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Abstract 46 
 47 
Persistent severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) 48 
infections may act as viral reservoirs that could seed future outbreaks 1–5, give rise to 49 
highly divergent lineages 6–8, and contribute to cases with post-acute Coronavirus 50 
disease 2019 (COVID-19) sequelae (Long Covid) 9,10. However, the population 51 
prevalence of persistent infections, their viral load kinetics, and evolutionary 52 
dynamics over the course of infections remain largely unknown. We identified 381 53 
infections lasting at least 30 days, of which 54 lasted at least 60 days. These 54 
persistently infected individuals had more than 50% higher odds of self-reporting 55 
Long Covid compared to the infected controls, and we estimate that 0.09-0.5% of 56 
SARS-CoV-2 infections can become persistent and last for at least 60 days. In 57 
nearly 70% of the persistent infections we identified, there were long periods during 58 
which there were no consensus changes in virus sequences, consistent with 59 
prolonged presence of non-replicating virus. Our findings also suggest reinfections 60 
with the same major lineage are rare and that many persistent infections are 61 
characterised by relapsing viral load dynamics. Furthermore, we found a strong 62 
signal for positive selection during persistent infections, with multiple amino acid 63 
substitutions in the Spike and ORF1ab genes emerging independently in different 64 
individuals, including mutations that are lineage-defining for SARS-CoV-2 variants, at 65 
target sites for several monoclonal antibodies, and commonly found in 66 
immunocompromised patients 11–14. This work has significant implications for 67 
understanding and characterising SARS-CoV-2 infection, epidemiology, and 68 
evolution. 69 
 70 
Main 71 
 72 
The emergence of highly divergent variants of SARS-CoV-2 has been a defining 73 
feature of the COVID-19 pandemic. While the evolutionary origins of these variants 74 
are still a matter of speculation, multiple pieces of evidence point to chronic 75 
persistent infections as their most likely source 5,7,15. In particular, infections in 76 
immunocompromised patients who cannot clear the virus may lead to persistence for 77 
months 6,7,16,17 or even years 8,18 before potentially seeding new outbreaks in the 78 
community 3. Persistence of SARS-CoV-2 during chronic infections exposes the viral 79 
population to host-immune responses and other selective pressures as a result of 80 
treatments over prolonged periods of time. They also release the virus from 81 
undergoing the tight population bottlenecks that are characteristic of SARS-CoV-2 82 
transmission 19,20, making the viral population less vulnerable to stochastic genetic 83 
drift. These adaptive intrahost changes can lead to elevated evolutionary rates, 84 
particularly in key regions of the Spike protein that are often associated with immune 85 
escape and elevated rates of transmission 13,14. 86 
 87 
Despite the significant public health implications of persistent infections, uncertainty 88 
still surrounds how common these infections are among the general population, how 89 
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long they last, their potential for adaptive evolution, and their contribution to Long 90 
Covid. 91 
 92 
In this work, we leveraged genetic, symptom, and epidemiological data from the 93 
Office for National Statistics Covid Infection Survey (ONS-CIS) 21, an ongoing large 94 
scale community-based surveillance study carried out in the UK.  We identified 95 
individuals with persistent SARS-CoV-2 infection and characterised various aspects 96 
of their infection including evolutionary changes in the virus, viral load kinetics, 97 
number of reported symptoms, and prevalence of Long Covid. 98 
 99 
Identifying persistent infections  100 
 101 
We considered more than 100,000 high-quality sequenced samples from the ONS-102 
CIS collected between 2nd November 2020 to 15th August 2022, and representing 103 
~95,000 people living in ~75,000 households across the UK (see Methods). 104 
Individuals in the survey were typically sampled once a week for the first four weeks 105 
of their enrolment, and then monthly thereafter. To identify persistent infections we 106 
first limited the dataset to individuals with two or more RT-PCR positive samples with 107 
cycle threshold (Ct) values ≤30 (in which sequencing was attempted; a proxy for viral 108 
load), taken at least 26 days apart, and where the consensus sequences were of the 109 
same major lineages of Alpha, Delta, BA.1 or BA.2 (BA.4 and BA.5 not considered). 110 
If those sequences also shared the same rare single nucleotide polymorphisms 111 
(SNPs) at one or more sites relative to the major-lineage population-level consensus, 112 
we classified them as having a persistent infection.  113 
 114 
We defined a rare mutation as one observed in 400 or fewer samples within the 115 
entire ONS-CIS dataset, giving a false positive rate of identifying persistent infections 116 
of 0-3% depending on the major lineage (see Methods and Supplementary Figure 117 
1). We note that the rare SNP method provides a conservative estimate for the true 118 
number of persistent infections since some persistent infections may not have rare 119 
mutations. To further evaluate the robustness of our method in identifying persistent 120 
infections, we considered the phylogenetic relationship between the sequences from 121 
persistent infections relative to other sequences of the same major lineage that 122 
belonged to individuals with only a single sequence within the ONS-CIS dataset. The 123 
great majority of sets of sequences identified as belonging to the same persistent 124 
infection formed monophyletic groups with strong bootstrap support (Figure 1a; see 125 
also Supplementary Figure 2). However, seven sequences did not group with the 126 
other sequence(s) from the same persistent infection. All of these had high Ct values 127 
(Ct~30) and poor genome coverage which may explain their lack of clustering on the 128 
phylogeny (Supplementary Figure 2). 129 
 130 
We found 381 persistent infections with sequences spanning at least 26 days, of 131 
which 54 spanned at least 56 days, representing nearly 0.07% (54/77,561) of all 132 
individuals with one or more sequences (with Ct≤30) of the four major lineages we 133 
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investigated in this study (Figure 1b; see also Table 1). Notably, 9% (2/23), 9% 134 
(19/219), and 8% (8/208) of sequences from persistent infections with Alpha, Delta, 135 
and BA.1, respectively, were sampled weeks after when the corresponding major 136 
lineage has dropped to ≤1% frequency of all the ONS-CIS sequences (Figure 1c); 137 
the longest infection was with BA.1 and lasted for at least 193 days (see Figure 1b).  138 
 139 
The actual duration of persistent infections are likely to be at least 3-4 days longer 140 
than the time between when the first and last sequenced samples were collected, 141 
since it typically takes 3-4 days since the start of infection for viral loads to be 142 
sufficiently high to be sequenced (Ct≤30) 22,23, and similarly viral loads will be too low 143 
(Ct values too high) to sequence at the tail end of infection. Since individuals were 144 
typically sampled weekly during the first four weeks of enrollment, followed by 145 
monthly sampling thereafter, it is unsurprising that most persistent infections had 146 
observable durations clustering around 30 or 60 days (see Supplementary Figure 147 
3).  148 
 149 
We found evidence suggestive of transmission from 11 persistently infected 150 
individuals: we identified two households each with two members having concurrent 151 
persistent infections, and in nine other households, one member tested positive for 152 
SARS-CoV-2 by RT-PCR within 10 days of a positive sequenced sample being 153 
collected from a persistently infected individual from the same household. As well as 154 
being clustered in households, the sequences from the suspected persistently 155 
infected source and the recipient had either no consensus nucleotide differences 156 
(nine cases) or one consensus nucleotide difference (two cases), consistent with 157 
transmission. If these do represent transmission, it is worth noting that none of these 158 
persistent infections involved highly divergent sequences relative to their first 159 
sequence, and hence these do not provide an example of the emergence and 160 
spread of highly divergent lineages.  161 
 162 
Identifying reinfections with the same major lineage 163 
 164 
We considered a pair of sequences from the same individual to indicate a reinfection 165 
if they were sampled at least 26 days apart, had at least one consensus nucleotide 166 
difference between the sequenced sampling timepoints, and shared no rare SNPs 167 
(see Methods). This criterion may overestimate the true number of reinfections as 168 
some persistent infections may not have a rare SNP, and within-host evolution can 169 
lead to the loss of a rare SNP and/or the gain of other mutations leading to 170 
differences in the consensus sequence between the samples. We identified three 171 
individuals for which pairs of sequences from different sampling timepoints had no 172 
identical rare SNPs and at least one consensus difference, but whose viral load 173 
trajectories were consistent with a persistent chronic infection. We therefore 174 
excluded these individuals from the reinfection group (see Supplementary Figure 175 
4). 176 
 177 
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Overall, we identified 60 reinfections with the same major lineage (Table 1). Of all 178 
the cases classed as either persistent infections or reinfections with the same major 179 
lineage,10-15% were classed as reinfections (see Table 1), rising to 20-40% if only 180 
samples collected at least 56 days apart were included (see Figure 1b). This 181 
suggests the number of individuals reinfected with the same major lineage is low 182 
compared to the number of individuals with persistent infection. Sequences from 183 
individuals identified as reinfected, collected at the point of primary infection and 184 
reinfection, did not form monophyletic groups and mostly belonged to distantly 185 
related subclades, and hence supports our method for identifying reinfections 186 
(Figure 1a; Supplementary Figure 2). 187 
 188 
Evidence of non-replicating virus during infection 189 
 190 
Of the 381 persistently infected individuals that we identified, nearly 70% (267/381) 191 
had a pair of sequenced samples taken at least 26 days apart with no nucleotide 192 
differences at the consensus level. This is striking given the between-host within-193 
lineage evolutionary rate of SARS-CoV-2 of ~2 single nucleotide variants (SNVs) per 194 
month 24–26. We contrasted the number of consensus nucleotide differences between 195 
pairs of samples from persistent infections with 16,000 random pairs of sequences 196 
sampled from the complete set of sequenced samples from the ONS-CIS, and with 197 
each pair from the same major lineage (Supplementary Figure 5). Of these, only 6 198 
pairs had no SNVs (i.e., less than 0.04% of pairs).  199 
 200 
Emergence of notable mutations 201 
 202 
For all pairs of sequences from each of the persistent infections, we identified 203 
mutations for which there was a change in consensus between the two sampling 204 
time points. Among the 381 persistently infected individuals, we observed 317 205 
changes in the consensus nucleotide representing 277 unique mutations, and 31 206 
deletions representing 18 unique deletions. Many of these mutations have previously 207 
been identified as either lineage-defining mutations for variants of concern or 208 
variants of interest 27 (eight mutations and two deletions), recurrent mutations in 209 
immunocompromised individuals 12–14 (15 mutations and four deletions), or key 210 
mutations with antibody escape properties and target sites for various different 211 
monoclonal antibodies 11,28 (seven mutations) (Supplementary Table 1).  212 
 213 
We observed several mutations at the same genomic positions in multiple individuals 214 
over the course of their persistent infections. For example, three BA.2 infected 215 
individuals from different households acquired a mutation at codon position 547 in 216 
Spike (Figure 2), two of which were the T547K mutation which is a lineage-defining 217 
mutation for BA.1,  and one the K547T mutation (Figure 2c; also see 218 
Supplementary Table 1). Strikingly, twelve individuals acquired a deletion 219 
(ORF1ab: Δ81-87) in the NSP1 coding region. A similar deletion has previously been 220 
observed during the chronic infection of an immunocompromised individual with 221 
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cancer 16, and was associated with lower type I interferon response in infected cells 222 
29. We also identified a persistent infection with BA.1 lasting for at least 133 days 223 
during which 33 unique mutations (23 mutations in ORF1ab, 6 in Spike, 1 in ORF3a, 224 
1 in M, and 2 in ORF7) were observed (see Supplementary Figure 2); eleven of the 225 
ORF1ab mutations and all of the mutations in Spike, ORF3a, and ORF7 were 226 
nonsynonymous.  227 
 228 
Overall, we observed a strong signal for positive selection in Spike, with nearly nine-229 
fold more nonsynonymous compared to synonymous mutations (Figure 2b). With a 230 
total of seven nonsynonymous mutations, ORF8 had the highest per base number of 231 
nonsynonymous mutations followed by Spike with 61 nonsynonymous mutations. 232 
 233 
Persistence with relapsing viral load 234 
 235 
Of the 381 persistent infections, 65 had three or more RT-PCR tests taken over the 236 
course of their infection. We classified these infections as persistent-relapsing if they 237 
had a negative RT-PCR test during the infection (n=20), and the rest as persistent-238 
chronic (n=45) (Figure 3a,b). Given the weekly or monthly sampling of individuals 239 
enrolled in the ONS-CIS, infections classed as persistent-chronic may have 240 
unsampled periods of very low viral burden, meaning the persistent-relapsing 241 
category is likely to be an underestimate. Nonetheless, the observation of relapsing 242 
viral load dynamics in over 30% of cases is striking given that, in the absence of 243 
genetic information, they could have been misidentified as reinfections, depending 244 
on the definition used. Of the 27 cases identified as reinfections with three or more 245 
RT-PCR tests, all showed relapsing viral load dynamics (Figure 3c).   246 
 247 
As the sampling strategy of ONS-CIS is based on testing representative individuals 248 
across the UK regardless of symptoms, we can estimate the percentage of SARS-249 
CoV-2 infections that are persistent and last for longer than 60 days in the general 250 
population. This requires making assumptions about how many persistent infections 251 
are missed among ONS-CIS participants due to the monthly (and weekly) sampling. 252 
More precisely, estimating the proportion of infections that are persistent depends on 253 
the proportion of days the infection has sequenceable virus during the infection 254 
(would have Ct≤30 if tested); the fewer the number of days the infection has 255 
sequenceable virus, the more likely it is that a persistent infection is be missed. By 256 
taking two extreme scenarios for the proportion of days that the virus is 257 
sequenceable during persistent infection (0.7 and 0.14; see Methods), we estimate 258 
that approximately 0.1-0.5% of infections become persistent for 60 days or more. 259 
 260 
Difference in viral load and symptoms 261 
 262 
For the majority of persistent infections, Ct values (inversely proportional to viral titre 263 
30) were higher at the last sequenced time point compared to the first sequenced 264 
time point (Figure 3d). For reinfections with the same major lineage, the last 265 
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sequenced sample also had higher Ct values than the first, but the magnitude of the 266 
difference was smaller compared to persistent infections (Figure 2d). In both cases, 267 
the rise in Ct value (decrease in viral titre) during infections or between reinfections 268 
could be a consequence of host immunity or within-host compartmentalisation. 269 
Additionally, the rise in Ct for reinfections could be due to the disproportionate 270 
sampling of individuals with older infections, which tend to have lower viral loads, 271 
towards the end of an epidemic wave 31,32. 272 
 273 
Individuals with persistent infections remained largely asymptomatic during the later 274 
stages of infection, with, on average, reporting two fewer symptoms in the last 7 275 
days at the last time of sampling (at which a sequence was obtained) when 276 
compared to the first. They also consistently reported very few or no symptoms after 277 
the first positive sample (Figure 3e). In comparison, individuals reinfected with the 278 
same major lineage reported on average only one fewer symptom at the reinfection 279 
sampling time point compared to the primary sampling time point (Figure 3e).  280 
 281 
Prevalence of Long Covid 282 
 283 
From February 2021, as well as reporting symptoms, participants were asked if they 284 
describe themselves as having Long Covid and still experiencing symptoms more 285 
than four weeks after they first had COVID-19 (see Methods). We estimated the 286 
prevalence of self-reported Long Covid in the persistently infected individuals 287 
compared with a control group, accounting for several confounding variables (see 288 
Methods). In the persistent infection group, 9.0% of respondents (32/354) self-289 
reported Long Covid at their first visit ≥12 weeks since the start of infection, and 290 
7.1% (19/266) reported Long Covid at ≥26 weeks. However, in the control group, 291 
only 5.1% (4,976/97,404) reported Long Covid at their first visit ≥12 weeks, and 4.5% 292 
(3,261/72,407) reported Long Covid at ≥26 weeks. 293 
 294 
Correcting for confounders, we found strong evidence for a 55% higher odds of 295 
reporting Long Covid ≥12 weeks post-infection among persistently infected 296 
individuals compared to controls (Chi square test with Yates correction 33 p=0.004 for 297 
the unadjusted model, p=0.021 for the adjusted model), but no evidence of a 298 
difference for Long Covid ≥26 weeks post-infection (p=0.127 for the unadjusted 299 
model, p=0.367 for the adjusted model) (Table 2). The lower rate of reporting Long 300 
Covid 26 weeks post-infection could be because the majority of the persistent 301 
infections we identified lasted for less than 26 weeks, and hence persistence of an 302 
infection may no longer be a contributing factor to Long Covid. 303 
 304 
Discussion 305 
 306 
We developed a robust approach for identifying persistent SARS-CoV-2 infections in 307 
individuals with sequenced samples spanning a month or longer. Of the 381 308 
persistent infections we identified among participants of the ONS-CIS, 54 lasted at 309 
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least two months, two over six months, and in some cases the infecting lineage had 310 
gone extinct in the general population. In contrast, we only identified 60 reinfections 311 
by the same major lineage as the primary infection, suggesting immunity to the same 312 
variant remains strong after infection, at least until the lineage has gone extinct.  313 
 314 
The large number of persistent infections we uncovered is striking, given the leading 315 
hypothesis that many of the variants of concern (VOCs) emerged wholly or partially 316 
during long-term chronic infections in immunocompromised individuals 1. Since the 317 
ONS-CIS is a community-based surveillance study, our observations suggest the 318 
pool of people in which long-term infections could occur, and hence potential 319 
sources of divergent variants, may be much larger than generally thought. We 320 
estimate that more than nearly one in a thousand of all infections, and potentially as 321 
many as one in 200, may become persistent for at least two months. The harbouring 322 
of these persistent infections in the general community may also help explain the 323 
early detection of cryptic lineages circulating in wastewaters 34,35 long before they 324 
spread in the population at large.  325 
 326 
In support of the hypothesis that VOCs may emerge during prolonged infections, a 327 
number of studies have shown elevated evolutionary rates driven by selection during 328 
chronic infections of immunocompromised individuals 6–8. Among the persistently 329 
infected individuals we identified, we also found strong evidence for positive 330 
selection and parallel evolution, particularly in Spike and ORF1ab. In the most 331 
extreme case, we observed one persistent infection with 33 substitutions over a four-332 
month period, 20 of which were nonsynonymous. 333 
 334 
Potentially more remarkable, however, was our discovery of viral infections exhibiting 335 
latent evolutionary dynamics, with no consensus level genome changes for two 336 
months or longer. As far as we are aware, this is the first study to demonstrate that 337 
decelerated evolutionary rates may be a common outcome of persistent infection. 338 
The factors causing these low rates of evolution are unknown, but one possible 339 
explanation is infection of long-lived cells 36,37 which then seed new outbreaks within 340 
the infected individual weeks or months later. Although the relapsing viral load 341 
dynamics we found in many of the persistently infected individuals supports this 342 
hypothesis, we did not find any consistent pattern between the amount of viral 343 
divergence during infection and the lower viral load activity in these individuals.  344 
 345 
Intriguingly, individuals with persistent infections report fewer symptoms later in a 346 
persistent infection compared to at their first positive sample, or remain 347 
asymptomatic throughout infection, but have more than 50% higher odds of Long 348 
Covid compared to a control group. Although the link between viral persistence and 349 
Long Covid may not be causal, these results suggest persistent infections could be 350 
contributing to the pathophysiology of Long Covid 10,38, as also evidenced by the 351 
observation of circulating SARS-CoV-2 S1 spike protein in a subset of patients with 352 
Long Covid months after first infection 39. The association between persistent 353 

 . CC-BY 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted January 30, 2023. ; https://doi.org/10.1101/2023.01.29.23285160doi: medRxiv preprint 

https://doi.org/10.1101/2023.01.29.23285160
http://creativecommons.org/licenses/by/4.0/


infection and Long Covid does not imply that every persistent infection can lead to 354 
Long Covid, only 9% of persistently infected individuals reported having Long Covid, 355 
nor does it mean that all cases of Long Covid are due to a persistent infection. 356 
Indeed, many other possible mechanisms have been suggested to contribute to 357 
Long Covid including autoimmunity/inflammation, organ damage, EBV reactivation, 358 
and micro thrombosis (see ref 10 for a recent review). 359 
 360 
Taken together, our observations highlight the continuing importance of community-361 
based genomic surveillance both to monitor the emergence and spread of new 362 
variants, but also to gain a fundamental understanding of the natural history and 363 
evolution of novel pathogens and their clinical implications for patients. 364 
 365 
 366 
Methods 367 
 368 
ONS COVID-19 Infection Survey 369 
 370 
The ONS-CIS is a UK household-based surveillance study in which participant 371 
households are approached at random from address lists across the country to 372 
provide a representative sample of the population 40. All individuals aged two years 373 
and older from each household who provide written informed consent provide swab 374 
samples (taken by the participant or parent/carer for those under 12 years), 375 
regardless of symptoms, and complete a questionnaire at assessments, which occur 376 
weekly for the first month in the survey and then monthly. From 26 April 2020 to 31 377 
July 2022, assessments were conducted by study workers visiting each household; 378 
from 14 July 2022 onwards assessments were remote, with swabs taken using kits 379 
posted to participants and returned by post or courier, and questionnaires completed 380 
online or by telephone. Positive swab samples with Ct≤30 were sent for sequencing 381 
(see below). For this analysis, we included data from 2nd November 2020 to 15th 382 
August 2022, spanning a period from the earliest Alpha to latest Omicron BA.2 383 
sequences within the ONS-CIS dataset.  384 
 385 
This work contains statistical data from ONS which is Crown Copyright. The use of 386 
the ONS statistical data in this work does not imply the endorsement of the ONS in 387 
relation to the interpretation or analysis of the statistical data. This work uses 388 
research datasets which may not exactly reproduce National Statistics aggregates. 389 
 390 
Sequencing 391 
 392 
From December 2020 onwards sequencing was attempted on all positive samples 393 
with Ct≤30; before this date, sequencing was attempted in real-time wherever 394 
possible, with some additional retrospective sequencing of stored samples. The vast 395 
majority of samples were sequenced on Illumina Novaseq, with a small number 396 
using Oxford Nanopore GridION or MINION. One of two protocols were used: either 397 
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the ARTIC amplicon protocol 41 with consensus FASTA sequence files generated 398 
using the ARTIC nextflow processing pipeline 42, or veSeq, an RNASeq protocol 399 
based on a quantitative targeted enrichment strategy 19,43 with consensus sequences 400 
produced using shiver 44. During our study period, we identified 94,943 individuals 401 
with a single sequence and 5,774 individuals with two or more sequences. Here, we 402 
only included sequences with ≥50% genome coverage.   403 
 404 
Identifying rare SNPs 405 
 406 
An important criterion for determining whether two sequences from the same 407 
individual are from the same infection is whether they share a rare single nucleotide 408 
polymorphism (SNP). These are defined as SNPs that are shared by fewer than 400 409 
sequences corresponding to each major lineage within the full ONS-CIS dataset 410 
(Supplementary Figure 1). The thresholds were chosen to maximise the number of 411 
persistent infections identified whilst minimising the number of false positives (see 412 
below). The major lineages we considered were Alpha (B.1.1.7), Delta (B.1.617.2), 413 
Omicron BA.1 and Omicron BA.2, including their sublineages. Approximately 92-414 
98% of all sequences from the four major lineages had a rare SNP relative to the 415 
major-lineage population-level consensus.  416 
 417 
Identifying reinfections with the same major lineage  418 
 419 
Any pair of sequences from the same individual, of the same major lineage, and at 420 
least 26 days apart were considered as candidate reinfections. Of these, pairs that 421 
had at least one nucleotide difference at the consensus level, and did not share any 422 
rare SNPs, were classed as reinfections. Pairs that had no identical rare SNPs, nor 423 
any nucleotide differences at the consensus level, were classed as undetermined.  424 
 425 
Identifying individuals with persistent infection 426 
 427 
We first identified individuals with two or more sequenced samples taken at least 26 428 
days apart. We chose this cutoff because the majority of acutely infected individuals 429 
shed the virus for <20 days and no longer than 30 days in the respiratory tract 23,45. 430 
Given the extreme heterogeneity in the shedding profiles during some acute 431 
infections 23, we also considered a more conservative 56-day cutoff for some 432 
analyses.  433 
 434 
For each identified individual we calculated the number of consensus nucleotide 435 
differences per site for all within-individual pairwise combinations of samples 436 
(Supplementary Figure 6). Only sites where a nucleotide difference could be called 437 
were included.  438 
 439 
Candidate persistent infections were defined in one of two ways: (1) pairs of 440 
sequenced samples that belonged to the same major lineage, and (2) pairs of 441 
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sequenced samples where one or both had no defined phylogenetic lineage, but 442 
where the genetic distance between them was lower than that required to 443 
differentiate two major lineages (see Supplementary Figure 6). We assumed pairs 444 
belonging to different major lineages were either coinfections or reinfections with two 445 
different virus lineages. Only candidate persistent infections were considered in 446 
further analysis.  447 
 448 
Among the pool of candidate persistent infections, we defined persistent infections 449 
as those with sequences sharing one or more rare SNPs at two or more consecutive 450 
time points relative to the population-level consensus. A rare SNP is one that is 451 
observed in 400 or fewer samples within the entire ONS-CIS dataset. 452 
 453 
Determining the false positive rate for persistent infections 454 
 455 
For each major lineage we generated a data set of 1,000 randomly paired 456 
sequences from different individuals in the ONS-CIS, each sampled at least 26 days 457 
apart. We determined the number of these pairs that would have been incorrectly 458 
identified as persistent infections as a function of the threshold for determining if a 459 
SNP is rare (Supplementary Figure 1). Although the total number of persistent 460 
infections identified grew as the threshold for determining if a SNP is rare increased, 461 
at very high thresholds the rate of false positives was also high. In our study, we 462 
chose a threshold of 400 sequences (corresponding to all sequences of the same 463 
major lineage within the full ONS-CIS dataset) for all of the major lineages, giving a 464 
false positive rate (identifying an infection as persistent when it was not) of 0-3%. 465 
 466 
Estimating the prevalence of persistent infections 467 
 468 
Within the ONS-CIS we identified 54 infections that lasted 60 days or more. 469 
Comparing this to the number of individuals that had sequenced samples belonging 470 
to Alpha, Delta, BA.1 or BA.2, which to a good approximation will be the number of 471 
infections of these variants, we identified approximately 54/77,561 (0.07%) infections 472 
as persistent for >= 60 days. Since the ONS-CIS is a representative sample of 473 
individuals from the general population, we can estimate the percentage of all SARS-474 
CoV-2 infections that became persistent for two months or longer. At one extreme, if 475 
all persistent infections have sequenceable virus for only four days per month 476 
(assuming viral dynamics similar to one acute infection each month), only 14% of 477 
persistent infections would be detected through monthly sampling. Correcting for 478 
this, we would estimate the percentage of persistent infections in the general 479 
population to be 0.5% (0.07% / 0.14). At the other extreme, if we assume all 480 
persistent-chronic infections (70% of persistent infections; see Main text) are 481 
detectable through monthly sampling, and the rest have detectable virus for 4 days 482 
per month, then we estimate that 74% (70% + 0.14*30%) of persistent infections 483 
were identified, giving an estimate of 0.09% (0.07% / 0.74) infections being 484 
persistent in the general population. 485 
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 486 
Phylogenetic analysis 487 
 488 
For each of the four major lineages, we chose 600 consensus sequences with at 489 
least 95% coverage from the ONS-CIS dataset using weighted random sampling, 490 
with each sample of major lineage i collected in week j given a weight 1/nij, where nij 491 
is the number of sequences of major lineage i collected during week j  25. These 492 
sequences were added as a background set to the collection of all consensus 493 
sequences for samples from persistent infections and reinfections. Mapping of each 494 
sequence to the Wuhan-Hu-1 reference sequence was already performed by shiver 495 
and thus a full alignment for each of the four lineages could be constructed using 496 
only this. 497 
 498 
Maximum likelihood phylogenetic trees were constructed using IQ-TREE 1.6.12 46 499 
using the GTR+gamma substitution model and the ultrafast bootstrap 47. Each tree 500 
was rooted using the collection dates of the samples and the heuristic residual mean 501 
square algorithm in TempEst 48. Visualisation used ggtree 49.  502 
 503 
Comparing viral load activities and symptoms  504 
 505 
To quantify the changes in viral load activities during persistent infections, we 506 
compared Ct values at the last time point a sequence was obtained to when the first 507 
sequence was collected. Similarly, for reinfections, we compared the changes in Ct 508 
value between the primary infection and reinfection. We used a paired t-test to 509 
calculate p-values in both cases as the distribution of differences in Ct values were 510 
normally distributed for both persistent infections (W=0.99, p=0.28) and reinfections 511 
(W=0.99, p=0.78) as determined by the Shapiro-Wilk test 50. 512 
 513 
We also tracked 12 symptoms consistently solicited from all participants at every 514 
assessment. Symptoms were fever, weakness/tiredness, diarrhoea, shortness of 515 
breath, headache, nausea/vomiting, sore throat, muscle ache, abdominal pain, 516 
cough, loss of smell, and loss of taste. At each follow-up assessment, participants 517 
were asked whether these 12 symptoms had been present in the past seven days. 518 
Symptom discontinuation was defined as the first occurrence of two successive 519 
follow-up visits without reporting symptoms. To compare symptom counts during 520 
persistent infections and reinfections, we used the paired Wilcoxon test as the 521 
distribution of symptom differences is not normally distributed (see Figure 3d). 522 
 523 
Long Covid analysis 524 
 525 
From February 2021, at every assessment, participants were asked “would you 526 
describe yourself as having Long Covid, that is, you are still experiencing symptoms 527 
more than 4 weeks after you first had COVID-19, that are not explained by 528 
something else?”. When estimating Long Covid prevalence in this analysis, we 529 
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considered the first assessment at least 12 weeks and at least 26 weeks after 530 
infection. Our control group comprised all individuals with a positive PCR test and 531 
Ct≤30, excluding the persistently infected individuals identified in this study, over the 532 
same time span as persistent infections. We also ensured the follow-up from the 533 
start of infection to first Long Covid response was similar between persistent 534 
infections and controls (see Table 2).  535 
 536 
In calculating the odds ratio of Long Covid in persistently infected individuals relative 537 
to the control group, we accounted for confounding variables such as age at the last 538 
birthday, sex, Ct value, calendar date, area deprivation quintile group, presence of 539 
self-reported long-term health conditions (binary), vaccination status (unvaccinated 540 
or single-vaccinated, fully-vaccinated or booster-vaccinated 14-89 days ago, fully-541 
vaccinated or booster-vaccinated 90-179 days ago, fully-vaccinated or booster-542 
vaccinated ≥180 days ago), and days from first positive test to Long Covid follow-up 543 
response. All variables except the last one were defined at the time of the first 544 
positive test. Continuous variables (age, Ct value, calendar date, days to follow-up 545 
response) were modelled as restricted cubic splines with a single internal knot at the 546 
median of the distribution and boundary knots at the 5th and 95th percentiles. 547 
Vaccination status was derived from a combination of CIS and NIMS data for 548 
participants in England, and CIS data alone for participants in Wales, Scotland and 549 
Northern Ireland. 550 
 551 
We were unable to do the Long Covid analysis for the reinfection group due to the 552 
low number of participants in this cohort who reported new-onset Long Covid  ≥12 553 
weeks or ≥26 weeks after infections. 554 
 555 
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Tables  709 
 710 
Table 1: Frequency of persistent infections and reinfections per major lineage. 711 
 712 

Major 
lineage 

Reinfection 
>26 days 

Reinfection 
>56 days 

Persistent infection 
>26 days 

Persistent infections 
>56 days 

%Reinfection 
>26 days 

%Reinfection
>56 days 

B.1.1.7 7 3 11 3 39% 50% 

B.1.617.2 11 4 106 13 9% 24% 

BA.1 14 2 97 15 13% 12% 

BA.2 28 15 167 23 14% 40% 

 713 
 714 
Table 2: Prevalence of Long Covid in persistently infected individuals. 715 
 716 
Long Covid ≥12 weeks post-infection 717 
Group n Long Covid Median follow-

up (IQR*) 
Unadjusted OR☨ 

(95% CI**) 
Adjusted OR 

(95% CI) 
Exposed 356 32 (9.0%) 101 (91-113) 1.27 (1.19-2.47) 1.55 (1.07-2.25) 
Control 78,902 4,291 (5.4%) 100 (91-115) Reference Reference 

  718 
Long Covid ≥26 weeks post-infection 719 
Group n Long Covid Median follow-

up (IQR) 
Unadjusted OR 

(95% CI) 
Adjusted OR 

(95% CI) 
Exposed 326 19 (5.8%) 312 (271-390) 1.44 (0.90-2.29) 1.24 (0.77-2.00) 
Control 72,608 3,000 (4.1%) 320 (272-384) Reference Reference 

 
* IQR=interquartile range 720 
☨OR=odds ratio 721 
**CI=confidence interval  722 
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Figures 723 
 724 

 725 
        726 
Figure 1: Individuals identified with persistent infections and reinfections within the 727 
ONS-CIS. (a) Phylogenetic relationship between samples from persistent infections and 728 
reinfections with a representative background population of Alpha (see Supplementary 729 
Figure 2 for the analysis on the other three major lineages). Dashed lines connect every pair 730 
of sequences from the same individual. Pairs from persistent infections cluster closely 731 
together while reinfections do not. All sequences from the same individual are given the 732 
same colour. (b) Days between the earliest and latest genomic samples from persistent 733 
infections and reinfections. Each point represents a single individual. Solid vertical lines 734 
show the 26- and 56-day cutoffs. Numbers on the side of each box shows the total counts 735 
per category for each major lineage. (c) Total number of sequences in the ONS-CIS per 736 
major lineage over time. (d) Timing of persistent infections (black) during the UK epidemic. 737 
Some persistent infections can be identified up to weeks after the lineage has been replaced 738 
at the population level. The numbers on the side of each box shows the total sequence 739 
counts for each category.  740 
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 742 
 743 
Figure 2: Distribution of single nucleotide polymorphisms and non-synonymous vs. 744 
synonymous mutations detected during persistent infections. (a) Frequency of 745 
mutations that resulted in a SNP change during one or more persistent infections. (b) 746 
Number of synonymous (blue) and non-synonymous (orange) mutations per gene during 747 
persistent infections. Numbers on each column show the total counts of SNPs in each 748 
category of mutations. (c) Description of recurrent mutations and deletions identified during 749 
persistent infections. See Supplementary Table 1 for information about other mutations. 750 
**None of the recurrent mutations were from households with other infections.  751 
†Δ represents a deletion  752 
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 753 

 754 
Figure 3: Comparison of viral load dynamics and number of reported symptoms 755 
during persistent infections and reinfections. Viral load trajectories of persistent 756 
infections with (a) relapsing and (b) chronic persistent infections and (c) reinfections with at 757 
least three PCR tests taken over the course of infection/until reinfection. (d) Change in cycle 758 
threshold (Ct) value and (e) total number of symptoms reported between the first and last 759 
time points with sequenced samples for all 381 persistent infections (purple) and 60 760 
reinfections (cyan). Viral load at the last time point is significantly lower for persistent 761 
infections with Ct value being more than +6.7 (IQR: +3.2,+10.2) units higher at the last time 762 
point (paired t-test p<10-8). The difference is less pronounced for reinfections with +2.5 763 
(IQR: -1.1, +7.4) units difference between primary infection and reinfections (paired t-test 764 
p=0.0003). Similarly, persistently infected individuals tend to report fewer number of 765 
symptoms at the later stages of their infection compared to reinfections in the last 7 days at 766 
the last time point (at which a sequence was obtained) when compared to the first. On 767 
average, persistently infected individuals report two more symptoms at the time of their first 768 
sequenceable sample (virus samples with a positive Ct≤30) relative to their last sample, with 769 
a median of 1 (IQR: 0, 4) fewer reported symptoms (paired Wilcoxon p<10-29), while 770 
reinfected individuals report only one more symptom at the point of primary infection relative 771 
to reinfection, with a median of 0 (IQR: 0, 3) fewer reported symptoms (paired Wilcoxon 772 
p=0.005).  773 
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Supplementary figures 774 
 775 

 776 
Supplementary Figure 1: Number of persistent infections identified with a shared rare 777 
SNP as a function of the threshold for calling a rare SNP. Threshold value of 1 for rare 778 
SNPs implies the rare SNP is only found in one sequence of that lineage in the ONS-CIS 779 
dataset, excluding sequences from any persistently infected individuals. As the threshold 780 
value for calling a rare SNP increases, the number of persistent infections (of any duration) 781 
identified (black) increases until at some point the threshold value becomes so high that any 782 
individual with two or more sequences of the same major lineage would be identified as a 783 
persistent infection based on the rare SNP criterion at which point the false positivity rate 784 
(magenta) reaches 100%. At threshold value 400 (vertical dashed line) chosen in this study 785 
for identifying persistent infections, the percentage of false positives are 0% for BA.1 and 786 
BA.2 and 3% for Alpha and Delta.  787 
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 791 
 792 
Supplementary Figure 2: Phylogenetic relationship between samples from persistent 793 
infections and a representative background population per major lineage. Dashed lines 794 
connect every pair of sequences from the same individual. All sequences from the same 795 
individual are given the same colour.  Pairs of sequences for (a) Alpha, (b) Delta, (c) 796 
Omicron BA.1, and (d) Omicron BA.2 that belong to persistent infections cluster closely 797 
together while reinfections do not. However, some of the sequences in 2 (out of 97) 798 
persistent infections with BA.1 and 5 (out of 167) persistent infections with BA.2 have poor 799 
bootstrap support (<80) and do not cluster together or cluster in a basal sister relationship. In 800 
all of these 7 cases, at least one of the sequences from each individual has a Ct value close 801 
to 30 with poor coverage. On the other hand, all sequences that belong to the same 802 
individual and have strong bootstrap support (>80) cluster together.  803 
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 804 

                                805 
Supplementary Figure 3: Days between all pairs of sequences from the same 806 
individual with two or more sequences. Pairs of sequences are classified as (i) pairs with 807 
at least one unidentified Pango lineage (green), (ii) pairs with identical major lineage 808 
(orange), and (iii) pairs from different major lineages. Bottom panel shows the counts of pairs 809 
in each of these three categories for the first 200-day time span (highlighted in a dashed 810 
rectangle in the top panel). Pairs include all possible combinations of sequences from the 811 
same individual. The number of pairs peaks at the 7-, 30-, and 60-day periods due to the 812 
sampling frequency of ONS-CIS (see Methods). Note that pairs with identical major lineage 813 
may not necessarily have identical Pango lineages (see Methods). 814 
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 820 
Supplementary Figure 4: Viral load dynamics of individuals identified with persistent 821 
infections and reinfections stratified by duration and viral activity. Viral load activities of 822 
individuals, with 3 or more PCR tests taken during infection/until reinfection, identified as 823 
having (a) persistent infections and (b) reinfections with relapsing (left column) and 824 
persistent chronic (right column) trajectories. Three reinfections (two occurring in < 60 days 825 
and one between 60 to 90 days since first sequence) with persistent chronic viral load 826 
dynamics are excluded from the reinfection group as they are deemed potential persistent 827 
infections which do not have rare SNPs.  828 
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 829 
Supplementary Figure 5: Number of single nucleotide polymorphisms detected in 830 
pairs of sequences from persistent infections vs. random pairs from a representative 831 
background population. Number of Single Nucleotide Variants (SNVs) per site between all 832 
the sequences collected from persistent infections (purple) and random pairs from 833 
individuals with only a single sequence within the ONS-CIS (blue) as a function of the 834 
number of days between each pair. For each major lineage, a pool of sequences from 835 
individuals with only one sequence within the ONS-CIS was sub-sampled and 500 random 836 
pairs generated for every 20 additional days between samples. For some major lineages 837 
where there were fewer than 500 pairs available beyond a certain time point, all possible 838 
random pairs within that 20-day period are used. Solid line and shaded area show the 839 
median and interquartile range, respectively, for random pairs over time. Note that the line 840 
and shaded area in each graph does not represent the rate of evolution but can be deemed 841 
as a measure of lineage diversity as a function of time difference between samples. 842 
  843 
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 844 
 845 
Supplementary Figure 6: Pairwise differences between sequences from individuals 846 
with two or more sequences. (Left column) Number of single nucleotide polymorphisms 847 
(SNPs) between pairs of sequences from each individual with two or more sequences. Pairs 848 
include all possible combinations of sequences from the same individual. Vertical dashed 849 
line shows the lowest number of SNPs per base for pairs with different major lineages. Any 850 
pair with at least one unidentified lineage with a SNP per base smaller than the dashed line 851 
is selected as a candidate pair from a persistent infection. Pairs with different major lineages 852 
are coloured based on their number of SNPs per base into three groups: (i) pairs with one 853 
BA.1 and one BA.2 or BA.4 or BA.5 sequence (orange); (ii) pairs with one BA.2 and one 854 
BA.4 or BA.5 sequence (blue); and (iii) pairs with one Omicron (including all BA.x lineages) 855 
and one Delta (B.1.617.2), Alpha (B.1.1.7), or B.1.177 sequence (green). (Right column) 856 
Proportion of sequences with different number overlapping base pairs. Those with at least 857 
one unidentified lineage have a lower number of overlapping base pairs relative to pairs with 858 
identifiable lineage (i.e. pairs with identical or different major lineage) mainly due to having 859 
lower coverage.    860 
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