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Abstract 
 

While pandemic waves are often studied on the national scale, they typically are not distributed 
evenly within countries. This paper employs a novel approach to analyze the tempo-spatial 
dynamics of the COVID-19 pandemic in Germany. First, we base the analysis on a composite 
indicator of pandemic severity to gain a more robust understanding of the temporal dynamics 
of the pandemic. Second, we subdivide the pandemic during the years 2020 and 2021 into 
fifteen phases, each with a coherent trend of pandemic severity. Third, we analyze the patterns 
of spatial association during each phase. Fourth, similar types of trajectories of pandemic 
severity among all German counties were identified through hierarchical clustering. The results 
imply that the hotspots and cold spots of the first four waves of the pandemic were relatively 
stationary in space so that the pandemic moved in time but less in space. 
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1. Introduction 
 
The COVID-19 pandemic, like any other pandemic, follows a pattern of acceleration and 

deceleration concerning case incidences among populations and regions. Over the course of a 

pandemic, this creates a temporal pattern in form of logistic curves often described as wave(s). 

These waves consist of (fast) ascents, (up to several) peaks, and declines, indicating several 

stages or phases of a pandemic. While pandemic waves are often analyzed on the national 

scale, they typically are not distributed evenly within territories (Cliff et al. 2009; Śleszyński 

2021; Teller 2021; Boterman 2022; Keeler & Emch 2018). In contrast, the spatial patterns of 

infections and pandemic severity vary over time, which is why a tempo-spatial perspective is 

necessary to understand the spread of infectious diseases (Ghosh & Cartone 2021). In the case 

of COVID-19, several studies have found COVID-19 infections to be clustered within countries 

(Scarpone et al. 2020; Murgante et al. 2020; Rodríguez-Pose & Burlina 2021), and even within 

cities (Slijander et al. 2021). The findings on how these clusters change over time are less 

consistent, however. While Kim et al. (2021) find wavelike patterns in space for the case of 

South Korea, Boterman (2022) finds no consistent patterns for the case of the Netherlands, and  

D’Angelo et al. (2021) find the trajectories of Italian regions to be relatively independent of 

each other. This paper adds to the literature by tracing the tempo-spatial patterns of the 

COVID-19 pandemic in Germany throughout the years 2020 and 2021. 

COVID-19 was first detected in Germany in January 2020, with four pandemic waves occurring 

in the following two years of the pandemic. These first two years of the COVID-19 pandemic in 

Germany were analyzed by developing a novel method, for which four analytical steps were 

performed: First, we develop a composite index of ‘pandemic severity’, which integrates the 

three sub-indicators of COVID-19 case incidence, the incidence of death due to COVID-19, and 

the incidence of COVID-19 patients on ICU (intensive care unit). Second, a phase model of 

fifteen pandemic phases is developed based on a change point analysis. Each of the fifteen 

stages in the model is coherent in terms of the trends of pandemic dynamics (e.g., rising, 

decreasing, stable). Third, the spatial pattern during each phase is analyzed by considering 

global and local spatial autocorrelation on the level of all 400 German counties. To analyze the 

tempo-spatial variation of pandemic severity we thus opted to analyze the spatial patterns of 

pandemic severity during the whole phases instead of relying on snapshots on specific dates. 

Fourth, hierarchical clustering was performed to identify types of similar trajectories of 

pandemic severity in German counties. 
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The paper is structured as follows: The following section describes how we proceeded and 

highlights methodological reasoning for the pandemic severity index, the phase model, the 

spatial analysis, and the cluster analysis. The subsequent section presents the findings for each 

step of the analysis. The final section discusses the results and concludes. 
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2. Data and methods 
 

2.1. Data collection  

All datasets for the pandemic severity index were accessed via Corona Daten Plattform (2022), 

Data on COVID-19 cases and deaths originate from the federal Robert Koch Institute (RKI), data 

on patients with COVID-19 on ICU were used as reported by the German Association of 

intensive care physicians (DIVI). The three indicators were available at the county level (Kreise 

and Kreisfreie Städte).  

 

2.2. A composite index for pandemic severity 
 

Studies focusing on the tempo-spatial aspects of the COVID-19 pandemic rely on the case 

incidence of patients who tested positive for COVID-19 almost exclusively as an indicator (Nazia 

et al. 2022). This is somewhat problematic, especially since the testing regime changed 

throughout the pandemic and potentially also varied regionally. For example, during the first 

wave of COVID-19 in Germany (March through May 2020), only limited capacities of PCR testing 

were available, whereas later PCR testing and antigen testing were widely available in 2021. 

Following suggestions to combine indicators in order to add robustness to the spatio-temporal 

analysis of COVID-19 (Pagel & Yates 2021; Rohleder & Bozorgmehr 2022), we decided to 

develop a composite indicator of pandemic severity. 

Table 1: Elements of the pandemic severity composite indicator 

Indicator Time range Spatial resolution 

Patients tested positive for COVID-19 
2020-02-01 -
2021-12-31 

400 counties 

Deaths of patients tested positive for COVID-19 
2020-02-01 -
2021-12-31 

400 counties  

Patients tested positive for COVID-19 on ICU 
2020-03-04 -
2021-12-31 

96 planning regions 

 

The pandemic severity index is composed of three indicators: the incidence of cases (IC) tested 

positive for COVID-19, the incidence of patients on ICU (IICU), and the incidence of registered 

deaths due to COVID-19 (ID, see table 1). While all three sub-indicators were gathered at the 

county-level, we decided to use the regional average in 96 planning regions (BBSR 2017) for 

IICU, because hospitals are distributed rather unevenly over German counties and especially 
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more specialized medical infrastructure such as ICUs tend to be concentrated in larger towns 

and cities, which tend to be their own county. 

The components of a composite indicator need to be scaled, weighted, and aggregated (Liborio 

et al. 2021). The pandemic severity index was calculated as follows: First, the rolling 14-day 

mean of each indicator was calculated using the zoo package in R (Zeileis & Grothendieck 2005) 

and they were normalized by using z-scores. Second, the scaling of the indicators was 

completed by minimum-maximum normalization values to a scale between 0 and 1 (Wickham 

& Seidel 2022). Third, the indicators were aggregated by using the arithmetic mean, in which 

all three indicators have the same weight. Subsequently, the composite index was rounded to 

four decimal places. This approach represents the common procedure to calculate composite 

indicators (Dialga & Giang 2017). The resulting pandemic severity index indicates the pandemic 

burden during a given time in each location through a dimensionless value between 0 and 1 (in 

practice between 0 and 0.7625). It was calculated for each day between 2020-03-01 and 2021-

12-31 for each German county, resulting in 268,400 individual values. To establish a phase 

model on the national scale it was aggregated daily before those phases were then analyzed 

spatially. 

 

2.3. Identifying change points of pandemic severity  
 

A comprehensible method for defining pandemic stages is rarely found in the literature on 

COVID-19. Existing phase models (Ghosh & Cartone, 2020; Benita & Gasca-Sanchez 2021; Li et 

al. 2021; Zawbaa et al. 2022) define the beginning of each stage relatively arbitrarily based on 

individual indicators, such as incidence rates, mortality rates, or the implementation of 

countermeasures like lockdowns and social distancing. Typical types of phases include 

‘beginning’, ‘outbreak’, ‘recession’, and ‘plateau’ (Li et al. 2021). Schilling et al. (2022) used a 

multivariant approach by combining several variables for their phase model for Germany, 

although their method of delineating phases remains unclear. Küchenhoff et al. (2021) 

calculated change points in the early course of the pandemic from March to May 2020 using a 

back-projection for estimated daily infections in Germany. Their retrospective exploratory 

analysis identified five phases for Germany within the first wave. Our phase model of the 

COVID-19 pandemic in Germany is based on a composite indicator and spans a longer period 

of several waves, during which our phases are trend coherent to serve as a heuristic for further 

analytical steps.  
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We performed a two-step change point analysis on a time series of the pandemic severity index 

on the national scale. A change point analysis using the binary segment approach (Scott & Knott 

1974) on mean and variance was performed on the lagged difference of the pandemic severity 

indicator to establish rough phases, which then served as a heuristic to develop a finer model. 

Again, a binary segment approach was used, with a minimum segment length of 14 days. The 

change points were calculated using the change point package in R (Killick & Eckley 2014). The 

resulting phase model consists of 15 individual phases, ranging from 19 to 116 days in length.  

 

2.4. Local and global autocorrelation  
 

In a first step, the average pandemic severity in each county was calculated for each phase and 

mapped accordingly. Second, the global autocorrelation of pandemic severity was calculated 

for each day in the study period in form of Moran’s I metric (Moran 1950). Moran’s I and the 

related test statistic were calculated by using the sfdep package in R (Parry 2022). In a third 

step, each of the fifteen phases was analyzed in terms of their spatial patterns. Local indicators 

of spatial association (LISA) were calculated for each phase using localized Moran's I (Anselin 

1995; Sokal et al. 1998) using the sfdep package in R (Parry 2022). The contiguity matrix for the 

LISA analysis was established based on the k-nearest neighbor criterium with k=6 to reflect the 

irregular configuration of territorial borders (Ghosh & Cartone 2020), since many German 

counties with just one neighbor.  

The LISA method has been used before to identify significant clusters of pandemic outbreaks 

(e.g., Scarpone et al. 2020; Siljander et al. 2022; Ghosh & Cartone 2020). However, to our 

knowledge, this study is the first to use this approach based on a composite indicator of 

pandemic severity instead of case incidence or mortality as a single indicator.  

The results of a LISA analysis group the spatial units (here German counties) relative to their 

neighbors in local clusters of high values (high–high) or low values (low–low), and also identifies 

spatial outliers with (high–low) or (low–high) values. For each spatial unit, the p-value was 

determined through 1499 simulations. Only results with a p-value below 0.05 were considered. 

Since the geography of the COVID-19 pandemic is uneven in space (Scarpone et al. 2020; 

Rodríguez-Pose & Burlina 2021), the pandemic severity index can also help to reveal the 

complex tempo-spatial patterns of how the pandemic unfolded better compared to case 

numbers. Visualizations were created in R using the ggplot2 (Wickham 2016), and sf (Pebesma 

2018) packages. 
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2.5. Hierarchical clustering of LISA sequences 
 
To establish temporal patterns of spatial association, we further analyzed the results of the LISA 

analysis through hierarchical clustering, following a principle used by Bucci et al. (2022) and 

Mattera (2022). However, we deviate from these approaches by using the results of the LISA 

analysis for each county during each of the fifteen phases to calculate the dissimilarity matrix, 

which was used for the cluster analysis. To do so, we used Gower’s distance (Gower 1971) for 

the dissimilarity matrix, then hierarchical clustering was performed based on the average 

linkage method. Both steps were performed using the cluster package in R (Maechler et al. 

2022). Only counties, which were classified into one of the four LISA categories during four or 

more of the fifteen phases (n=142) to avoid a sparse dissimilarity matrix. The resulting 

dendrogram was capped at the height of 1.0 to receive six relatively coherent clusters. 

3. Results 
3.1. A Phase model of the COVID-19 pandemic in Germany 
 
Based on change point analysis of the pandemic severity index, we developed a pandemic 

phase model for the first two years of the pandemic. The fifteen phases of our model (table 1, 

chart 1) are based on trend coherence and thus differ in length. On average, each phase lasts 

about 47 days, although the longest phase is more than twice as long (summer plateau 2020: 

116 days) and the shortest lasted only 19 days (surge of the first wave). Since the phases are 

based on a change point analysis using the lagged daily difference of the pandemic severity 

index, pandemic waves consist at least of two phases (increase and decrease). However, more 

complex waves can consist of several intermediate phases of acceleration and deceleration, for 

example, the second COVID-19 wave in Germany consists of four individual phases. Further, 

the periods between the phases are also considered individual phases. Among the fifteen 

phases during the study period, there were seven phases of increasing pandemic severity, four 

phases of decreasing pandemic severity, and four stable phases. This relatively fine-grained 

phase model serves as a heuristic to gain more specific insights into tempo-spatial patterns. 
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Table 2:Phases of the COVID-19 pandemic in Germany as determined through change point analysis. The trend value 
describes the change in pandemic severity on the national level during the respective phase. 

Phase Duration Length (days) Trend 

A Prelude first wave 2020 2020-02-01 - 2020-03-19 48 +0.057 

B Surge first wave 2020 2020-03-20 - 2020-04-07 19 +0.156 

C Decline first wave 2020 2020-04-08 - 2020-05-25 48 -0.153 

D Plateau summer 2020 2020-05-26 - 2020-09-18 116 -0.041 

E Entry Surge winter wave 2020/21 2020-09-19 - 2020-10-10 22 +0.040 

F Surge winter wave 2020/21 2020-10-12 - 2020-11-13 33 +0.333 

G Further surge winter wave 2020/21 2020-11-14 - 2020-12-23 40 +0.319 

H Decline winter wave 2020/21 2020-12-24 - 2021-03-02 69 -0.445 

I Surge easter wave 2021 2021-03-03 - 2021-04-28 57 +0.186 

J Decline easter wave 2021 2021-04-29 - 2021-06-16 49 -0.359 

K Bottom summer 2021 2021-06-17 - 2021-07-17 31 -0.061 

L Entry surge summer 2021 2021-07-18 - 2021-08-10 24 +0.019 

M Entry delta wave 2021 2021-08-11 - 2021-10-24 75 +0.186 

N Surge delta wave 2021 2021-10-25 - 2021-12-02 39 +0.462 

O Decline delta wave 2021 2021-12-03 - 2021-12-30 28 -0.201 

 
To calculate the spatial autocorrelation of pandemic severity, the Moran’s I coefficient was 

calculated. Spatial autocorrelation describes the association of pandemic severity among 

neighboring regions. The spatial autocorrelation is positive over the whole study period, which 

indicates a spatial association of similar values rather than a spatial association of high and 

low values. The Moran’s I value ranges from 0.076 in March 2020 to 0.629 during the peak of 

the fourth wave. This indicates the presence of spatial structure so that the distribution of 

pandemic severity was not random during the study period. There are notable variations of 

the indicator with five notable peaks in weeks 2020-w16 with 0.452, 2020-w49 with 0.484, 

2021-w14 with 0.342, 2021-w33 with 0.361, and 2021-w47 with 0.629. Curiously, these peaks 

roughly correlate with the peaks of pandemic severity (chart 1 A and D), whereas periods with 

low intensity of pandemic severity tend to have lower overall spatial autocorrelation. This 

pattern implies that during the four waves of high pandemic severity, areas with similar 

pandemic severity (e.g., hot spots or cold spots) were located close to each other. Thus, we 

further analyzed the specific patterns of local spatial autocorrelation. 
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Figure 1: Pandemic severity in Germany and the fifteen phases of our phase model during the years 2020 and 2021(A). The 
phase model is based on the change points of the daily difference charts (B). The spatial autocorrelation within Germany 
reaches the highest levels around the peaks of the four waves (C) 
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3.2. Local spatial association during the different phases 
 
To analyze the distribution of pandemic severity for each of the fifteen phases we used LISA 

cluster maps. The LISA analysis compares each county with the level of pandemic severity in 

its neighboring counties. As a result, each county is associated either with high-high (HH), low-

low (LL), low-high (LH), or high-low (HL) values for each of the fifteen phases and a level of 

significance of this value (figure 2). It should be kept in mind that the pandemic severity 

differed substantially between the phases.  

 
Figure 2: Local indicators of spatial autocorrelation of pandemic severity for the fifteen phases of the pandemic during 2020 
and 2021 (A-O).  
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For example, a HH value during a phase of high pandemic severity (PS; such as phases B, G, or 

I) should mean a dire situation with many cases, deaths, and high pressure on the local 

healthcare system, while a HH value during a phase with modest PS should mean a less tense 

situation. 

The resulting maps show that the pattern of local spatial autocorrelation varied substantially 

throughout the study period, although subsequent phases usually have similar patterns. 

Especially during the year 2020 (phases A-H) the overall picture changes several times, while 

during the year 2021, the situation seems to be more stable. Most phases are dominated by 

both one or more areas with several counties of HH and LL values, while HL and especially LH 

values are much rarer. Interestingly, the two largest counties Berlin and Hamburg both feature 

HL values relatively often, which indicates they are somewhat decoupled from the 

development around them. 

While the overall pattern shows a degree of (expected) variation, some regions feature 

relatively stable values over time. Especially LL values are mostly concentrated in Northern 

Germany over much of the study period. On the other side, a concentration of HH values can 

be found in east-central Germany, during the phases F-K and N-O. This corresponds with a 

repetitive pattern during waves two, three, and four of COVID-19 in Germany (figure 2). This 

area, which includes much of the states of Saxony and Thuringia, and some areas in Saxony-

Anhalt, and Brandenburg covers virtually all of the counties in Germany that have been hit 

hardest by the pandemic overall. The results of the LISA analysis imply the existence of both 

clusters of high and low pandemic severity, some of which seem to be relatively stable in 

place.  

Significant values of the LISA analysis are somewhat not evenly distributed in space, since only 

a quarter of the possible results (fifteen phases in 400 counties) are significant and about half 

of the 400 counties have only a significant value for two or fewer phases, while 52% of all 

significant results are concentrated in 25% of the counties. Further, the proportion of 

significant results varies among the phases substantially between 13 of 400 counties receiving 

a significant result in phase A and 150 of 400 counties receiving a significant result in phase 

M. We further explored the tempo-spatial trajectories of counties by performing a cluster 

analysis on the results of the LISA analysis to identify patterns of similar trajectories of 

pandemic severity. 
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3.3. Types of regional trajectories 
 
The results of the cluster analysis imply that there are several relatively stable patterns of 

trajectories of pandemic severities among the German counties. Six types of county 

trajectories were identified (figure 3), which are characterized by similar temporal patterns of 

pandemic severity. For the cluster analysis, we considered only counties with four or more 

phases with significant LISA results, so that 142 of 400 counties are included. Four types are 

characterized by relatively persistent values of HH (type 4, type 2, type 6) and LL (type 1), 

respectively, while the other types are characterized by combinations of HH and LL (type 3, 

type 5). Curiously, each type also has a relatively stable spatial pattern and is dominant in 

specific regions of Germany (figure 3B). 

The largest and most interesting type is type 4, which consists of 34 counties that are very 

similar in that they were classified as HH during the second (phases E-H), third (phases I-J), 

and fourth wave (phases M-O) of COVID-19 in Germany. However, none of the counties in this 

group is classified as HH during the first wave (phases A-C), which has a spatial pattern, unlike 

the subsequent waves. Geographically, this type consists of all counties in the state of Saxony 

and some states in the neighboring states of Thuringia and Saxony-Anhalt. This area includes 

the metropolitan areas around Dresden and Leipzig as well as rural areas. 

In contrast, the second largest type 1 is characterized by 32 counties that are classified as LL 

throughout most of the study period. This cluster of low pandemic severity persists 

throughout all four waves of COVID-19 in 2020 and 2021 and is only absent during the first 

two phases. Geographically, this type is present in North-western Germany and includes large 

parts of the states of Schleswig-Holstein and Lower Saxony, as well as one county in the state 

of Mecklenburg-West Pomerania. While this area is predominantly rural, it also consists of 

parts of the metropolitan area around Hamburg, Germany’s second biggest city, albeit not 

Hamburg itself. 

Another somewhat similar type is type 3, which is dominated by LL values during much of 2020 

and in the summer of 2021. However, most counties of this type have HH values during the 

peak of the second wave as well as during the fourth wave in late 2021. This type is present in 

22 counties in north-eastern Germany and south of Berlin in predominantly rural areas in the 

states of Mecklenburg-West Pomerania, Brandenburg, and Saxony-Anhalt. 

Somewhat similar is type 5, which is characterized by counties that were hotspots during the 

first wave in early 2020 but were classified as LL for the subsequent phases. This type is 
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present in Northern Bavaria and some parts of Rhineland-Palatinate. These 23 counties are 

mostly rural areas and small towns, but also encompass the Nuremberg metropolitan region. 

Type 5 is also characterized by counties that show HH values during the first wave. However, 

in contrast to the previous type, these counties also receive HH values during the fourth wave 

in late 2021, although the phases in between are largely insignificant. Geographically, this type 

is found in Southeast Bavaria and two counties in  Baden-Württemberg. The 15 counties of 

this type are mostly rural but relatively dense areas at the edge of the Munich and Stuttgart 

metropolitan regions, respectively. 

Finally, type 2 deviates arguably most both in terms of the temporal pattern of pandemic 

severity and geographically. While all other types are either patterns of HH or LL value or a 

combination of both, the 15 counties of type two feature dominantly HL values, which means 

that they deviate from their immediate surroundings. Curiously, this type is almost an inverse 

of type 4, so that the HL values and HH values of type 2 are concentrated not during the overall 

peaks of pandemic severity but right in between, during periods of lower pandemic severity. 

Type 2 differs geographically from the other types since it is the most dispersed of all six types. 

It includes mostly urban and sub-urban counties in the Rhine-Ruhr metropolitan region 

around Düsseldorf and in the Rhine-Main metropolitan region around Frankfurt, as well as the 

city of Hamburg. Generally, temporal patterns of pandemic severity align with spatial patterns 

in so far as the spatial patterns repeatedly occur over several waves. In the following section, 

these results are further discussed. 
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Figure 3: Six types of spatio-temporal trajectories of pandemic severity among German counties during the years 2020-2021. Each 
county with more than four significant LISA results represents a row in figure 3A and is color coded by the LISA value for each of 
the fifteen phases. The counties in chart 3B are color coded by the type of spatio-temporal trajectory. 
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4. Discussion and conclusion 

 

In this paper, we offer a comprehensive analysis of the first two years of the COVID-19 epidemic 

in Germany from a tempo-spatial perspective. To do so, we proceeded in four analytical steps: 

First, a novel composite index of pandemic severity was developed that enabled us to 

differentiate the dynamics of the pandemic temporally and spatially. Second, a phase model 

with fifteen temporally coherent phases was established through change point analysis to serve 

as a heuristic for spatial analysis. Third, measures of global and local autocorrelation were 

performed to determine regional clusters of pandemic severity for German counties. 

Regions with spatial concentrations of hotspots and cold spots respectively were identified via 

LISA analysis. Fourth, six types of similar regional trajectories of pandemic severity were 

identified through hierarchical clustering among German counties. The six types of trajectories 

offer insights into the tempo-spatial dynamics of COVID-19 in Germany during the years 2020 

and 2021. In this section, we discuss our findings by presenting empirical and methodological 

contributions before concluding. 

Empirically, three observations are especially noteworthy from our result. First, our analysis 

showed that the spatial patterns of pandemic severity of COVID-19 varied substantially 

between the different phases of the pandemic. However, a certain pattern is visible, in that the 

first wave of COVID-19 in Germany (spring 2020) displays a different pattern than the 

subsequent three waves, while waves two, three, and four are much more similar to each other. 

This aligns with previous findings that the first wave was mostly driven by relocation diffusion 

through tourist returnees (Kuebart & Stabler 2020). The three subsequent waves emerged 

from a higher level of pandemic severity, which might somewhat explain the different spatial 

patterns. Second, it is remarkable that both hotspots and cold spots remain almost stationary 

from late 2020 onwards during the three most severe waves of COVID-19 in Germany. The 

persistent hotspot areas are almost exclusively located within an area in central Germany, 

including parts of the states of Saxony, Thuringia, and Saxony-Anhalt. The persistent cold spot 

areas on the other hand are mostly located in Northern Germany, in the states of Schleswig-

Holstein, Lower Saxony, and Mecklenburg-West Pomerania. Neither hotspots nor cold spots 

follow patterns that would suggest obvious structural differences in terms of urbanity versus 

rurality or population density. While the high level of pandemic severity in Saxony has been 

noted before (Chilla et al. 2022), it is still remarkable how stable this area returns as an area of 
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hotspots of pandemic severity in each of three subsequent waves. Third, it is also noteworthy 

from a tempo-spatial perspective that the epicenter of each wave is within this region, although 

waves three and four have been driven by the novel alpha and delta variants of SARS-CoV-2, 

respectively so that relocation diffusion should have been in an important factor. Indeed, the 

first hotspots of variant alpha transmission were found to be in western and northern Germany 

(Mitze & Rode 2022), far from the region in central Germany that would be the region with the 

highest concentration of pandemic severity due to variant alpha only six weeks later.  

Taken together, these three empirical findings imply that the COVID-19 pandemic in Germany 

progressed wavelike just in temporal terms, but not spatially. This is in line with the findings of 

D’Angelo et al. (2021), who found the case evolution over time in Italian regions to be relatively 

independent of each other. As in our case, this implies that region-specific aspects trump 

expansion diffusion dynamics, although this does not seem to be a universal phenomenon, 

since Kim et al. (2021) find wavelike patterns in space for the case of South Korea and Boterman 

(2022) finds no consistent patterns for the case of the Netherlands. However, we conclude that 

for the German case with its strict non-pharmaceutical interventions and largely successful 

vaccination campaign during the year 2021, pandemic severity is indeed less related to 

relocation diffusion. Instead, regional factors such as cultural or political aspects determine the 

effectiveness of counter-pandemic measures and thus the local pandemic diffusion seems to 

be more important. Further, not just the specific regional conditions but also the timing in the 

pandemic process should be considered when analyzing the tempo-spatial dynamics of 

infectious diseases. 

Methodologically, also three conclusions can be drawn from the approach presented in this 

paper. First, the tempo-spatial clustering of time series of pandemic severity is a valuable tool 

to explore the dynamics of infectious outbreaks. While this approach has been successfully 

applied before (Bucci et al. 2022; Mattera 2022), we combined this approach with LISA analysis 

(Anselin 1995). In our opinion, this has the advantage that only those regions that deviate 

significantly from the national average are considered (e.g., hotspots and cold spots of 

pandemic severity), which allows focusing on the most relevant processes or regions for each 

phase of the pandemic. Second, a phase model based on change point analysis was a valuable 

heuristic to further analyze spatio-temporal dynamics of COVID-19. The choice of which points 

in time or periods to compare is crucial for tempo-spatial analysis. Most studies either use 

relatively arbitrary units such as weekly or bi-weekly (Siljander et al. 2022) intervals. In contrast, 
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we decided to develop a phase model that distinguished different levels of pandemic severity, 

which proved valuable to contextualize spatial differences. Third, the use of a composite 

indicator as the base for subsequent analytical steps was useful to add robustness to the 

analysis. To follow the calls for combining different indicators when analyzing the spread of 

COVID-19 (Pagel & Yates 2021; Rohleder & Bozorgmehr 2022), we developed an index of 

pandemic severity that incorporated the incidence of patients tested positive for COVID-19, the 

incidence of patients with COVID-19 on ICU, and the incidence of registered deaths due to 

COVID-19. Although the timespan analyzed in this paper included only 21 months, the 

conditions under which data were collected changed drastically in several regards. Factors that 

varied over time included the testing regime, the chain of reporting itself, new variants of 

COVID-19, and increasing levels of immunity within the population due to infections and 

vaccinations. Therefore, we argue that combining indicators enhances comparability over 

longer timespans and adds robustness to the analysis. However, this is certainly not limited to 

the sub-indicators used here. Other indicators could and should be included in future attempts, 

for example, data originating from wastewater monitoring. 

Some limitations of the research presented here should be considered. First, we did not include 

demographic factors in our pandemic severity index. Spatial variation in factors such as age 

distribution or prevalence of chronic diseases could influence the spatial distribution of deaths 

by COVID-19 and would thus somewhat influence the spatial pattern of pandemic severity per 

our index. Relatedly, data that describes the conditions of local infections would be helpful to 

contextualize local pandemic severity. Especially regional data on outbreaks and imported 

infections would be helpful but were not made available by the German authorities. Second, 

the use of data that is only reported for territorial administrative areas presents a limitation, 

since it might obscure patterns on a smaller scale, for example in border regions (Scarpone et 

al. 2020, Chilla et al. 2022). On the other hand, an analysis of spatial patterns on an even larger 

scale (e.g., NUTS 2 regions) might be suitable to reduce noise in the cluster analysis. In 

conclusion, both more fine-grained analysis of hotspot regions and analysis on a higher spatial 

order can be helpful steps to gain a better understanding of the dynamics of the pandemic. 

In conclusion, the spatio-temporal dynamics of COVID-19 offer fascinating insights into how 

pathogens spread in contemporary societies. While it would be misleading to put too much 

emphasis on the territorial dimension of space in the era of “post-Westphalian pathogens” 

(Fidler 2003), the “territorial immune system” of non-pharmaceutical interventions visible 
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during the COVID-19 pandemic has proven the relevance of territories and their impact on the 

pandemic process. 
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