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Abstract 

Background 

Ensemble machine learning could support the development of highly parsimonious 

prediction models that maintain the performance of more complex models whilst maximising 

simplicity and generalisability, supporting the widespread adoption of personalised 

screening. In this work, we aimed to develop and validate ensemble machine learning 

models to determine eligibility for risk-based lung cancer screening.  

 

Methods 

For model development, we used data from 216,714 ever-smokers in the UK Biobank 

prospective cohort and 26,616 high-risk ever-smokers in the control arm of the US National 

Lung Screening randomised controlled trial. We externally validated our models amongst the 

49,593 participants in the chest radiography arm and amongst all 80,659 ever-smoking 

participants in the US Prostate, Lung, Colorectal and Ovarian Screening Trial (PLCO). 

Models were developed to predict the risk of two outcomes within five years from baseline: 

diagnosis of lung cancer, and death from lung cancer. We assessed model discrimination 

(area under the receiver operating curve, AUC), calibration (calibration curves and 

expected/observed ratio), overall performance (Brier scores), and net benefit with decision 

curve analysis.  

 

Results 

Models predicting lung cancer death (UCL-D) and incidence (UCL-I) using three variables – 

age, smoking duration, and pack-years – achieved or exceeded parity in discrimination, 

overall performance, and net benefit with comparators currently in use, despite requiring only 

one-quarter of the predictors. In external validation in the PLCO trial, UCL-D had an AUC of 

0.803 (95% CI: 0.783-0.824) and was well calibrated with an expected/observed (E/O) ratio 

of 1.05 (95% CI: 0.95-1.19). UCL-I had an AUC of 0.787 (95% CI: 0.771-0.802), an E/O ratio 
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of 1.0 (0.92-1.07). The sensitivity of UCL-D was 85.5% and UCL-I was 83.9%, at 5-year risk 

thresholds of 0.68% and 1.17%, respectively 7.9% and 6.2% higher than the USPSTF-2021 

criteria at the same specificity. 

 

Conclusions 

We present parsimonious ensemble machine learning models to predict the risk of lung 

cancer in ever-smokers, demonstrating a novel approach that could simplify the 

implementation of risk-based lung cancer screening in multiple settings. 
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Introduction 

Screening, early detection, and disease prevention programmes are increasingly bespoke, 

with risk prediction algorithms determining an individual’s eligibility and management.1–3 

Such personalisation promises to improve the benefit-to-harm profile of such interventions 

and ultimately health outcomes.4–6 However, the delivery of these programmes at a 

population scale requires two conditions of risk prediction models: that they generalise well 

to contexts where there are insufficient data for model development, retraining, or validation; 

and, that the trade-off between model complexity and implementation feasibility is 

considered. In this work, we couple state-of-the-art ensemble machine learning and multi-

country data to explicitly maximise model parsimony and generalisability, an approach that 

holds promise in multiple disease areas. 

 

Screening for lung cancer – the foremost cause of death from cancer worldwide7 – with low-

dose computed tomography (LDCT) has been associated with a 20-24% reduction in lung 

cancer-specific mortality amongst those at high risk.8,9 However, the ideal method to identify 

those at high risk remains unresolved. The US Preventive Services Taskforce (USPSTF) 

recommends the use of risk-factors – age, pack-years smoked, and quit-years for former 

smokers – to select screening participants.10 Nevertheless, identifying individuals for lung 

cancer screening based on risk prediction models has been shown to have both better 

benefit-to-harm profiles and cost-effectiveness than using risk factors alone,11–14 leading to 

risk-model-based selection criteria in European lung cancer screening pilots.15  

 

To date, most externally validated prediction models for lung cancer have been developed in 

US datasets,12,16–21 reflecting the relatively limited availability of suitable cohorts with long-

term follow-up for prognostic modelling. This implies that most global healthcare systems 

that implement risk-based lung cancer screening will use prediction models developed in a 

US population, often using variables such as ethnicity, whose categorisation varies between 
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countries and individual datasets, and academic qualifications that differ both over time and 

between jurisdictions. In the UK, existing models have been shown to underperform in 

specific groups, such as the more socio-economically deprived, where underestimation of 

risk could lead to a screening programme systematically widening health inequalities.22  

 

Furthermore, the risk models currently in use are a challenge to implement. In the UK, 

eligibility for lung cancer screening pilots is based on the PLCOm2012 and Liverpool Lung 

Project risk models, requiring 19 variables, few of which are routinely available.23 Collecting 

these variables from an individual who is potentially eligible and explaining the results 

currently averages between five and ten minutes. To determine the screening eligibility of 

one million people would therefore require up to 87 full-time staff a whole year, presenting a 

formidable obstacle to an effective national screening programme. 

 

In this study, we hypothesized that using ensemble machine learning with training data 

spanning different geographic regions, populations, and average risk levels, we could 

develop predictive models for lung cancer screening with a minimum number of features that 

has broad applicability. In so doing, we aimed to combine the simplicity of risk-factor-based 

criteria with the improved predictive performance of risk models, whilst maintaining 

generalisability to new settings. 

 

Methods 

Data sources and study population 

Development and internal validation datasets 

For model development, we first used data on 216,714 ever-smokers without a prior history 

of lung cancer from the UK Biobank24 before creating a multi-country dataset that combined 

UK Biobank and US National Lung Screening Trial (NLST)8 data (n=26,616) (Figure 1 and 
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eFigures 1-2 in the Supplement). We selected the NLST because it is geographically 

distinct, includes a higher risk cohort, and has greater ethnic diversity than the UK Biobank.  

 

External validation datasets 

For model validation, we used data from 40,593 ever-smokers without a prior history of lung 

cancer from the chest radiography arm of the U.S. Prostate, Lung, Colorectal and Ovarian 

Cancer Screening (PLCO)25 trial (eFigure 3 in the Supplement). This allowed benchmarking 

against comparator models that were developed in the control arm of the PLCO trial. Chest 

radiography was found to have no impact on lung cancer mortality, nor a statistically 

significant impact on lung cancer incidence.25 In sensitivity analyses presented in the 

Appendix, we report model performance in the full PLCO dataset (n=80,659).  

 

Missing data 

We used multiple imputation by chained equations (MICE) with predictive mean matching to 

generate imputed development and validation datasets.26 We generated 10 imputed sets of 

the UK Biobank and NLST, based on an average missingness amongst candidate predictors 

in the UK Biobank of 11%. As missingness was <1% for all relevant variables in the PLCO, 

we created five imputed PLCO datasets. See Appendix (Table S1, eFigures S4-6) for further 

details.  

 

Outcomes 

We developed models to predict the absolute cumulative risk of two outcomes within five 

years from baseline: diagnosis of lung cancer, and death from lung cancer. Lung cancer 

status and primary cause of death in the UK Biobank were determined by linked national 

cancer registry and Office for National Statistics data.24 In the NLST and PLCO, lung cancer 

 . CC-BY 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted January 29, 2023. ; https://doi.org/10.1101/2023.01.27.23284974doi: medRxiv preprint 

https://doi.org/10.1101/2023.01.27.23284974
http://creativecommons.org/licenses/by/4.0/


7 
 

diagnosis and primary cause of death were confirmed by review of medical records and 

death certificates, respectively.25,27 

 

Model development 

We developed ensembles of machine learning pipelines using AutoPrognosis, open-source 

automated machine learning software.28,29 In this analysis, AutoPrognosis was used to 

optimise pipelines consisting of a variable pre-processing step followed by model selection 

and training. These optimised pipelines were subsequently combined and a single prediction 

for any individual generated by a weighted combination of the predictions made by each of 

the four pipelines independently, with weighting by Bayesian model averaging (Figure 1).30 

We trialled model algorithms including logistic regression, random forests and state-of-the-

art Gradient Boosting approaches (see eMethods, eFigures 7-8, and eTables S2-3). 

Throughout, pipelines were trained and selected to maximise model discrimination, 

measured with the area under the receiver operating curve (AUC).  

 

Model explanation 

We used the Kernel Shapely Additive Explanations (SHAP)31 algorithm for model 

explanation and analysis of predictor interactions (Figure 1). Kernel SHAP is a permutation-

based method theoretically based in coalitional game theory. In summary, each variable is 

passed to a model one-by-one, with the change in predictions that occurs attributed to this 

model.32,33 Further details are available in the Appendix. 
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Figure 1: Developing the UCL models to determine lung cancer screening eligibility  

A multi-country dataset comprising the UK Biobank and NLST was used to develop new models 
before external validation in the PLCO chest radiography arm (allowing benchmark comparison with 
existing models developed in the PLCO control arm) and the full PLCO cohort. The ensemble 
modelling approach involves optimising individual modelling pipelines before combining their results 
as a single prediction for each individual. (b) shows details of the UCL-D model, including the weights 
attributed to each pipeline in generating a single prediction for the five-year risk of lung cancer for any 
individual. (c) shows the contribution of different variables to overall predictions as well as interactions 
between predictors, analysed using Shapely Additive Explanations (SHAP).32 The first subfigure in (c) 
shows that smoking duration was the most important variable when making predictions of an 
individual’s risk of dying from lung cancer, followed by pack-years smoked, and finally age. The three 
subsequent dependence subplots show the relationship between the predictor (x-axis) against the 
outcome (y-axis) – the importance of knowing that predictor value when making a prediction. The 
vertical dispersion shows the degree of interaction effects present, whilst the colour corresponds to a 
second variable. The plots show that smoking for less than approximately 35 years had relatively little 
impact on model predictions, with a steep inflection and increasing interaction between smoking 
duration and pack-years after this point. Interestingly, in the subsequent subfigure showing the 
relationship between pack-years and lung cancer death, we see that there are distinct clusters of 
individuals based on their smoking duration projecting as a fan. This relationship between smoking 
duration and pack-years mirrors that seen in the previous sub-figure, with duration trumping quantity 
of cigarettes smoked unless both are high. In other words, those individuals who smoke for short 
periods of time have a lower predicted risk, even if they smoke relatively large quantities. This reflects 
our understanding of lung biology and the ability of the lung to repair itself if an individual stops 
smoking.52 Lastly amongst subfigures of (c) we see that age has relatively limited impact on the model 
under the age of 60. In (d), we explain an individual at the proposed risk threshold (0.68% five-year 
risk of death from lung cancer) for this model. Relative to the average, this individual’s predicted 
probability is lowered by their age (55) but raised by their smoking duration and pack-years, leading to 
a predicted probability above the average for this dataset. This can provide a useful check on the 
model and improve trustworthiness. Further details can be found in the Appendix. 
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Variable selection 

For pragmatic reasons, we considered candidate predictors from the UK Biobank that were 

also present in the NLST and PLCO. We settled on our final list of predictors based on the 

literature, domain expertise, variable distributions, generalisability to multiple settings, and 

model discrimination in the UK Biobank.  

 

Statistical analysis 

We considered a model’s overall performance with the Brier score,34 discrimination with the 

area under the receiver operating curve (AUC), calibration with calibration curves and the 

ratio of expected-to-observed cases, and clinical usefulness with decision curve analysis.35 

Calibration curves were calculated by splitting individuals into ten risk deciles based on their 

predicted risk before compared predicted probability against observed risk, the latter 

calculated using a Kaplan-Meier model. For a measure of clinical utility, we considered the 

net benefit of models across a range of risk thresholds.35 We compared model discrimination 

with a two-tailed bootstrap test using the methods of Hanley and MacNeil, modified by Robin 

and colleagues.36,37 To determine potential risk thresholds for our models, we used a fixed 

population strategy, comparing the number of individuals eligible for screening in the entire 

PLCO external validation dataset using the USPSTF-2021 criteria.  

 

In both internal and external validation, we generated 1,000 bootstrap resamples with 

replacement for all analyses; central estimates and 95% confidence intervals were 

calculated with the percentile method. We used optimism-corrected metrics for internal 

validation. All analyses were conducted with R38 and Python39.  

 

Model comparisons 

For benchmark comparisons, we compared our new models to the USPSTF-2021 criteria 

(age 50-80, ≥20 pack-year smoking history, and quit within the last 15 years if a former 
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smoker),10 as well as existing risk models that are either in use (PLCOm201218 and 

Liverpool Lung Project (LLP) version 240) or have been externally validated and consistently 

shown to outperform other risk models (the Lung Cancer Death Risk Assessment Tool 

[LCDRAT] and Lung Cancer Risk Assessment Tool [LCRAT]19) (eTable 4 in the 

Supplement).13,22,41,42 All comparator models predict the five-year risk of death (LCDRAT) or 

developing lung cancer (LCRAT, LLP) except for the PLCOm2012 which predicts the six-

year risk of lung cancer occurrence. A third, recalibrated, version of LLP has been 

developed. Because it is not currently in use, we present full comparative analyses in the 

Appendix but note that in using the same predictors and coefficients as LLP version 2, its 

discrimination is equivalent. Further, we also compared against Cox models developed using 

the same dataset (see eMethods), and the constrained versions of the LCDRAT, LCRAT, 

and PLCOm2012 models. 

 

All variables were available for comparator models except the LLP. For the LLP, in the UK 

Biobank, data were not available for age at which a family member developed lung cancer. 

Following ten Haaf and colleagues,41 and reflecting UK lung cancer epidemiology,43 we 

assumed that all with a family history of lung cancer were aged over 60. In the PLCO 

dataset, asbestos exposure and prior history of pneumonia were not available and were set 

to zero. We used the lcmodels package in R to calculate predictions for the PLCOm2012, 

LCRAT and LCDRAT models.44 

 

Code and model availability 

To facilitate use of the UCL models, we have developed a website and have made the 

models themselves available (https://github.com/callta/lung_cancer_risk_models) as a 

package. The underlying code for AutoPrognosis is available from 

https://github.com/vanderschaarlab/AutoPrognosis.  
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Results 

The descriptive characteristics of the UK Biobank and NLST development datasets, and the 

PLCO external validation dataset are presented in Table 1. Characteristics by outcome are 

presented in eTables 5-8 in the Appendix. The number of cancers diagnosed and deaths 

from lung cancer are presented by follow-up period in eTable 9.  

 

We found that age, smoking duration (years), and pack-years of smoking, drove most 

predictions. This led us to focus our analyses on developing two models: UCL-D and UCL-I, 

that used just these three variables. UCL-D predicts the five-year risk of dying from lung 

cancer and was a weighted ensemble consisting of four modelling algorithms: AdaBoost45,46, 

LightGBM47, Logistic Regression and Linear Discriminant Analysis. UCL-I predicts the five-

year risk of developing lung cancer and included AdaBoost45,46, LightGBM47, Bagging, and 

CatBoost48 algorithms. Details of the ensemble pipelines, their weightings and algorithm 

hyperparameters are presented in the Appendix (eFigures 7-8 and eTable S2-3). Using an 

ensemble approach led to higher discrimination than equivalent Cox models (eTable 10).  

 

UCL models 

In internal and external validation, UCL-D and UCL-I showed good discrimination (Table 2), 

overall performance (Appendix Table S11), and calibration (Figure 2), both overall and 

across subgroups. In external validation in the PLCO radiography arm, UCL-D had an AUC 

of 0.803 (95% CI: 0.783-0.824), an expected/observed (E/O) ratio of 1.05 (95% CI: 0.95-

1.19), and a Brier score of 0.0084 (95% CI: 0.0075-0.0093). UCL-I had an AUC of 0.787 

(95% CI: 0.771-0.802), an E/O ratio of 1.0 (0.92-1.07), and a Brier score of 0.0153 (0.0142-

0.0164).  

 

 

 

 . CC-BY 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted January 29, 2023. ; https://doi.org/10.1101/2023.01.27.23284974doi: medRxiv preprint 

https://doi.org/10.1101/2023.01.27.23284974
http://creativecommons.org/licenses/by/4.0/


12 
 

Table 1:  Descriptive characteristics of development and validation cohorts 

 Development cohorts Validation cohort 

Characteristic UK Biobank 
n=216,714 

NLST controls 
n=26,616 

PLCO radiography 
arm n=49,593 

Age (n, %)    
  <50 43,170 (19.92) - - 
  50-54 30,077 (13.88) - - 
  55-59 39,539 (18.24) 11,384 (42.77) 13,965 (34.41) 
  60-64 57,295 (26.44) 8,170 (30.7) 12,623 (31.1) 
  65-69 45,520 (21.0) 4,741 (17.81) 9,117 (22.46) 
  ≥70 1,113 (0.51) 2,321 (8.72) 4,879 (12.02) 
Missing 0 (0.0) 0 (0.0) 9 (0.02) 
Sex – Female (n, %) 103,698 (47.85) 10,919 (41.02) 16,892 (41.61) 
Missing 0 (0.0) 0 (0.0) 0 (0.0) 
Ethnicity – White (n, %) 208,255 (96.47) 24,165 (91.50) 35,818 (88.29) 
Missing 830 (0.38) 206 (0.77) 23 (0.06) 
Highest qualification (n, %)    
  Degree 59,705 (28.07) 8,213 (31.03) 13,149 (32.44) 
  Some college 16,501 (7.76) 6,072 (22.94) 9,434 (23.27) 
  Post-secondary school 33,588 (15.79) 10,100 (38.17) 14,403 (35.53) 
  Secondary school 57,646 (27.11) 1,211 (4.58) 3,083 (7.61) 
  None of the above 45,231 (21.27) 868 (3.28) 464 (1.14) 
Missing 4043 (1.87) 152 (0.57) 60 (0.15) 
Household income (GBP £)    
  <18,000 49,067 (26.45) - - 
  18,000-30,999 49,023 (26.42) - - 
  31,000-51,999 46,120 (24.86) - - 
  52,000-100,000 33,020 (17.8) - - 
  >100,000 8,296 (4.47) - - 
Missing 31,188 (14.39) - - 
Body mass index    
  <18.5 1,084 (0.50) 240 (0.91) 310 (0.77) 
  18.5-24 62,715 (29.1) 7,302 (27.65) 12,743 (31.78) 
  25-29 94,272 (43.75) 11,442 (43.33) 17,280 (43.1) 
  30-34 41,469 (19.24) 5,219 (19.76) 7,035 (17.55) 
  ≥35 15,954 (7.40) 2,205 (8.35) 2,726 (6.80) 
Missing 1,220 (0.56) 208 (0.78) 499 (1.23) 
Smoking status    
  Former 164,714 (76.01) 13,764 (51.71) 8,073 (19.89) 
  Current 52,000 (23.99) 12,852 (48.29) 32,520 (80.11) 
Missing 0 (0.0) 0 (0.0) 0 (0.0) 
Pack-years of smoking (n, %)    
  <10 35,222 (23.59) 0 (0.0) 6,609 (16.63) 
  11-19 39,914 (26.73) 0 (0.0) 7,605 (19.13) 
  20-29 29,471 (19.74) 4 (0.02) 5,839 (14.69) 
  30-39 20,596 (13.79) 6,865 (25.79) 5,108 (12.85) 
  ≥40 24,125 (16.16) 19,747 (74.19) 14,592 (36.71) 
Missing 67,386 (31.09) 0 (0.0) 840 (2.07) 
Personal history of cancer (n, %) 19,386 (8.95) 1,197 (4.5) 1,837 (4.53) 
Missing 0 (0.0) 0 (0.0) 5 (0.01) 
COPD / Emphysema / Bronchitis (n, %) 6,616 (3.06) 4,617 (17.35) 3,617 (8.91) 
Missing 454 (0.21) 0 (0.0) 0 (0.0) 
Family history of lung cancer (n, %) 28,765 (13.52) 5,734 (21.54) 4,566 (11.71) 
Missing 3,944 (1.82) 0 (0.0) 1602 (3.95) 
Abbreviations: GBP, British Pounds; COPD, Chronic Obstructive Pulmonary Disease.  
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Discrimination 

Despite using approximately one-quarter of the variables, UCL-D achieved parity in 

discrimination with the LCDRAT (AUC: 0.811, 95%: 0.793-0.829, p=0.18 for difference with 

UCL-D). UCL-I achieved parity with PLCOm2012 (AUC: 0.792, 0.779-0.808, p=0.15 for 

difference in AUCs) and showed greater discrimination than LLP versions 2 and 3 (p<0.001).  

 

 

Figure 2: Calibration curves 

Calibration curves showing UCL and comparator models in the UK Biobank (dark blue dashed lines) 
and US PLCO radiography arm (light blue line). Curves were generated by splitting individuals into 
ten risk deciles based on their predicted risk. Each curve shows the mean predicted risk against the 
observed risk by risk decile. Observed risk was calculated using a Kaplan-Meier estimator. UCL 
models showed good calibration in external validation in the PLCO intervention arm, particularly at 
predicted risk between 1-2% at which risk thresholds are commonly set. At these thresholds there 
was modest underprediction with the LCDRAT, LCRAT, and PLCOm2012 models in the PLCO 
intervention arm. All models modestly overpredicted risk in the UK Biobank, with the exception of the 
Liverpool Lung Project (LLP) version 2 model, which strongly overpredicted risk. 
 

Calibration 

The UCL models were well calibrated across risk thresholds at which eligibility for screening 

is typically set, tending modestly towards underprediction in the highest risk decile in the 

PLCO radiography arm (Figure 2). By contrast, PLCOm2012 and LCRAT tended modestly 
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towards underprediction at deciles corresponding to observed risks of 1-4%, which is more 

clinically disadvantageous than overprediction. As the PLCOm2012, LCDRAT and LCRAT 

models were developed in the control arm of the PLCO trial, the strong relative performance 

of the UCL models is notable. All models modestly overpredicted risk in the UK Biobank 

cohort, with the extent of overprediction most notable for the LLP version 2.  

 

Overall performance 

When considering Brier scores, an overall measure of model performance comparing the 

closeness of predicted probabilities and observed outcomes,49 there was little or no 

distinction between the models in the UK Biobank and PLCO radiography arm (Appendix 

Table S11). In the PLCO radiography arm, both models predicting the five-year risk of death, 

UCL-D and LCDRAT had a Brier score of 0.0084 (95% CI: 0.0075-0.0093). Brier scores vary 

with prevalence; consequently, models predicting the risk of developing lung cancer had 

higher scores. Nevertheless, the same pattern was observed: UCL-I had a Brier score of 

0.0153 (95% CI: 0.0142-0.0164), LCRAT a score of 0.0152 (95% CI: 0.0143-0.0164), and 

LLP version 2 a score of 0.0153 (95% CI: 0.0143-0.0165).  
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Table 2: Discriminative accuracy (AUC) overall and by subgroup in the UK Biobank and PLCO radiography cohorts 

 Risk of death from lung cancer Risk of developing lung cancer 
 UCL-D LCDRAT UCL-I LCRAT PLCOm2012 LLPv2 

   UK Biobank    

Overall 0.826 (0.815-0.838) 0.829 (0.813-0.841) 0.810 (0.800-0.820) 0.815 (0.805-0.827) 0.797 (0.783-0.81) 0.779 (0.767-0.793) 
Age category       

  40-49 0.747 (0.659-0.838) 0.755 (0.616-0.904) 0.781 (0.727-0.834) 0.793 (0.692-0.865) 0.797 (0.721-0.876) 0.672 (0.575-0.775) 
  50-59 0.807 (0.780-0.834) 0.803 (0.769-0.834) 0.777 (0.754-0.799) 0.781 (0.751-0.808) 0.779 (0.751-0.81) 0.719 (0.687-0.748) 
  60-72 0.788 (0.772-0.802) 0.792 (0.769-0.805) 0.769 (0.756-0.781) 0.776 (0.762-0.791) 0.765 (0.750-0.780) 0.740 (0.725-0.754) 
Sex       

  Female 0.830 (0.812-0.846) 0.825 (0.798-0.844) 0.812 (0.798-0.825) 0.811 (0.793-0.831) 0.796 (0.780-0.817) 0.771 (0.750-0.791) 
  Male 0.820 (0.805-0.838) 0.829 (0.808-0.845) 0.809 (0.796-0.821) 0.819 (0.802-0.831) 0.798 (0.781-0.815) 0.783 (0.767-0.797) 
Smoking status       

  Former 0.815 (0.796-0.833) 0.813 (0.792-0.834) 0.794 (0.780-0.808) 0.798 (0.783-0.816) 0.778 (0.760-0.798) 0.775 (0.757-0.794) 
  Current 0.773 (0.751-0.793) 0.780 (0.759-0.802) 0.778 (0.763-0.792) 0.787 (0.773-0.801) 0.767 (0.751-0.781) 0.743 (0.726-0.757) 
Ethnicity       

  Other 0.818 (0.722-0.982) 0.806 (0.631-0.972) 0.810 (0.740-0.889) 0.789 (0.660-0.862) 0.827 (0.755-0.905) 0.798 (0.737-0.857) 
  White 0.825 (0.812-0.837) 0.827 (0.813-0.840) 0.809 (0.799-0.819) 0.815 (0.805-0.827) 0.796 (0.781-0.809) 0.778 (0.765-0.791) 
Household income       

  <18,000 0.786 (0.764-0.802) 0.791 (0.768-0.811) 0.769 (0.755-0.785) 0.782 (0.762-0.800) 0.766 (0.747-0.785) 0.742 (0.722-0.759) 
  18,000 to 30,999 0.816 (0.791-0.837) 0.812 (0.787-0.836) 0.794 (0.777-0.814) 0.803 (0.781-0.822) 0.785 (0.762-0.805) 0.749 (0.722-0.771) 
  31,000 to 51,999 0.811 (0.780-0.848) 0.822 (0.772-0.861) 0.791 (0.764-0.816) 0.788 (0.752-0.824) 0.771 (0.733-0.807) 0.757 (0.719-0.799) 
  52,000 to 100,000 0.836 (0.789-0.877) 0.828 (0.763-0.883) 0.821 (0.785-0.853) 0.808 (0.755-0.852) 0.798 (0.741-0.851) 0.790 (0.736-0.835) 
  >100,000 0.744 (0.614-0.938) 0.756 (0.536-0.924) 0.808 (0.733-0.876) 0.772 (0.634-0.875) 0.738 (0.583-0.849) 0.755 (0.624-0.850) 

PLCO radiography arm 

Overall 0.803 (0.783-0.824) 0.811 (0.793-0.829) 0.787 (0.771-0.802) 0.798 (0.784-0.814) 0.792 (0.779-0.808) 0.743 (0.726-0.762) 
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 Risk of death from lung cancer Risk of developing lung cancer 
 UCL-D LCDRAT UCL-I LCRAT PLCOm2012 LLPv2 

Age category       

  55-59 0.800 (0.745-0.844) 0.815 (0.766-0.858) 0.797 (0.762-0.833) 0.817 (0.778-0.847) 0.794 (0.756-0.825) 0.729 (0.695-0.767) 
  60-64 0.793 (0.753-0.831) 0.799 (0.764-0.830) 0.759 (0.722-0.790) 0.776 (0.742-0.804) 0.770 (0.741-0.796) 0.716 (0.678-0.751) 
  65-69 0.787 (0.747-0.823) 0.806 (0.768-0.840) 0.781 (0.752-0.809) 0.792 (0.765-0.823) 0.798 (0.775-0.823) 0.747 (0.715-0.777) 
  70-74 0.747 (0.694-0.790) 0.725 (0.673-0.773) 0.728 (0.685-0.768) 0.723 (0.677-0.760) 0.720 (0.682-0.753) 0.675 (0.628-0.715) 
Sex       

  Female 0.800 (0.771-0.828) 0.801 (0.771-0.831) 0.771 (0.745-0.796) 0.784 (0.760-0.804) 0.784 (0.764-0.805) 0.731 (0.699-0.757) 
  Male 0.803 (0.773-0.828) 0.818 (0.791-0.841) 0.795 (0.774-0.814) 0.807 (0.789-0.825) 0.798 (0.776-0.819) 0.755 (0.731-0.779) 
Smoking status       

  Former 0.813 (0.787-0.842) 0.819 (0.793-0.843) 0.791 (0.768-0.814) 0.802 (0.781-0.824) 0.793 (0.774-0.814) 0.741 (0.715-0.768) 
  Current 0.681 (0.642-0.721) 0.705 (0.667-0.744) 0.677 (0.650-0.717) 0.698 (0.672-0.736) 0.694 (0.669-0.724) 0.651 (0.622-0.696) 
Qualifications       
  Degree 0.680 (0.323-0.921) 0.709 (0.427-0.898) 0.610 (0.455-0.779) 0.681 (0.551-0.799) 0.629 (0.509-0.751) 0.609 (0.493-0.742) 
  Some college 0.756 (0.654-0.834) 0.796 (0.688-0.900) 0.750 (0.686-0.818) 0.771 (0.698-0.848) 0.726 (0.640-0.803) 0.663 (0.597-0.737) 
  Post-secondary 0.730 (0.632-0.825) 0.772 (0.651-0.859) 0.753 (0.688-0.826) 0.780 (0.718-0.843) 0.763 (0.704-0.827) 0.741 (0.670-0.814) 
  Secondary school 0.638 (0.542-0.719) 0.650 (0.55-0.742) 0.620 (0.545-0.691) 0.644 (0.578-0.710) 0.664 (0.608-0.718) 0.643 (0.582-0.707) 
  None of above 0.700 (0.671-0.725) 0.699 (0.675-0.728) 0.673 (0.651-0.697) 0.689 (0.667-0.710) 0.693 (0.670-0.714) 0.644 (0.621-0.667) 
Ethnicity       

  Asian 0.839 (0.805-0.874) 0.857 (0.825-0.888) 0.804 (0.770-0.834) 0.823 (0.791-0.848) 0.820 (0.787-0.848) 0.752 (0.714-0.784) 
  Black 0.805 (0.754-0.847) 0.802 (0.751-0.842) 0.804 (0.771-0.835) 0.811 (0.778-0.841) 0.800 (0.764-0.828) 0.748 (0.709-0.790) 
  Other 0.791 (0.754-0.822) 0.789 (0.757-0.818) 0.765 (0.737-0.793) 0.774 (0.749-0.802) 0.765 (0.741-0.791) 0.728 (0.700-0.755) 
  White 0.734 (0.671-0.795) 0.744 (0.675-0.805) 0.735 (0.696-0.779) 0.741 (0.697-0.785) 0.755 (0.715-0.791) 0.707 (0.658-0.758) 
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       (a)                                                                                (b) 

Figure 3: Decision curves of selected models in the PLCO validation cohort 

Net benefit across a range of thresholds of models predicting 5-year risk of death from lung cancer 
(A) and developing lung cancer (B) compared against USPSTF-2021 screening eligibility criteria in 
the PLCO intervention arm validation dataset. The PLCOm2012 model predicts six-year risk of lung 
cancer. As the performance of PLCOm2012 over a five-year timeframe was similar to that of six-
years, for comparability, predictions over a five-year timeframe are shown here.  All models studied 
except the Liverpool Lung Project (LLP) version 2 had a greater net clinical benefit than using the 
USPSTF-2021 criteria for screening eligibility across all risk thresholds. All other risk models had a 
comparable net benefit to each other.  
 
 

Risk thresholds to select individuals for screening 

Using the USPSTF-2021 criteria, 34,654 (43.0%) of the entire PLCO dataset would be 

eligible for lung cancer screening. All UCL models had higher sensitivity than the USPSTF-

2021 at an equivalent specificity, with the gains in sensitivity higher when predicting five-year 

risk of death from lung cancer (eTable 12). For UCL-I at a five-year risk threshold of 1.17%, 

the gains in sensitivity were 6.2% relative to the USPSTF-2021 criteria (83.9% [95% CI: 

82.0-86.1%] vs 77.7% [95% CI: 75.8-80.2%]). By contrast, UCL-D at a five-year risk 

threshold of 0.68% would lead to a 7.9% increase in sensitivity (85.5% [95% CI: 82.8-88.2%] 

vs 77.5% [95% CI: 74.6-80.9%]) for the same specificity.  
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At the aforementioned risk cut-offs, 96.2% of individuals selected by UCL-D would also have 

been eligible for screening with UCL-I. By 10-years of follow-up, those selected for screening 

with UCL-D but not UCL-I tended towards a greater risk of developing and dying from lung 

cancer than those selected by UCL-I but not UCL-D, though this trend was not statistically 

significant (eFigure 9; Logrank test: p=0.15 for differences in lung cancer deaths and p=0.41 

for differences in lung cancers). 

 

Clinical usefulness 

Using decision curve analysis, at all risk thresholds, the net benefit of the UCL models is 

greater than screening using the USPSTF-2021 criteria (Figure 3 and eFigure 10). At 

suggested risk thresholds, the net benefit of compared risk models other than LLP are 

equivalent.  

 

Discussion 

We have developed parsimonious models for lung cancer screening that combine the 

simplicity of existing risk factor-based criteria with the predictive performance of complex risk 

prediction models. Unique amongst existing risk prediction models for lung cancer 

screening, we have combined large United Kingdom and United States cohorts to train our 

models on over 240,000 individuals’ data with differing risk levels, to improve the 

generalisability of our models. Furthermore, we show in benchmarking comparisons that 

ensemble machine learning models with three predictors – age, smoking duration, and 

smoking pack-years – have equivalent predictive performance and clinical usefulness to 

existing models requiring eleven predictors.  

 

In the UK, eligibility for National Health Service screening pilots is based on meeting either a 

five-year absolute risk of lung cancer of ≥2.5% with the LLP risk score or a six-year absolute 

risk of ≥1.51% with the PLCOm2012.23 The use of two risk scores where eligibility differs by 
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more than a percentage point in predicted absolute risk, and where a higher risk is tolerated 

over a five-year period than a six-year period, highlights the policy challenge in adopting the 

optimal risk-based approach for a particular setting. This approach requires the collection of 

19 different predictors, as well as the mapping of US educational levels and US ethnicity 

categorisations to the UK. With an estimated seven million current smokers in the UK50 – 

even ignoring former smokers – the time and resource requirements to determine screening 

eligibility at a population scale will be challenging. Using three unambiguous variables but 

with equivalent or improved performance, the UCL models could be completed more easily 

online or in primary healthcare, simplifying the implementation of lung cancer screening.  

 

In keeping with Katki and colleagues,19 we found that UCL-D, predicting the risk of death 

from lung cancer, had greater discrimination than models predicting lung cancer occurrence. 

In these analyses, there was >96% overlap between UCL-D and UCL-I in terms of those 

selected for screening, with those selected by UCL-D but not UCL-I showing a trend towards 

a greater risk of death from lung cancer with longer follow-up (eFigure 9). In microsimulation 

modelling, overall outcomes differed little between a model predicting death from lung 

cancer compared with models predicting developing lung cancer.13 Given this, UCL-D would 

be the more appropriate model to consider for implementation. 

 

In this analysis, we used ensemble machine learning to leverage the predictions of several 

optimised model pipelines. Ensemble modelling is based on the concept that different 

models make different types of mistake, and their errors begin to cancel each other out, such 

that combining these statistical models could be expected to improve the performance that 

any one might achieve.51 By iteratively trialling and optimising a wide range of state-of-the-

art modelling approaches before subsequently creating ensembles of these approaches, 

AutoPrognosis ensures that the strongest performing model for that dataset will be derived 

and allows reproducibility by transparently showing how models were selected. This avoids 

the need to develop multiple independent models. 
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This study has several limitations. We have used retrospective data, such that findings may 

differ if used to prospectively determine screening eligibility. However, both the PLCOm2012 

and the LLP models have been studied in prospective settings, establishing the benefits of 

risk-model against risk-factor-based screening. By benchmarking against these models, we 

can be confident in the performance of our models in a screening programme. To confirm 

the generalisability of our models, validation in datasets from beyond the US and UK will be 

the subject of further work. Finally, our risk models exclude never-smokers. To date, no risk 

model has been able to discriminate those never smokers with sufficient risk to meet existing 

criteria for lung cancer screening.  

 

In summary, we have developed prognostic models to determine lung cancer screening 

eligibility that require only three variables – age, smoking duration, and pack-years – that 

perform at or above parity with existing risk models in use. Further validation in alternative 

datasets as well as prospective implementation should be considered. 
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