent test set (AUC=0.930) and are 35 

generalizable to late-stage breast cancers cases at the time of diagnosis (AUC=0.912). 36 

Characterizing the top hypermethylated cfDNA regions revealed significant enrichment for 37 

hypermethylation in external bulk breast cancer tissues compared to peripheral blood leukocytes 38 

and breast normal tissues. Our findings demonstrate that cfDNA methylation markers predictive 39 

of breast cancers can be detected in blood among asymptomatic individuals up to six years prior 40 

to clinical detection. 41 

 42 
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 46 

Background 47 

High morbidity and mortality rates associated with cancers is largely attributed to late-stage 48 

diagnoses. Across most cancers, survival outcomes are significantly improved when tumours are 49 
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still localised to the tissue of origin at diagnosis [1]. However, effective population screening tools 50 

for early cancer detection are currently limited to a few cancer types, notably breast, colorectal, 51 

lung and cervical cancer [2,3]. For example, routine mammogram screening is currently 52 

recommended to women biennially between the ages of 50-70 in Canada and remains the gold 53 

standard for early breast cancer (BRCA) detection. Yet, breast cancer is still expected to be 54 

responsible for 25.4% of female cancer cases, and 13.8% of all female cancer related deaths in 55 

2022 [4]. Likewise, limited participation as well as high false positive rates, have raised concerns 56 

of overdiagnosis and overtreatment of breast cancers following mammography [5-7]. 57 

 58 

Profiling cell-free DNA (cfDNA) derived from tumours in blood, also known as circulating tumour 59 

DNA (ctDNA), is well demonstrated to be a potential non-invasive biomarker that can provide a 60 

glimpse into the genetic and epigenetic landscape of a tumour’s genome [8-12]. Sensitive liquid 61 

biopsy assays examining tumour specific cfDNA methylation profiles are able to detect both early- 62 

and late-stage cancers and inform on the tissue of origin of underlying tumours. In addition, some 63 

studies have even combined cfDNA biomarkers with alternative markers such as multi-protein 64 

panels or radiographic imaging to further improve diagnostic accuracy [11, 13]. Several studies 65 

to date have shown the diagnostic potential of cfDNA methylation profiles for early breast cancer 66 

detection by building targeted panels from bulk cancer tissue to profile and classify individuals 67 

with established early-stage cancers [13-16]. However, as most cancers are often only detected 68 

once patients are screened or become symptomatic, these studies have primarily been performed 69 

using biologic samples collected from patients following clinical detection and diagnosis of a 70 

malignant primary tumour. Profiling cfDNA in the pre-diagnostic context could allow us to better 71 

understand the detectability of cancer biomarkers across cancer subtypes at the earliest stages, 72 

however this requires application of new technologies to biologics collected from healthy 73 

individuals prior to a cancer diagnosis. 74 

  75 

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted February 1, 2023. ; https://doi.org/10.1101/2023.01.30.23285027doi: medRxiv preprint 

https://doi.org/10.1101/2023.01.30.23285027
http://creativecommons.org/licenses/by-nc/4.0/


 4 

Here, we profiled cfDNA methylation patterns in plasma samples collected from cohort 76 

participants prior to a breast cancer diagnosis and matched cancer-free controls to identify and 77 

assess cfDNA markers predictive of early breast cancers and breast cancer risk. We leverage the 78 

Ontario Health Study (OHS), an Ontario-based longitudinal prospective cohort that collected 79 

health and lifestyle information through self-reported questionnaires, and biologics including blood 80 

plasma, from over 41,000 participants between 2009 and 2017 [17]. A particular advantage of the 81 

OHS is that almost all participants provided consent to administrative health linkages at initial 82 

recruitment into the study. We were able link health insurance numbers of recruited individuals to 83 

administrative health registries to identify participants that developed breast cancer up to 7 years 84 

after study recruitment and biologic donation. Using 1.6 mL of blood plasma from incident breast 85 

cancer cases, in addition to matched controls, we analyzed and compared cfDNA methylomes in 86 

pre-diagnosis blood plasma samples versus cancer-free samples. In this study, all sequencing 87 

runs and analytics in the discovery cohort were performed with cases and controls concurrently 88 

to minimize inflation of accuracy, sensitivity, and specificity. By retrospectively interrogating blood 89 

samples collected prior to diagnosis, we assessed the earliest detectability and predictive 90 

performance of cfDNA methylation markers for classifying participants harboring undetected 91 

breast cancers and in stage IV breast cancers from an independent cohort.  92 

  93 

Methods 94 

Cohort participants and demographics 95 

Peripheral blood was drawn from OHS participants upon recruitment to the study, and 1.6 mL 96 

plasma was separated and collected within 48 hours into EDTA tubes, and immediately 97 

cryopreserved at the OHS Biobank. Participants in OHS that had developed breast cancer 98 

following recruitment to the study were identified by linking individuals to the Ontario Cancer 99 

Registry through Cancer Care Ontario (CCO) using health insurance number, age, sex and name. 100 

At the time of linkages, cancer registry data had been made available through the Ontario Cancer 101 
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Registry up until December 2017. All samples and participant data were deidentified and assigned 102 

unique research IDs to prevent identification of study subjects prior to analysis. Original OHS and 103 

CCO IDs are not known to anyone outside the research group. Breast cancers were confirmed 104 

by histological analyses of tissue biopsies at the time of diagnosis, and immuno-histochemical 105 

tests for hormone receptor status were reported in the pathology records of breast cancer cases. 106 

In total, 110 incident breast cancer cases among participants diagnosed with breast cancer after 107 

providing a blood sample at the time of enrollment were identified, in addition to 108 control 108 

participants with no history of cancer at the time of study enrollment and throughout the study 109 

follow up time (Fig. 1, Fig. S1, Supplementary Table 1 & Supplementary Table 2). Cancer-free 110 

controls were matched to cases by age, sex, date of biologic collection, ethnicity, smoking status, 111 

and alcohol consumption frequency were also selected. Additional plasma samples from 35 112 

patients with established breast cancer were obtained from participants in the Ontario-wide 113 

Cancer TArgeted Nucleic Acid Evaluation (OCTANE) study [18].  114 

 115 

Cell-free DNA methylation profiling 116 

Using 1.6 mL of plasma from pre-diagnosis breast cancer and selected cancer-free control 117 

participants, cfDNA methylation patterns were profiled using a cell-free methylated DNA 118 

immunoprecipitation sequencing protocol (cfMeDIP-Seq) to sequence methylated cfDNA 119 

fragments [19-20]. The cfDNA from OHS and OCTANE samples was extracted from plasma using 120 

the QIAamp Circulating Nucleic Acid Kit (Qiagen). 5-10ng of cfDNA was used as input to generate 121 

methylated cfDNA libraries (IP libraries) along with an input control library (IC libraries). Quality of 122 

incoming cfDNA was assessed using the Fragment Analyzer (Agilent) following the manufacturers 123 

guidelines. 0.1ng of Arabadopsis thaliana DNA was added to samples prior to library preparation. 124 

Combined samples were prepared using the KAPA Hyper Prep library protocol (Roche), with 125 

standard End Repair & A-tailing and ligation of xGen Duplex Seq Adapter (IDT), followed by 126 

incubation at 4°C overnight. Unmethylated lambda (λ) DNA was added to partially completed IP 127 

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted February 1, 2023. ; https://doi.org/10.1101/2023.01.30.23285027doi: medRxiv preprint 

https://doi.org/10.1101/2023.01.30.23285027
http://creativecommons.org/licenses/by-nc/4.0/


 6 

libraries and enriched for methylated DNA using the MagMeDip Kit (Diagenode) and purified with 128 

the IPure Kit v2 (Diagenode). Sample indices were added to IP and IC libraries via PCR. 129 

Completed libraries were quantified by Qubit (Life Technologies) and Fragment Analyzer 130 

(Agilent). Both IP and IC libraries underwent shallow sequencing (~20,000 reads) on the MiSeq 131 

platform as a quality control step. IP libraries were sequenced to approximately 60M read pairs in 132 

2x50bp mode on Novaseq platform (Illumina). To mitigate confoundment of biological signals from 133 

technical artifacts associated with batch effects, cancer cases were batched together with control 134 

samples during and across library preparation and sequencing runs. 135 

  136 

Raw sequencing read processing 137 

Following sequencing, the FASTQ raw reads were adapter trimmed, with unique molecular 138 

identifiers (UMIs) appended to fastq headers using UMI Tools (version 0.3.3) [21]. The reads were 139 

then aligned to hg38 using Bowtie2 (version 2.3.5.1) [22] in paired end mode at default settings. 140 

Aligned SAM files were converted to BAM file format, indexed, and sorted using SAM tools 141 

(version 1.9) [23]. Aligned reads were subsequently deduplicated according to alignment positions 142 

and UMIs using UMI Tools.  143 

  144 

Quality control and sample inclusion 145 

One control sample was excluded from our study owing to mortality from non-cancer related 146 

causes during study follow up. Five controls were excluded due to diagnoses of cancer pre-147 

disposing conditions that were identified from self-reported questionnaires during follow up. Three 148 

control samples were excluded owing to diagnosis of another cancer following sample collection 149 

and processing. Following library preparation, four samples were removed as no reads were 150 

generated during the MiSeq quality control step. We retained and analysed all samples with more 151 

than 10 million deduplicated reads. 39 samples were removed owing to Novaseq sequencing 152 

instrument failure that resulted in poor sequencing yields. To assess enrichment efficiency, the 153 
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number of methylated and unmethylated Arabidopsis spike-ins aligned to F19K16 and F24B22 154 

respectively were counted, and the proportion of methylated spike-ins generated out of the total 155 

spike-ins were calculated. Seven samples with less than 95% of spike-in reads that were 156 

methylated were excluded. An additional seven were samples owing to poor CpG enrichment 157 

assessed through GoGe (< 1.75) and relH enrichment scores (< 2.7) calculated using MEDIPS 158 

were also removed (See Supplementary Table 2 for quality control metrics and sample 159 

information among remaining samples). Following quality control filtering, 82 pre-diagnosis breast 160 

cancer cases and 70 cancer-free controls were retained for subsequent analyses. Additional 161 

previously published cfMeDIP-Seq profiles from six head and neck cancers cases and five non-162 

cancer controls were used as non-breast cancer controls for validation [24]. 163 

  164 

Computing cfMeDIP-Seq methylation signals 165 

To infer cfDNA methylation levels among pre-diagnosis breast cancers and control samples, 166 

coverage profiles were generated for each sample across 300 bp non-overlapping binned tiled 167 

windows from BAM files using MEDIPS (R package version 1.12.0) [25]. Cell-free DNA 168 

methylation coverage profiles were library size normalized across all OHS, OCTANE and external 169 

non-breast cancer samples using the DESeq2 R package version 1.30.1 [26]. Regions with no 170 

coverage within a particular sample are assigned a count of 0. To reduce background noise, 171 

publicly accessible data was used to remove potentially uninformative regions. Regions frequently 172 

methylated in haematopoietic cells were inferred using whole genome bisulfite sequencing data 173 

of peripheral blood leukocytes (n = 78) from the International Human Epigenetics Consortium 174 

(IHEC) [27]. We averaged the level of methylation across all CpG sites within the same 300 bp 175 

non-overlapping tiled window for each sample to infer the level of methylation within a specified 176 

region. Regions with a methylation level greater than 0.25 averaged across PBL samples for each 177 

cell type were excluded. Remaining 300-bp bins with at least six or more CpG sites located at 178 
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CpG islands, shores and shelves, or in FANTOM5 annotated promoters and enhancers, or UCSC 179 

RepeatMasker repetitive elements were tested for differential methylation (Fig. S2) [28].  180 

  181 

Statistical analysis 182 

All statistical analyses were implemented in R, version 4.0.4. 183 

  184 

Pre-diagnosis breast cancer differential methylation calling, classifier building and 185 

performance assessment 186 

OHS samples were divided into a discovery set (n = 67 cases and n = 59 controls) and validation 187 

set (n = 15 cases and n = 11 controls). Discovery set samples were used to identify differentially 188 

methylated regions (DMRs) and to build predictive models for classifying early breast cancers. 189 

While remaining validation set samples from a held-out batch, processed independently from the 190 

discovery cohort samples, were used as a test set to validate the discovery cohort signatures and 191 

predictive model.  192 

  193 

To evaluate the best approach for differential methylation calling and the optimal number of 194 

features to train machine learning models for predicting breast cancer risk among pre-diagnosis 195 

samples in discovery set samples, a repeated 10-fold cross validation (CV) was performed 100 196 

times (Fig. S3) [29]. First, pre-cancer cases and control samples were divided into 10 197 

approximately equal sized sets using stratified sampling, balancing the proportion of pre-198 

diagnosis cases by years prior to diagnosis following blood collection in each fold set. Iteratively, 199 

for each fold in the CV procedure, one set was selected as the test set and the remaining nine 200 

sets were designated as the train set (comprising 10% and 90% of participants respectively). 201 

Within the train set folds, differential methylation calling was performed using a Wald test of the 202 

coefficient from a negative binomial regression of cfMeDIP-Seq methylation level on train set case 203 
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and control status using DESeq2, adjusting for batch using surrogate variables and age as 204 

covariates. Differential methylation variance was tested by performing Bartlett’s test using 205 

matrixTests (R package version 0.1.9.1) [30] between pre-diagnosis cases and controls. Features 206 

were ranked according to p-values from respective tests selecting for regions with a minimum log 207 

fold-change in methylation > 0.5 between cases and controls. 208 

  209 

Iteratively, within each subsampling iteration, the top ranking 50 to 400 hypermethylated regions 210 

identified from train set folds were used to construct a random forest model with Caret (R package 211 

6.0) [31, 32] from library-size normalized discovery set sample methylation counts. The random 212 

forest models were tuned using a nested 10-fold cross validation with 10-repeats iterating across 213 

values from 5 to 50 for the number of features sampled to grow individual decision trees, and 250 214 

to 1000 trees in the model to maximize the overall nested CV classification accuracy. The model 215 

performance was then assessed by applying the predictive model to the held-out test fold to obtain 216 

classification scores that reflected the proportion of decision trees predicting the sample as breast 217 

cancer. The 10-fold CV procedure was repeated 100 times with different fold-splits to get stable 218 

average estimates of cross-validated predictive performance. Differential methylation calling, 219 

classifier building and assessment of predictive performance was effectively repeated 1000 times 220 

with different sets of cases and controls in the train folds across each iteration. The test-fold 221 

classification scores across each of the 100 CV repeats were averaged for each sample. A 222 

bootstrapped area under the receiver operating characteristic curve (AUC) was calculated by 223 

subsampling 67 cases and 59 controls with replacement, repeated for 3000 bootstraps. The final 224 

bootstrap AUC was calculated by taking the median AUC, while 95% confidence intervals were 225 

calculated by taking 2.5% and 97.5% percentiles.  226 

  227 

To incorporate the follow-up time of controls, the time to diagnosis among the pre-diagnosis 228 

cancer cases, as well as the proportion of true negative cases in the population, the concordance 229 
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index (C-index: the probability that for any pair of individuals, the individual with the higher 230 

estimated risk score will have the earlier diagnosis time) [33] and time-dependent AUCs (AUC(t)) 231 

were computed [34]. Owing to the outcome and age dependent sampling used in the study, the 232 

artificial case-to-non-case ratio in our sample was not representative of the Canadian adult 233 

population. Sampling weights were calculated to adjust for this sampling bias in the time-234 

dependent model assessment analysis using age specific cumulative breast cancer incidence 235 

rates from the Canadian Cancer Registry, in addition to all-cause mortality rates in Ontario 236 

reported by Statistics Canada. Kaplan-Meier estimates weighted according to age-specific breast 237 

cancer incidence for the corresponding follow-up times in the Canadian population were also 238 

computed to assess whether averaged test-fold classification scores were predictive of time to 239 

cancer diagnosis. Samples were stratified into a high risk and low risk group according to whether 240 

they were assigned a classification score above or below 0.638 respectively. The cut off was 241 

determined by optimizing sensitivity while limiting false positive rates at 5%.  Cumulative 242 

probabilities of developing breast cancer across timepoints were estimated by fitting a Cox 243 

Proportional Hazard (CoxPH) model using the cph function (rms R package version 6.3) on the 244 

discovery set with classification scores as predictors.  245 

  246 

Validation of discovery cohort signatures 247 

To validate the predictive performance of pre-diagnosis cfDNA hypermethylated regions, the 248 

mean p-value and log fold-change (logFC) was calculated across the 1000 repeated differential 249 

methylation calls within the discovery cohort CV procedure. The top ranking features were used 250 

to build a random forest model from all discovery cohort samples and tuned using a nested CV in 251 

the same way described above to optimize the tree number and number of subsampled regions 252 

for each tree.  To infer whether pre-diagnosis cfDNA DMRs were agreeable with established 253 

cancers, predictive models were further assessed on late-stage breast cancer cases (n = 35) from 254 

OCTANE [18] and external head and neck cancer cases [24] (n = 6), and cancer free controls (n 255 
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= 5). Predicted risk scores in the validation sets were used to calculate AUROCs to assess 256 

classification performance and weighted Kaplan-Meier estimates to assess the performance for 257 

predicting the absolute risk for developing breast cancer. The observed cumulative incidence 258 

rates were compared to those estimated by the discovery set CoxPH model applied to the 259 

validation samples. 260 

   261 

Overlap between pre-diagnosis cfDNA hypermethylated regions and bulk breast cancer 262 

tissue methylome 263 

To assess whether the selected predictor regions used to build the classification model were 264 

potentially derived from breast cancer tissue, the number of overlapping hypermethylated regions 265 

was calculated between pre-diagnosis breast cancer cfDNA and bulk breast cancer tissue relative 266 

to adjacent breast normal (ABRNM), healthy breast normal (HBRNM) tissue, and peripheral blood 267 

leukocytes (PBL) using publicly accessible 450k DNA methylation array data. Solid breast cancer 268 

and normal tissue raw IDAT files were downloaded from the TCGA data portal, and PBL from the 269 

GeoExpression Omnibus (GSE87571 and GSE42861), in addition to healthy and adjacent normal 270 

tissues (GSE88883, GSE101961 & GSE66313). IDAT files were processed to generate beta 271 

methylation values from IDAT files using Minfi (1.36.0 R package) [35] and normalised using the 272 

preprocessFunnorm function. To test for differentially methylated CpG sites between paired 273 

healthy and tumour biopsies, an F-test was performed using the DMPFinder function from Minfi 274 

across 485,512 CpG sites. Significantly differentially methylated regions were defined as CpG 275 

sites with an absolute difference in methylation of greater than 0.1 and Bonferroni adjusted p-276 

value of less than 0.0001. Differential methylation calling between all breast cancer and breast 277 

normal tissue, as well as between breast cancer tissue and PBL was also performed using the 278 

DMPFinder function from Minfi between all samples from each respective group to identify 279 

additional breast cancer specific markers. A permutation analysis was performed to infer whether 280 

overlaps were significant, by comparing the observed overlap with the overlap between 281 
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significantly hypermethylated bulk tissue DMRs and randomly selected background cfDNA 282 

regions (repeated 3000) times to obtain a background distribution for z-score normalization and 283 

to calculate corresponding p-values. Additional BRCA, ABRNM, and HBRNM tissue data profiled 284 

from the same study (GSE69914) with processed Beta methylation values was also analyzed as 285 

described above. Predictor regions were annotated for genomic contexts using Annotatr (R 286 

package version 1.24.0). 287 

  288 

Results  289 

Discovery cohort pre-diagnosis breast cancer classification predictive performance; 290 

internal cross-validation 291 

Most early cancer detection studies to date typically use a pre-designed enrichment panel to 292 

target cancer tissue specific differentially methylated genomic loci prior to methylation profiling 293 

[13-15]. In this study, we instead utilized cfMeDIP-Seq to interrogate genome-wide methylation 294 

profiles, enabling the detection of both cfDNA specific methylation markers derived from tumours 295 

and differentially methylated regions from non-tumour material potentially predictive of breast 296 

cancer risk. To reduce background noise, we applied biological filters to remove potentially 297 

uninformative genomic regions prior to differential methylation calling (Fig. S2). Loss of epigenetic 298 

stability and increased stochasticity across the genome have been observed in pre-malignant and 299 

early cancer tissue [36, 37]. Likewise, we suspect that in pre-diagnosis cfDNA samples not all 300 

regions hypermethylated in cancer tissues will be observed, nor will we observe consistent 301 

genomic regions to be impacted by methylation changes across pre-symptomatic individuals. 302 

Therefore, we compared two approaches for differential methylation calling to rank and select 303 

regions in the discovery cohort for training predictive models; the Wald test of the negative 304 

binomial coefficient to test for changes in mean methylation level between groups, and the 305 

Bartlett’s test identifying differential variance in methylation to improve detection of sparse 306 

predictor regions. 307 

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted February 1, 2023. ; https://doi.org/10.1101/2023.01.30.23285027doi: medRxiv preprint 

https://doi.org/10.1101/2023.01.30.23285027
http://creativecommons.org/licenses/by-nc/4.0/


 13 

 308 

To iteratively identify and assess, using multivariate predictive models, whether cfDNA 309 

hypermethylated regions can accurately predict an individual’s risk of developing breast cancer, 310 

we performed 100 repeated 10-fold CV procedures in the discovery cohort (Fig. S3). As the 311 

predictive performances can be highly variable depending on which observations are included in 312 

the train set and test set, a repeated CV approach can obtain stable average estimates as well 313 

as the uncertainty of the cross-validated predictive performance in held-out test folds among 314 

discovery cohort samples. In practice, a diagnostic screening tools aims to minimize false positive 315 

rates while maximizing sensitivity to prevent overdiagnoses, thus we assessed the optimal 316 

number of predictors and best feature selection approach that achieved the highest sensitivity at 317 

95% specificity. Across all CV repeats, random forest classifiers trained with the top 150 318 

hypermethylated regions from the Wald’s test achieved the highest average sensitivity at 26.9% 319 

(95% CI 0.9%-49.3%) while retaining 95% specificity for predicting breast cancer development on 320 

test-fold samples (Fig. 2, Fig. S4). The averaged classification performance from bootstrapped 321 

classification scores in discovery cohort samples achieved a mean binary classification AUC 322 

across all breast cancer types, ages and varying pre-diagnosis time intervals of 0.724 (95% CI 323 

0.636-0.810) (Fig. 2A). Further, the diagnostic classifiers trained with top 150 ranking 324 

hypermethylated regions achieved an average C-index of 0.704 (95% CI 0.647-0.758) across the 325 

repeated 10-fold CV iterations up to seven years prior to diagnosis in test set folds (Fig. 2B). The 326 

diagnostic classifiers performed consistently well among cases diagnosed at stage I, achieving a 327 

mean AUC of 0.725 (95% CI 0.626-0.824) and mean C-index of 0.704 (95% CI 0.655-0.757) (Fig. 328 

2C). Notable differences in predictive performance across different breast cancer subtypes were 329 

also observed when stratifying predictive performance by hormone receptor (HR) positive (n = 43 330 

cases; 64.2%) and HR negative (n = 7 cases; 10.4%) breast cancers. Discovery cohort classifiers 331 

performed better identifying early HR positive breast cancer cases using pre-diagnostic blood 332 

cfDNA methylation signatures, detecting on average 32.6% of cases (95% CI 8.7%-50%) at 95% 333 
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specificity compared to an average sensitivity of 14.3% (95% CI 0%-43.2%) for HR negative 334 

cancers (Fig. 2C). 335 

 336 

Typically, all women between the ages of 50-70 are recommended to receive mammograms 337 

biennially in Canada, however mammographic screening guidelines for women aged 40-49 338 

remains controversial as The Canadian Task Force on Preventive Health Care recommended 339 

against routine screening of women under 50 in their 2018 guidelines [7]. To address the 340 

differences in routine care within the cohort, we specifically evaluated whether individuals 341 

diagnosed at ages 35 to 50 in the discovery set, preceding the age of mammographic screening 342 

eligibility in Ontario, could also benefit from cfDNA methylation tests for early breast cancer 343 

detection. When stratifying binary classification performance according to age of diagnosis, 344 

individuals diagnosed between the ages 35 to 50 (n = 16 cases) were classified with an AUC of 345 

0.775 (95% CI 0.624-0.895), detecting 25% (95% CI 6.2%-62.5%) at 95% specificity, and a C-346 

index of 0.743 (95% CI 0.633-0.850) (Fig. 2C). Furthermore, within the discovery cohort, 35 cases 347 

reported to have a negative breast mammography screen result within six months to one year 348 

before providing a blood sample to the OHS (Fig. 1B). Stratifying the classification performance 349 

for cases with negative mammogram results within one year of providing blood samples (Fig. 2C) 350 

reveals classifiers achieve an AUC of 0.691 (95% CI 0.581-0.803), and a 20% sensitivity (95% CI 351 

5.7%-41.0%) at 95% specificity, highlighting that cfDNA methylation markers can be predictive of 352 

breast cancers prior to mammogram detection. 353 

  354 

The average classification scores assigned by predictive models in each cross-validated fold of 355 

the 100 repeats were also highly predictive of cancer-free survival. Due to the inflated ratio of 356 

cases to controls in our study, unweighted KM curves will report inaccurate cancer-free survival 357 

probabilities, particularly in low-risk groups as the proportion of cases to controls is significantly 358 

lower in OHS and across the Canadian population (Fig. S5B-E). As such, we weighted case and 359 
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control samples by the age specific cumulative breast cancer incidence rates, adjusted for the all-360 

cause mortality rates in Ontario. Using a classification score cut off of 0.648 to stratify samples 361 

using a weighted Kaplan-Meier (KM) estimate, which retains 95% specificity among discovery 362 

cohort samples (Fig. S5A), we demonstrate significant association between high classification 363 

scores and cancer-free survival rates (log-rank test p = 9.15x10-27) particularly in HR positive 364 

breast cancers cases (log-rank test p = 9.70x10-27) and cases diagnosed between ages 35 to 50 365 

(log-rank test p = 3.4x10-31)  (Fig. 2D-E & Fig. S5G-H). Similarly, when estimating the cumulative 366 

incidence rate of developing breast cancer within varying time points between high risk 367 

(classification score ≥ 0.648) and low risk (classification score < 0.648) groups using a CoxPH 368 

model, we found that individuals with a high risk score had on average an 11.1% (5.7%-16.1%) 369 

chance of developing breast cancer within five years (Supplementary Table 3). Indeed, our 370 

observed cumulative incidence was consistent with our estimated incidence at up to 4 years, after 371 

which the observed incident was significantly higher owing to limited control samples with long 372 

censorship times being predicted in the high risk group.  Collectively, our findings reveal that 373 

hypermethylated cfDNA signatures identified from pre-diagnosis samples can be predictive of 374 

breast cancer development in our discovery cohort.  375 

  376 

External test set validation of discovery cohort differentially methylated regions and breast 377 

cancer diagnostic classifier 378 

To validate whether pre-diagnosis cfDNA hypermethylated regions could predict the risk of an 379 

individual developing breast cancer, we built a random forest classifier trained using all discovery 380 

cohort samples and assessed on the held-out validation set of pre-diagnosis cases and controls 381 

that were processed independently from samples in the discovery set. As the top 150 382 

hypermethylated regions from the Wald’s test achieved the highest average sensitivity in the 383 

discovery set across internal CV repeats, we selected the same number of top ranking features 384 

to build a classifier to predict breast cancer development in the OHS validation set samples. 385 
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Predictor regions used to train the model were selected by ranking hypermethylated regions 386 

according to the mean p-value from the Wald’s test across the 1000 repeated subsampling 387 

differential methylation calls for each region within the discovery set. The diagnostic classifier 388 

trained using the top 150 hypermethylated regions accurately discriminated validation set pre-389 

diagnosis breast cancer cases from controls, achieving an AUC of 0.930 (0.815-1.000) among 390 

pre-diagnosis test set samples. Using the classification score cut off of 0.648, determined 391 

previously from discovery set samples, we classified 53.3% of samples at a 0% false positive rate 392 

(Fig. 3A-C).  Test set sample classification scores assigned by the diagnostic classifiers were also 393 

significantly higher (p = 4.1x10-5) in pre-diagnosis cases relative to controls (Fig. 3B). Interestingly, 394 

all test set OHS samples with a classification score of over 0.648, selected previously from 395 

discovery cohort samples, developed breast cancer within 6 years of blood sampling, 396 

demonstrating cfDNA methylome signatures can be predictive of breast cancer risk (Fig. 3D). 397 

Using the CoxPH model fitted from the discovery set, samples in the validation set high risk group 398 

had an average estimated 9.2% (4.7%-13.4%) chance of being diagnosed with breast cancer 399 

within 5 years. Owing to limited sample sizes, the average incident rate among high risk group 400 

samples was underestimated compared to the observed incident rate, which were considerably 401 

higher as no validation set control samples were assigned in the high risk group. Consequently, 402 

further examination in a larger cohort is needed to assess the calibration of estimated risk 403 

incidence.  404 

  405 

We further evaluated the performance of the diagnostic classifier on an independent test set 406 

comprised of stage IV breast cancer cases (n=35) profiled at the time of enrollment into OCTANE, 407 

head and neck squamous cell carcinoma (HNSC) cases (n=6), and a set of non-cancer controls 408 

(n=5) from samples profiled by Burgener et al [18, 24]. The classifier achieved an AUC of 0.912 409 

when predicting on individuals with established late-stage breast cancer against non-breast 410 

cancer samples regardless of subtyping (Fig. 3E). Interestingly, the classifiers performed better 411 
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in detecting HR positive breast cancers (AUC=0.963) compared to HR negative (AUC=0.868) 412 

among the external test samples, consistent with the discovery cohort classification performance. 413 

Using a classification score cut-off of 0.648, the classifiers detected HR positive breast cancers 414 

at 76.4% sensitivity and HR negative breast cancers at 65.0% sensitivity, while retaining a 415 

specificity of 100% for non-breast cancer samples including head and neck cancer cases (Fig. 416 

3F-G), indicating that the pre-diagnostic breast cancer cfDNA methylation signatures are largely 417 

agreeable with late stage malignancies. 418 

 419 

Differentially methylated regions in pre-diagnosis breast cancer cfDNA reflects breast 420 

cancer epigenome 421 

We next assessed whether the top 150 ranked cfDNA hypermethylated predictor regions 422 

identified from discovery cohort samples were concordant with breast cancer tissue 423 

hypermethylated regions. However, as participant tumour biopsies at the time of diagnosis were 424 

not available, we instead leveraged publicly available bulk breast cancer, adjacent breast normal, 425 

healthy breast normal and PBL DNA 450k methylation array data. Presumably, if the cfDNA 426 

hypermethylated markers were derived from breast cancer tissue, the same regions would be 427 

concordantly hypermethylated when comparing bulk breast cancer tissue methylomes against 428 

PBLs, as cfDNA from normal breast tissue is typically shed at extremely low frequency in healthy 429 

individuals. Across the top 150 pre-diagnosis breast cancer cfDNA hypermethylated regions, 75 430 

regions contained at least one CpG site profiled by the DNA 450k methylation array spanning 156 431 

CpG Sites. The difference in methylation between TCGA bulk breast cancer tissues (n = 846) and 432 

PBLs (n = 628) across the 156 CpG sites overlapping the 75 cfDNA hypermethylated regions 433 

were computed against the cfDNA log-fold change in methylation (Fig. 4A), revealing that 434 

hypermethylated regions in pre-diagnosis breast cancer cfDNA were concordantly 435 

hypermethylated in bulk breast cancer tissue relative to PBLs. Similarly cfDNA hypermethylated 436 
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regions can also discriminate bulk breast cancer tissue from PBLs and bulk breast normal tissues 437 

(Fig. S6). 438 

  439 

To further investigate the overlap in hypermethylated regions between cfDNA and 440 

hypermethylated regions in bulk breast tissue, we identified significant DMRs (FDR < 0.0001 & 441 

absolute methylation difference > 0.1) in 450k methylation array breast cancer tissue relative to 442 

PBLs. Among the 75 hypermethylated cfDNA regions, 47 (62.7%) regions overlapped with 443 

significantly hypermethylated regions in 450k methylation array bulk breast cancer tissue relative 444 

PBLs (Fig. 4B). To further evaluate whether the enrichment in hypermethylated regions between 445 

cfDNA and bulk breast cancer tissue methylation array profiles were significant, a permutation 446 

test was performed by comparing the observed number of overlapping regions to the expected 447 

overlap if random background cfDNA regions were selected. Most notably, only regions that were 448 

concordantly hypermethylated in pre-diagnosis cfDNA and in bulk breast cancer relative to PBLs 449 

tissue were significantly (p < 0.01) overlapping (Fig.  4B), whereas hypomethylated regions were 450 

not significantly enriched. Stratifying the enrichment by CpG island, shore, shelf, and open sea 451 

regions further revealed that the overlapping hypermethylated regions were most enriched among 452 

CpG islands, concordant with previous observations of hypermethylated regions in cancers being 453 

primarily observed in CpG islands (Fig. 4C) [36, 38]. Likewise, computing the overlap between 454 

the 75 hypermethylated cfDNA and significantly hypermethylated regions in bulk BRCA relative 455 

to ABRNM (Fig. 4D, Fig. S7E) and HBRNM (Fig. S7A & Fig. S8A) revealed 29 and 36 significantly 456 

overlapping regions respectively indicating that predictive cfDNA methylation markers consisted 457 

of regions uniquely hypermethylated in breast cancer tissue (Fig. 4E). To further ensure that the 458 

overlap wasn’t by chance or due to confoundment, as the bulk breast cancer and breast normal 459 

tissues methylation data were from separate studies, we recalculated the overlapping 460 

hypermethylated regions using bulk BRCA, ABRNM and HBRNM collected and processed from 461 

the same study (GSE69914). Consistent with the combined methylation array datasets, the cfDNA 462 
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hypermethylated regions were also significantly overlapping with regions hypermethylated in 463 

BRCA relative to ABRNM (Fig. S7F & Fig. S8E) and HBRNM (Fig. S7G & Fig. S8F), particularly 464 

among CpG island regions.  465 

  466 

We observed that many of the hypermethylated cfDNA regions mapped to promoter regions of 467 

tumour suppressor genes including GATA4, ZNF471 and SFRP, as well as in previously reported 468 

cfDNA breast cancer methylation markers (Fig. S9, Supplementary Table 4). Among proximal 469 

gene targets of hypermethylated cfDNA DMRs, various genes with dysregulated methylation were 470 

also inversely correlated with changes in expression between TCGA breast cancer and normal 471 

tissue among overlapping CpG sites, indicating that early changes in methylation detected from 472 

cfDNA may directly alter expression of these genes (Fig. S10). For example, ICAM2 expression 473 

has been implicated as a tumor suppressor that inhibits cancer cell invasion and migration, 474 

however we found an increase in methylation that directly correlated with a decrease in 475 

expression in breast cancer tissue [39]. Likewise, promoter methylation of genes such as CDKL2 476 

has been highlighted as a cfDNA methylation marker for triple negative breast cancers [15].  477 

 478 

We further compared whether the identified overlapping hypermethylated cfDNA markers were 479 

specific to breast cancer tissue or potentially applicable to multiple cancers by calculating 480 

overlapping hypermethylated regions in pre-diagnosis cfDNA and in TCGA cancers across 13 481 

different tissues relative to PBL methylation profiles (Fig. 4F & Fig. S11). Pre-diagnosis 482 

hypermethylated cfDNA markers in CpG island regions were most significantly enriched in breast 483 

tissue for both cancer and normal tissue relative to other tissue types (Fig. 4F-G), indicating that 484 

the hypermethylated CpG island regions detected in pre-diagnosis breast cancer cfDNA are likely 485 

specific to breast cancer tissue. However, we also observed significantly overlapping 486 

hypermethylated regions in other bulk cancer tissue types relative to PBL when including non-487 
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CpG island regions, which may suggest potential pan-cancer applications among captured 488 

markers.  489 

  490 

Discussion 491 

Using cfMeDIP-Seq to profile cfDNA methylomes, we were able to capture cfDNA methylation 492 

signatures predictive of breast cancer development prior to clinical presentation and even in cases 493 

with a negative mammogram screen within a year before blood collection. We highlighted the 494 

predictive performance of using pre-diagnosis DMRs to classify individuals with underlying breast 495 

cancers within a discovery cohort and for predicting the absolute risk of an individual developing 496 

breast cancer within five years. We also demonstrate that these markers are detectable prior to 497 

mammogram detection and performs particularly well in detecting early breast cancers among 498 

women under the age of 50, for whom existing screening mammography programs are not 499 

universally recommended. Furthermore, we were able to validate the performance of top ranking 500 

hypermethylated regions by accurately discriminating a held-out batch of pre-diagnosis cases 501 

from controls at 53.3% sensitivity while retaining 100% specificity. Despite this, we acknowledge 502 

that the pre-diagnosis validation set sample sizes were small and additional validation of identified 503 

biomarkers will need to be further investigated in independent studies with larger cohorts. Our 504 

pre-diagnosis signatures are also highly generalizable to established metastatic breast cancers, 505 

providing further evidence that these signatures are related to the underlying malignancy. 506 

Likewise, the cfDNA methylation classifiers can also discriminate breast cancers from head and 507 

neck cancers cases, although follow-up investigations will be necessary to assess the specificity 508 

of our markers as they relate to cancer type and histology. We found that among the top 150 509 

cfDNA hypermethylated regions detected in the discovery set, hypermethylated cfDNA regions at 510 

CpG island were the most significantly enriched for in breast cancer tissue relative to PBLs and 511 

normal breast tissues, revealing that the detected cfDNA hypermethylated regions captured in 512 

pre-diagnosis samples are partially reflective of breast cancer methylomes. However, it should be 513 
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noted that among the top 150 hypermethylated regions identified from pre-diagnosis cases, only 514 

62.7% of regions were concordantly hypermethylated in breast cancer tissue, which may implicate 515 

other non-breast cancer tissue markers being predictive of breast cancer risk among remaining 516 

non-overlapping regions. It is likely that other phenotypes such as paraneoplastic syndrome, 517 

changes in the tumour microenvironment or other changes in immune profiles, may also 518 

contribute, and improve risk prediction. Additional investigations deconvoluting immune profiles 519 

and other tissue types from the detected cfDNA methylation markers will be needed to further 520 

investigate the sources of non-overlapping regions.  521 

  522 

There has been an increasing consensus among recent studies that cfDNA methylation profiles, 523 

often combined with other biomarker or imaging-based approaches, can yield the best predictive 524 

performance for detecting cancers at early stages [12]. However, to implement liquid biopsies for 525 

population screening of cancers, the viability of existing assays and predictive models needs to 526 

be demonstrated in biologic specimens collected prior to a cancer diagnosis. Our work builds on 527 

major investments made to establish large longitudinal population cohorts that store samples 528 

collected from healthy individuals at the time of study recruitment. By linking participants to 529 

administrative data routinely collected in public health settings in Canada, we can follow up and 530 

identify the occurrence of morbidities such as cancers. These types of cohort resources allow for 531 

interrogation of pre-diagnosis biologic samples, as we described here using developments in 532 

cfDNA methylation profiling assays and can be similarly extended to other cancers, as 533 

demonstrated using OHS incident prostate cancer samples [40], and alternative emerging 534 

methodologies interrogating blood biomarkers such as cell-free RNA, proteins, and metabolites.  535 

  536 

Several recent studies have profiled plasma cfDNA methylation profiles of breast cancers for early 537 

cancer detection, however these studies are primarily sampled from patients after clinical 538 

detection or formal diagnoses, and typically use a pre-designed enrichment panel to target 539 

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted February 1, 2023. ; https://doi.org/10.1101/2023.01.30.23285027doi: medRxiv preprint 

https://doi.org/10.1101/2023.01.30.23285027
http://creativecommons.org/licenses/by-nc/4.0/


 22 

specific genomic loci [13-16]. To date, only one study has profiled breast cancer plasma collected 540 

prior to clinical detection: in that investigation using a single methylome marker, reported 541 

sensitivities were between 5-12% with 88% specificity among samples collected two to three 542 

years before diagnosis [41]. Comparatively, our predictive models achieve a mean sensitivity of 543 

60% at 100% specificity for classifying test set breast cancer cases diagnosed up to six years 544 

following blood plasma profiling. Acknowledging the sample size of pre-diagnosis test samples 545 

was small, additional independent studies are needed to further validate the utility of cfDNA 546 

methylation markers in pre-diagnosis samples. While we reported higher sensitivity for HR 547 

positive breast cancer in both the discovery and late-stage breast cancer samples, existing 548 

methylome profiling of plasma samples collected at the time of cancer diagnosis, and presumably 549 

more advanced breast cancer patients have typically noted better classification performance 550 

among HR negative breast cancers relative to HR positive [15, 42]. As the majority of breast 551 

cancers are HR positive, the incidence rate of HR negative breast cancer in the OHS is relatively 552 

low, and we suspect a poorer predictive performance among HR negative breast cancers may 553 

arise from biasing toward selected features associated with the more numerous HR positive 554 

breast cancers. Alternatively, considering that HR positive breast cancers typically have slower 555 

doubling times, less aggressive cancers may be present for longer but remain undetected by 556 

mammograms until reaching visible sizes allowing for a longer window of opportunity for detection 557 

at an early stage and age. Conversely, aggressive cancers which develop and expand more 558 

rapidly, may have a shorter window of opportunity for detection at an early stage.  559 

  560 

The batching of case and control groups during sequencing are often not reported across early 561 

cancer detection studies. Unfortunately, internal model performance can often be inflated if cases 562 

and controls are processed in separate batches. When case and control groups are perfectly 563 

confounded between batches, signals associated with technical artifacts can often drive 564 

separation of case and control groups in both training and testing samples, consequently 565 
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conflating predictive performances [29, 43]. Accordingly, we profiled our cases with control 566 

samples between sequencing runs in this study, in addition to using a repeated cross-validation 567 

approach to estimate the uncertainty of predictive performances. Likewise using held-out a batch 568 

of pre-diagnosis cases and control samples, we demonstrate that the captured markers are 569 

predictive of breast cancer in an independent set of samples, and similarly demonstrate that the 570 

developed classifiers were also highly robust for the identification of established breast cancers 571 

from a separate cohort. False-positive predictions in our cohort may still represent 572 

misclassifications of control samples with undetected underlying cancers, owing to variable follow-573 

up duration among cancer-free controls (Supplementary Table 2). 574 

  575 

Additionally, the following limitations of the current study should be considered when interpreting 576 

our findings. Firstly, 1.6 mL of plasma was used per participant for this study, which is a substantial 577 

amount of biobanked material, but larger plasma volumes would likely increase the number of 578 

ctDNA fragments captured and further improve detection sensitivity. Owing to the prospective 579 

nature of the OHS cohort, our sample sizes of pre-diagnosis cancers were limited by the incidence 580 

rate of the cancer among the study population with a cryopreserved blood sample, acknowledging 581 

that these incident cases will accrue with time. Additionally, not all cancer-free control samples 582 

were followed up for the same duration owing to our matching of controls to cases by sample 583 

collection time. While we followed all controls up to 2019 to ensure that they were alive and free 584 

of cancer, it is possible that controls with shorter follow up times may have underlying undetected 585 

cancers that had yet to be diagnosed as suggested by the lack of high risk samples assigned in 586 

the high risk group according to classification scores in either the discovery or validation sets. 587 

Consequently, this may inflate the false positive rate by mislabelling control samples with 588 

undiagnosed cancers. Likewise, the false negative rate may also be inflated by reducing the 589 

power for detecting cancer specific DMRs if controls with undiagnosed cancers harbored the 590 

same hypermethylated regions with pre-diagnosis cases. 591 
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  592 

Conclusions 593 

Despite the current limitations described above, genome-wide cfDNA methylation profiling of pre-594 

diagnosis breast cancer plasma samples reveals detectable signatures that are predictive of 595 

breast cancer risk up to six years prior to diagnosis. Currently, breast cancer is one of the few 596 

cancer types with an established population screening tool owing to its associated reduction in 597 

mortality. Consequently, most breast cancers are typically diagnosed at stage I or II as seen in 598 

the OHS cohort and across the population. While mammograms are currently the gold standard 599 

for early breast cancer screening achieving a 92% sensitivity and 92% specificity in Ontario [44], 600 

low adherence to screening guidelines is recognized, substantial physical and personnel 601 

resources are required to deliver such screening, and low-dose radiation exposure may also 602 

increase the risk of future breast cancer development [45]. A liquid biopsy-based approach could 603 

not only enable simultaneous detection of multiple cancer types, but also mitigate risks associated 604 

with radiographic imaging approaches, and be relevant to groups of individuals where 605 

mammographic screening methods are not currently recommended. While it is unclear whether 606 

diagnoses prior to mammographic detection will further improve prognostic outcomes, detection 607 

of breast cancer signatures up to six years prior to a stage I or II diagnosis presents potential 608 

opportunities for early pre-symptomatic detection and intervention among other cancer types with 609 

no reliable screening tool. While sample sizes of our validation sets are limited in our study, we 610 

find that methylation signatures concordant with breast cancer tissue can be detected in cfDNA 611 

preceding mammogram detection. Indeed, future applications of liquid biopsies for early cancer 612 

detection will require identifying the tissue of origin of underlying cancers. Likewise, profiling of 613 

pre-diagnosis plasma from individuals with other cancer types will allow for identifying tissue-614 

specific markers and the development of tissue of origin classifiers, similar to those demonstrated 615 

in existing studies classifying samples with established cancers.  616 

  617 
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ABRNM: Adjacent Breast Normal 619 

AUC: Area Under the Receiver Operating Characteristic Curve  620 

AUC(t): Time-dependent Area Under the Receiver Operating Characteristic Curve  621 

HBRNM: Healthy Breast Normal 622 

BRCA: Breast Cancer 623 

cfDNA: Cell-free DNA 624 

C-index: Concordance Index 625 

CoxPH: Cox Proportional Hazard  626 

CV: Cross-validation 627 

DMR: Differentially Methylated Regions 628 

GEO: Geo Expression Omnibus 629 
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KM: Kaplan-Meier  633 
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OHS: Ontario Healthy Study 636 

TCGA: The Cancer Genome Atlas 637 
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 865 

Fig. 1: Overview of study design and incident breast cancer cases in the Ontario Healthy 866 

Study.  867 

(A) Outline of participant recruitment and blood plasma sample selection process in the Ontario 868 

Health Study (OHS). Cell-free DNA methylome of blood plasma from 218 OHS participants 869 

profiled with cell-free methylation DNA immunoprecipitation sequencing (cfMeDIP-Seq). 152 870 

samples passed all quality control metrics. Train set of 67 pre-diagnosis breast cancer cases and 871 

59 cancer-free controls were used to identify differentially methylated regions for building breast 872 

cancer diagnostic classifiers. Held-out batch of 15 pre-diagnosis breast cancer cases and 11 873 

cancer-free controls used to evaluate diagnostic classifier predictive performance. External test 874 

set of 35 breast cancer samples collected at diagnosis time and 11 non-breast cancer samples 875 

were used to further validate diagnostic classifier performance. (B) Timeline of blood plasma 876 

collection, breast cancer diagnosis and last mammogram prior to biologic collection across 877 
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incident breast cancer cases in OHS (C) Pre-diagnosis OHS cases across time between sample 878 

collection and breast cancer diagnosis. Colors indicate stage at diagnosis across cases. 879 

 880 

Fig. 2: Classification performance of discovery set OHS pre-diagnosis cases and controls 881 

using top 150 hypermethylated regions.  882 

Test-fold classification scores averaged across 100 repeats for each sample. (A) Bootstrapped 883 

receiver operating characteristic (ROC) curves of discovery cohort sample classification scores. 884 

Mean performance across 1000 bootstraps are shown in black, with 95% confidence intervals 885 

indicated by shaded green regions. (B) Time-dependent area under ROC curves (AUC(t)) 886 

weighted for the true cumulative age-specific breast cancer incidence rates in Canada. Mean 887 
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AUC(t) shown in black lines, with shaded regions indicating 95% confidence intervals (C) 888 

Bootstrap AUROC and sensitivity at 95% specificity for classifying discovery cohort stratified by 889 

subtype at diagnosis, stage at diagnosis, and age at diagnosis. Dots show mean performance, 890 

while lines indicate 95% confidence intervals (D&E) Kaplan-Meier curves indicating cancer-free 891 

survival time following blood collection across (D) all samples and (E) in samples with a negative 892 

screening mammogram within one year of blood collection. Samples are stratified by mean 893 

classification score above or below 0.648. 894 
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895 

  896 

Fig. 3: Classification performance of independent validation set pre-diagnosis and late-897 

stage breast cancer cases and controls.  898 

(A) ROC for classifying test set pre-diagnosis breast cancer cases (n = 15) and controls (n = 11) 899 

from a separate batch of OHS samples. Predictive performance of classifier trained using top 150 900 

ranked hypermethylated regions identified from discovery cohort samples (B) Predicted 901 
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classification score among OHS test set pre-diagnosis cases and controls (p = 4.10x10-5) and (C) 902 

corresponding sensitivity and specificity using a classification cut off of 0.648 previously 903 

determined from discovery cohort samples. (D) Kaplan-Meier survival curves of pre-diagnosis test 904 

set samples grouped by classification score cut off above (green) or below (yellow) 0.648 (log-905 

rank test p = 5.88x10-146). Cut off determined from discovery cohort samples that yielded 95% 906 

specificity. (E) ROC for classifying all external test set of metastatic breast cancer cases collected 907 

at the time of diagnosis (n = 35) cases and non-breast cancer controls (n = 11). External samples 908 

were classified by the diagnostic model built from discovery cohort samples. Samples from breast 909 

cancer cases were collected at the time of breast cancer diagnosis before treatment (F&G) 910 

External test set classification scores across non-cancer controls (n = 5), head and neck 911 

squamous cell carcinomas (n = 6) cases, and late-stage breast cancer (n = 35) samples. (F) 912 

Classification scores of external test set samples from diagnostic classifier stratified by non-breast 913 

cancer samples, PAM50 and hormone receptor subtype (G) Specificity and sensitivity across 914 

breast cancer subgroups for classifying external test set samples using cut-off score of 0.648 to 915 

discriminate breast cancer cases from controls. 916 
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 917 

 918 

Fig. 4: Overlap between top 150 pre-diagnosis breast cancer cfDNA hypermethylated 919 

regions and bulk tissue hypermethylated regions  920 

(A) Association between the log fold-change in cfMeDIP-Seq cfDNA methylation of discovery set 921 

pre-diagnosis cases versus controls and difference in 450k array beta methylation level between 922 

bulk breast cancer tissue versus PBLs. Each point represents a cfDNA region overlapping a 450k 923 

methylation array CpG Site. Gray dots represent background cfDNA regions, while non-grey 924 

colored points represent CpG sites in 75 out of the top 150 differentially hypermethylated regions 925 

in pre-diagnosis cfDNA colored by CpG islands (blue), shores (yellow), shelves (red) or open sea 926 

(brown) regions. (B) Number of overlapping regions between the top 150 pre-diagnosis breast 927 

cancer cfDNA DMRs, and significant DMRs in 450k methylation array bulk breast cancer tissue 928 

relative to peripheral blood leukocytes (PBLs) (p < 0.0001 & absolute difference > 0.1). Top bar 929 
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plots are colored by CpG islands (blue), shores (yellow), shelves (red) or open sea (brown) 930 

regions. Points in the plot below shows the observed z-score normalised overlapping count 931 

compared to the boxplots showing the distribution of overlapping counts between bulk breast 932 

tissue vs blood DMRs and random cfDNA background regions across 3000 permutations. Red 933 

points indicate significant overlap (p ≤ 0.01) in hypermethylated regions, while gray points indicate 934 

non-significant overlap (p > 0.01). (C-D) Overlap between the top 150 significantly 935 

hypermethylated pre-diagnosis cfDNA regions and significantly hypermethylated regions in (C) 936 

bulk breast cancer tissue versus blood, and (D) bulk breast cancer versus adjacent breast normal 937 

tissue. Boxplots represent distribution of overlap between significantly hypermethylated bulk 938 

breast cancer tissue markers and background cfDNA regions. (E) Intersecting regions 939 

significantly hypermethylated in bulk cancer, adjacent normal and healthy normal breast tissue 940 

relative to PBLs that overlap with 75 out of the top 150 cfDNA hypermethylated regions. (F-G) 941 

Overlap between 75 out of the top 150 hypermethylated pre-diagnosis cfDNA regions located in 942 

CpG islands and significantly hypermethylated regions 943 

  944 
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 946 

Fig. S1: Matched cancer-free control sample follow-up time Selected control plasma (n = 70) 947 

were matched to cases by sex, age, time of sample collection, smoking status and alcohol 948 

consumption frequency.  949 

  950 
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 951 

Fig. S2: Flowchart of filters applied to reduce background regions methylated and enrich 952 

for DMRs associated with breast cancer. Flowchart of filters applied to reduce background 953 

regions methylated in peripheral blood leukocytes and enrich for DMRs associated with breast 954 

cancer development. Feature search space started with genome-wide coverage profiles across 955 

9,182,290 300-bp nonoverlapping tiled windows. To reduce background signals derived from 956 

peripheral blood cells (PBLs) and enrich for tumour-derived signals, regions frequently methylated 957 

in PBLs (average methylation across 300 base pair window of over 0.25) whole-genome bisulfite 958 

sequencing data from IHEC were filtered out (n = 79). To enrich for CpG dense and regulatory 959 

regions, windows with at least six or more CpG sites, and located at CpG islands, shores, shelves, 960 
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repeat elements, and FANTOM5 enhancers or promoters were selected, leaving 101,937 regions 961 

remaining to perform differential methylation analysis.  962 

 963 

 964 

Fig. S3: Schematic of the analytical approach performed to assess predictive performance 965 

of pre-diagnosis cfDNA methylation profiles. To assess predictive performance in discovery 966 

cohort samples and identify optimal number of features to use in the final classifier, a 10-fold CV 967 

repeated 100 times was performed on the discovery set. Pre-diagnosis breast cancer cases and 968 

controls were partitioned into 10-fold splits, splitting the number of cases by years prior to 969 

diagnosis evenly among each fold. Iteratively, nine-folds were selected as train set samples and 970 

used to perform differential methylation calling to identify and rank the top hypermethylated 971 

regions in pre-diagnosis breast cancer cfDNA. The top ranking hypermethylated regions among 972 
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pre-diagnosis cases in the 9-folds are used to build a random forest diagnostic classifier to 973 

discriminate individuals with undetected breast cancers. Samples in the one remaining held-out 974 

test fold that was not involved in any aspect of feature selection or model building were assigned 975 

a classification score from the model built using nine train folds to evaluate the classifier 976 

performance. This process was iteratively repeated 10 times, such that each fold was the held-977 

out test fold once. We repeated this 10-fold CV split strategy 100 times, each time with random 978 

sample partitioning into folds to infer the overall performance in discovery cohort samples. Across 979 

the 100 repeats, differential methylation calling was performed 1000 times (10 times per CV 980 

repeat) with different subsampled cases and controls. The mean logFC in methylation and p-981 

value was computed for each region, and ranked according to p-value. The top 150 982 

hypermethylated regions were used to build diagnostic classifiers trained with all discovery cohort 983 

samples, using a 10-fold nested CV repeated 10 times for hyperparameter tuning. The classifier 984 

performance was evaluated on independent test set samples consisting of a held-out batch of 985 

pre-diagnosis cases and controls from OHS and stage IV breast cancers collected at the time of 986 

diagnosis and controls from external cohorts.  987 

  988 
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 989 

 990 

 991 

Fig. S4: Discovery cohort test-fold performance across varying number of top ranking 992 

regions. Across the 100 repeated 10-fold cross validation, the top hypermethylated features 993 

identified from train set folds were ranked according to p-values calculated by performing (A-C) a 994 

Wald’s test of the negative binomial regression coefficient between pre-diagnosis cases and 995 

controls and (D-F) a Bartlett’s test for variability between pre-diagnosis cases and controls within 996 

each 10-fold CV repeat. Diagnostic classifiers built using the top ranking features in train set folds 997 

were assessed on held-out test folds by assigning classification scores. Average test-fold 998 

classification scores were computed for each sample across the 100 repeats. Averaged risk 999 

scores were bootstrapped 1000 times to obtain (A & D) mean AUROC, (B & E) mean sensitivity 1000 

at 95% specificity and (C & F) sensitivity at 90% specificity. Dots indicate mean performance and 1001 

lines represent 95% percent confidence intervals.  1002 
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1004 

Fig. S5: Kaplan-Meier survival curves of discovery set samples stratified by mean test-fold 1005 

classification scores (A) Average classification scores for controls and pre-diagnosis breast 1006 

cancer (BRCA) cases in the discovery cohort. Mean classification scores were calculated by 1007 

averaging all test-fold classification score across repeats per sample. Each dot represents a 1008 

sample colored by the time between sample collection and diagnosis for cases and grey for 1009 

controls. Dotted line indicates classification score (0.648) yielding 95% specificity. (B-F) 1010 

Unweighted Kaplan-Meier survival curves stratified by discovery cohort samples above and below 1011 

a mean classification score of 0.648 for controls and (B) all cases, (C) hormone receptor positive 1012 

cases, (D) cases diagnosed between ages 31-50, (E) cases diagnosed between ages 51-75, and 1013 

(F) cases with a negative mammogram screen within one year of diagnosis. (G-I) Kaplan-Meier 1014 

survival curves weighted by age specific cumulative breast cancer incidence rates from the 1015 

Canadian Cancer Registry stratifying controls and (G) hormone receptor positive cases, (H) cases 1016 

diagnosed at ages 31-50, and (I) cases diagnosed at ages 51-75.  1017 

 1018 
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1020 

Fig. S6: Pre-diagnosis cfDNA methylation signatures discriminates bulk breast cancer. 1021 

Principal component analysis of TCGA 450k methylation array of bulk breast cancer tissue (n = 1022 

787), bulk normal breast tissue (n = 97) and peripheral blood leukocytes (n = 628) across 156 1023 

CpG sites overlapping the 75 out of the top 150 hypermethylated regions in pre-diagnosis breast 1024 

cancer cfDNA that contain at least one CpG site profiled by the 450k methylation array.  1025 
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1027 

Fig. S7: Association between cfDNA methylation and in bulk breast tissue methylation 1028 

profiles.  (A-E) Log-fold change in cfDNA methylation between cases and controls in background 1029 

(grey) and in 75 regions out of the top 150 hypermethylated (colored) regions identified from 1030 

discovery cohort pre-diagnosis breast cancers targeted by the 450k DNA methylation array 1031 

compared to the absolute change in methylation in overlapping sites between bulk (A) breast 1032 

cancer (BRCA) tissue vs healthy breast tissue (HBRNM), (B) adjacent breast normal tissue 1033 

(ABRNM) vs peripheral blood leukocytes (PBL), (C) HBRNM vs PBLs, (D) ABRNM vs HBRNM, 1034 

and (E) BRCA vs ABRNM in combined 450k methylation array datasets (GSE133985, 1035 

GSE74214, GSE88883, GSE66313 & GSE101961). (F-H) Log-fold change in methylation in 1036 

cfDNA compared to the absolute change in methylation among overlapping CpG sites between 1037 

(F) BRCA vs ABRNM, (G) BRCA vs HBNM and (H) ABRNM vs HBRNM in 450k methylation array 1038 

data from GSE69914. Each point represents a CpG site on the 450k methylation array and colors 1039 

indicate the genomic region the CpG site is located for predictor regions.  1040 
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1042 

Fig. S8: Overlapping hypermethylated regions between pre-diagnosis cfDNA and bulk 1043 

breast tissue samples. (A-D) Observed overlapping hypermethylated regions among predictor 1044 

cfDNA regions and significantly hypermethylated CpG sites (absolute difference > 0.1 & p < 1045 

0.0001) between (A) BRCA vs HBRNM, (B) ABRNM vs PBLs, (C) HBRNM vs PBLs (D) ABRNM 1046 

vs HBRNM in combined methylation array datasets (GSE133985, GSE74214, GSE88883, 1047 

GSE66313 & GSE101961). (E-F) Observed overlap between (E) BRCA vs ABRNM and (F) BRCA 1048 

vs HBRNM in 450k methylation array data from GSE69914. Bar plots represent observed number 1049 

of overlapping regions between cfDNA and bulk tissue, while significance of the overlap was 1050 

determined through a permutation test comparing the overlap between background regions in 1051 

cfDNA and significantly hypermethylated regions bulk tissue profiles (repeated 3000 times with 1052 
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random sets of subsampled cfDNA regions). Counts from background overlap are z-score 1053 

normalized and shown in the boxplots. Points indicate the observed z-score normalized overlap 1054 

with red indicating a significant overlap (p<0.01) while gray points indicates non-significant 1055 

overlaps (p > 0.01).  1056 
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1058 

Fig. S9: Genomic location of predictive pre-diagnosis cfDNA hypermethylated regions. 1059 

Proportion of hypermethylated regions across genomic annotations in (A) The predictor regions 1060 

comprised of the top 150 hypermethylated windows in discovery cohort, (B) predictor regions 1061 

overlapping sites profiled by 450k DNA methylation array and (C) predictor regions overlapping 1062 

sites profiled by 450k DNA methylation array that is also hypermethylated in bulk breast cancer 1063 

tissue relative to PBLs or breast normal tissue.  1064 
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1066 

Fig. S10: Hypermethylated regions in cfDNA associated with a change in gene expression. 1067 

Absolute change in promoter methylation and log2 fold-change in gene expression between 1068 

TCGA breast cancer and adjacent breast normal tissue among the top 150 hypermethylated 1069 

regions pre-diagnosis breast cancer cfDNA for (A) CDKL2, (B) ICAM2, (C) PTPN7, (D) RAI1, (E) 1070 

SEZ6L2, (F) CTD-2383M3.1.  1071 
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 1073 

. S11: Overlapping hypermethylated regions between cfDNA and bulk cancer and normal 1074 

tissue relative to PBLs. Differentially methylated CpG sites were identified between TCGA bulk 1075 

adjacent normal versus PBLs for each tissue type using a standard F-test. Bar plots show the 1076 

overlapping count of significantly hypermethylated regions (absolute difference > 0.1 and q-value 1077 

< 0.001) in (A) bulk cancer tissue vs PBLs, and (B) bulk normal tissue vs PBLs that overlap with 1078 

the top 150 cfDNA hypermethylated regions. Barplots are colored by genomic regions with blue 1079 

representing CpG islands, yellow as shores, red as shelves and brown as open sea regions. The 1080 

observed overlap was compared to the expected number of overlaps by computing the overlap 1081 

between significant bulk tissue hypermethylated regions and randomly subsampled background 1082 

cfDNA regions repeated 3000 times. The expected overlap are shown in box plots for 3000 1083 

random subsampling iterations following z-score normalization, while the points illustrate the 1084 

observed z-score normalized overlap with cfDNA hypermethylated regions. Red points indicate 1085 

significant (p < 0.01) overlap between cfDNA hypermethylated regions and bulk tissue 1086 

hypermethylated regions, while gray points indicate non-significant overlaps.  1087 
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Supplementary Table 1: Baseline characteristics of pre-diagnosis cases and cancer-free 1090 

control samples at time of blood collection. Summary of age, sex, time since blood plasma 1091 

collection, last mammogram prior to blood collection, ethnicity, body mass index (BMI), smoking 1092 

frequency and alcohol consumption frequency among discovery and validation breast cancer 1093 

cases and controls. 1094 

  1095 

Supplementary Table 2: Quality control, clinical and additional participant information 1096 

across OHS samples. Information across individual samples indicating age, CpG enrichment 1097 

scores, methylated spike-in read proportions out of all methylation and non-methylation spike-in 1098 

reads (thaliana beta), total reads following UMI deduplication, sample group, sample age, time 1099 

between sample collection and diagnosis for cases, follow up time among controls, hormone 1100 

receptor status of breast cancers and stage at diagnosis. 1101 

 1102 

Supplementary Table 3: Breast cancer cumulative incidence in OHS. Cumulative incidence 1103 

is presented as a function of time given a high (> 0.648) or low (< 0.648) classification score. 1104 

Observed (Kaplan Meier) and predicted (Cox PH) probabilities are given stratified by risk score 1105 

groups in discovery and validation samples. 1106 

 1107 

Supplementary Table 4: Genomic annotations across the top 150 hypermethylated 1108 

predictor regions in pre-diagnosis cfDNA discovery set samples. Genomic annotations 1109 

performed using the Annotatr R package. Regions are also annotated to inform whether the 1110 

region overlaps with sites on the 450k DNA methylation array and in hypermethylated bulk breast 1111 

cancer tissue relative to PBLs and breast normal tissues. 1112 
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