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Abstract

Purpose

The aim of this study was to develop and internally validate a clinically plausible Bayesian network structure to
predict two-year survival in patients diagnosed with non-small cell lung cancer (NSCLC) and primarily treated
with (chemo) radiation therapy by combining expert knowledge and a learning algorithm.

Summary of background

The incidence of lung cancer has been increasing. Healthcare providers are trying to acquire more knowledge of
the disease’s biology to treat their patients better. However, the information available is more than humans can
efficiently process. Predictive models such as Bayesian networks, which can intricately represent causal relations
between variables, are suitable structures to model this information. However, commonly known methods for

developing Bayesian network structures are limited in healthcare.

Patients and Methods

545 NSCLC patients treated primarily with (chemo) radiation therapy from Maastro clinic in the Netherlands
between 2010 to 2013 were considered to develop this Bayesian network structure. All continuous variables were
discretized before analysis. Patients with missing survival status and variables with more than 25% missing
information were excluded. The causal relationships (arcs) between variables in the data were determined using
the hill-climbing algorithm with domain experts’ restrictions. The learning algorithm was run on a number of
bootstrapped samples (B=400) and for the final structure, we kept the arcs present in at least 70% of the learned
structures. Performance was assessed by computing the area under the curve (AUC) values and producing
calibration plots based on a 5-fold cross-validation. In addition, an adapted pre-specified expert structure was
compared with a structure developed from the method in this study.

Results

Tumor load was included in the main structure due to its high percentage (37%) of missingness and lack of added
value. The final cohort used to develop the structure was reduced to 499, excluding 46 (8.4%) patients with
missing survival status. The resulting structure’s mean AUC and confidence interval to predict two-year survival
was 0.614 (0.499 - 0.730 ). The AUC of the compared structures was only slightly above the chance level, but the
structure based on the method in this study was clinically more plausible.
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The results of this study show that Bayesian network structures which combine expert knowledge with a rigorous

structure learning algorithm produce a clinically plausible structure with optimal performance.
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Introduction

Lung cancer is the second most common cancer and the leading cause of cancer morbidity and mortality
in men and second for women after breast cancer worldwide, with non-small cell lung cancer (NSCLC)
accounting for approximately 85% of this disease [1, 2]. These statistics actuate healthcare providers to
acquire more knowledge and understand the patient condition and disease characteristics for better

patient management and treatment outcomes.

However, the amount of information that needs to be processed to ascertain if a patient will experience
an event of interest can be challenging even for domain experts [3, 4]. Furthermore, it has been shown
that even experienced domain experts specialized in the treatment of lung cancer have limited to no
capabilities for predicting patients” outcomes vis-a-vis prediction models [5-5]. Predictive models such
as Bayesian networks (BN), which can structurally represent a domain of interest by causally mapping

the domain’s variables, may be more suitable for modeling such information.

Bayesian network structures are either expert(s) specified or algorithm-based [9-11]. However, these
methods are limited in a clinical setting due to implausible casual relationships for algorithmic structures
or bias for expert structures based on their experience and domain knowledge. Our prior work, which
compared the performance of structures from these two sources, showed that algorithm-based structures
perform relatively better but with little or no clinical interpretability [12]. On the other hand, expert
structures are more clinically interpretable but with relatively inferior performance. Therefore, this
study aims to develop a Bayesian network structure that stems from both methods to predict two-year

survival in patients diagnosed with lung cancer primarily treated with radiation therapy.

We hypothesize that a symbiotic relationship between domain experts and a robust learning algorithm
(expert-algorithm) would yield a clinically interpretable and plausible Bayesian network structure to

predict two-year survival for lung cancer patients with optimal performance.
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Materials and methods

We retrospectively collected data of 545 non-small cell lung cancer (NSCLC) patients diagnosed between
2010 to 2013 and eligible for (chemo) radiotherapy treatment at Maastro Clinic, Maastricht, The Nether-
lands. Patients” demographics and clinical information such as age, gender, WHO performance status,
TNM stage, tumor load, FEV, smoking status, chemotherapy type, and two-year survival status were

extracted to establish the Bayesian network.

Bayesian network

Bayesian networks model the relationships between a set of variables. These relationships are repre-
sented in a directed acyclic graph (DAG), where each node in the graph signifies a variable [9].The
direction of the link between nodes represents the influence dependency from the causal variable known
as the parent node to the affected variable called the child node. Therefore, each variable can be a child
or parent to numerous variables, but the process should not contain any loops. In other words, tracing
the parent-to-child link should not connect a variable with itself or a variable functioning as a child and
parent to another variable [11]. The conditional probability table (CPT) represents the probabilities of

each possible state of a node, given the states, its parent node may take [9, 10, 13].

Structure learning

The structure learning process was bootstrapped (B=400) with varying sample sizes at each run using
the hill-climbing algorithm to identify the causal relationships (arcs) between variables in the dataset.
Arc strength was evaluated as the rate of occurrence over all the bootstrap runs, and only arcs with
an occurrence rate above 70% were included in the final structure. Domain knowledge from multiple
experts in the field was employed to restrict the algorithm from forming arcs in clinically implausible di-
rections (so-called blacklist) like age having a causal influence on gender (Table S1 in the supplementary

materials). The pseudocode for the expert-algorithm method is outlined in algorithm 1.
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/- a

Algorithm 1: Expert-Algorithm pseudocode
Input: Data D, Bootstrap run B, Restriction R, threshold e

Output: Arcs as list A, BN

Step 1: Bootstrap Learning // Learning on the bootstrap samples d;

fori:1..Bind; do

‘ Aj =hC(di, B, R) // R: Expert restricted arcs
end

Step 2: Arc Strength
26:1) 4;

B
Step 3: Arc Thresholding

A —

// Count each arc in all bootstrap runs

foreach arcin A
if The arc strength > € // Arc selection for final BN structure

then
| Include in the final structure.

end
end

return BN
\_ hc = Hill-climbing learning algorithm, BN = Bayesian Network Y.

Statistical analysis

All analysis was conducted in R version 4.1.0 [14] using the bnlearn package [15] and GeNlIe a Graphical
Network Interface application [16] was used to visualize the developed Bayesian network structures.
Tumorload and age were categorized into three groups with cutoff values at the 25th and 75th percentile
and the force expiratory volume (FEV) was categorized based on experts opinions. Missing values were
imputed using the Multivariate Imputation via Chained Equations (MICE ) package [17]. Patients with
missing survival status and variables with more than 25% missingness were excluded from the analysis.
The predictive performance of the resulting Bayesian network structure was assessed by computing

the area under the curve (AUC) using a 5-fold cross validation technique and generating calibration plots.

The main structure was updated with the excluded variable using the structural.em function in the
bnlearn package to check if the excluded variables having above 25% missingness were crucial. The

function learns a Bayesian network from a dataset containing missing information by first inputting
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the missing data using the expectation-maximization (EM) algorithm and then finds the best possible
structure based on the imputed data. The arcs of the main structure were used as a whitelist in the

structure update process.
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Results

From the 545 patients in this study, 46 (8.4%) with a missing two-year survival status were excluded
from this analysis, reducing the cohort to 499. Tumorload was excluded from further analysis due to its
high percentage (37%) of missing information. The median age of patients in this study was 68 (33 - 89).
Most of the patients in this study are ex-smokers, with the number of males almost twice that of females.

Table 1 shows a detailed descriptions of patients’ characteristics for this study cohort.

The variable age was discretized into three groups with cutoff values at the 25th and 75th percentile
(Figure S2 supplementary materials). Patients between the cutoff values are considered elderly as shown
in equation 1 while patients below and above the cut-off values were considered adults and seniors,
respectively. The forced expiratory volume (fev) was also discretized into four groups based on experts

suggestion as shown in equation 2.

( N

" AN

~

(Below 61 years) — Adults (Below 40)  —  Severe
(40 - 59) — Moderate
Age = { (61-76years) —  Elderly (1) FEV = (2)
(60 - 79) — Mild
Above 76 —  Seni
(Above 76 years) eniors (Above79) — Normal

J

The WHO performance status was recategorized into four groups by combining patients in the limited (3) and
bed-bound (4) categories into the same category (bed-bound) because of the very low number of patients in the
two categories (Table 1). Also, they both have similar characteristics (See Table S2 in the supplemental material for

further explanations).

Diagnostic plots were created to ensure that the imputations has converged to the desired distribution. The
convergence check plot (Figure S1 supplemental material) of the imputed values suggest the imputation has
converged to the target distribution. Furthermore, the density plot (Figure S4 supplemental material) which
compare the distribution of the imputed and observed values confirms that the imputations are reasonable since

the distribution of the imputed and observed values are very similar.
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[ Table 1. Overview of patient demographics and clinical characteristics

Two years survival

Variable Levels False | True Total
Age at RT | Mean (sd) | 68(10.9) | 67(10.1) | 68 (10.5)
£V Mean (sd) 76 (20.8) | 78 (22.4) 77 (21.5)
Missing 68 (22.5%) | 42 (21.3%) 110 (22.0%)
Mean (sd) 136 (143.6) | 92 (150.7) 113 (145.7)
Tumorload Missing 111 (36.8%) | 64 (32.5%) 204 (37.4%)
Sox Male 205 (63.1%) | 120 (36.9%) 325 (65.1%)
Female 97 (55.7%) | 77 (36.9%) 174 (34.9%)
No 252 (60.3%) | 166 (39.7%) 418 (90.9%)
Metastasis Yes 28 (66.7%) | 14 (33.3%) 42 (09.1%)
Missing 22 (56.4%) | 17 (43.6%) 39 (07.8%)
No chemo 71 (66.4%) | 36 (33.6%) 107 (25.6%)
Sequential 31 (60.8%) | 20 (39.2%) 51 (12.2%)
Chemotherapy type |-~ - irent | 151 (58.1%) | 109 (41.9%) 260 (62.2%)
Missing 49 (60.5%) | 32 (39.5%) 81 (16.2%)

Non smokers

07 (50.0%)

07 (50.0%)

14 (03.1%)

WHO performance

Smoking status Quit smoking || 194 (62.4%) | 117 (37.6%) 311 (68.2%)
Smokers 76 (58.0%) | 55 (42.0%) 131 (28.7%)
Missing 25 (58.1%) | 18 (41.9%) 43 (08.6%)
Active (0) 46 (52.9%) | 41 (47.1%) 87 (17.7%)

Restricted (1)

172 (61.4%)

108 (38.6%)

280 (57.0%)

status Self care (2) 65 (64.4%) | 36 (35.6%) 101 (20.6%)
limited (3) 13 (65.0%) | 07 (35.0%) 20 (04.1%)
Bedbound (4) | 02 (66.7%) | 01 (33.3%) 03 ( 00.6%)
Missing 04 (50.0%) | 04 (50.0%) 08 (01.6%)
TO 45 (61.6%) | 28 (38.4%) 73 (15.7%)
TIer e TH1 89 (64.0%) | 50 (36.0%) 139 (29.8%)
T2 50 (60.2%) | 33 (39.8%) 83 (17.8%)
T3 100 (58.5%) | 71 (41.5%) 171 (36.7%)
Missing 18 (54.5%) | 15 (45.5%) 33 (06.6%)
NO 77 (58.3%) | 55 (41.7%) 132 (27.6%)
N1 16 (51.6%) | 15 (48.4%) 31 (06.5%)
Nodal stage N2 114 (58.5%) | 81 (41.5%) 195 (40.8%)
N3 85 (70.8%) | 35 (29.2%) 120 (25.1%)
Missing 10 (47.6%) | 11 (52.4%) 21 (04.2%)
False - - 302 (60.5%)
Two year survival True - - 197 (39.5%)
Missing - - 46 (08.4%)

RT: Radiotherapy, Chemo: Chemotherapy, WHO: World Health Organization, FEV: Forced expiratory volume

Table 2 shows the results of the aggregated arcs from the bootstrap structure learning process using the hill-
climbing (hc) algorithm and expert restriction (Blacklist). The arc strength shows the percentage of occurrence of

each arc in the bootstrap runs.
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[ Table 2. Bootstrap run output with arcs and strength for the main structure.
Arcs Dependencies (A)

Parent node Child node Strength
Gender Two year survival 0.65
Gender FEV 0.64
WHO PS Two year survival 0.70
WHO PS Chemotherapy type 0.43
Age Two year survival 0.61
Age WHO PS 0.84
Age Chemotherapy type 0.99
Tumor stage Two year survival 0.73
Tumor stage WHO PS 0.43
Tumor stage Nodal stage 0.91
Tumor stage FEV 0.64
Tumor stage Chemotherapy type 0.94
Nodal stage Two year survival 0.84
Nodal stage WHO PS 0.91
Nodal stage FEV 1.00
Nodal stage Chemotherapy type 1.00
Metastasis Two year survival 0.42
Metastasis WHO PS 0.92
Metastasis FEV 0.66
Metastasis Chemotherapy type 0.76
FEV Two year survival 0.63
FEV WHO PS 0.86
FEV Chemotherapy type 0.97
Chemotherapy type Two year survival 0.34
Smoking status Two year survival 0.86
Smoking status FEV 0.82
FEV: Forced expiratory volume, WHO PS: World Health Organization performance status

A threshold of 0.7 was chosen to decide which arcs should be included or excluded in the Bayesian network
structure. A higher threshold value ensures that the conditional probability table (CPT) of the outcome does
not grow too large, which can cause the structure to overfit. Therefore, the chosen threshold helps restrain the

structure from overfitting but allows enough room for structural complexity for optimal performance.

The resulting Bayesian network structure based on the chosen threshold is presented in figure 1. Of the 26 arcs
produced during the bootstrap structure learning process, only 15 had an arc strength above the selected threshold
and were used to develop the Bayesian network structure. Four variables directly influenced the response of
interest (gray arcs), while gender was isolated on the structure because it was neither a parent nor a child to any

variable in the network.
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Chemo type
[7]

Smoking
status survival _— stag

Fig 1. Resulting Bayesian network structure to predict two-year survival from the expert-algorithm method. The
oval structure represent the variables (Node), and the arrows indicate the direction of the causal-effect
relationships. Grey arrows indicate a direct parental link to the outcome of interest

FEV = Forced expiratory volume, Chemo = Chemotherapy, WHO PS = World Health Organization performance status

Figure 2 shows the performance assessment results when the resulting Bayesian network structure was used to
predict two years survival in lung cancer patients using the repeated (r=50) 5-fold cross validation technique. The
left figure shows the area under the curve and confidence intervals of the respective folds with a mean value of
0.614 (0.499 - 0.730). The right figure gives a measure of how similar the predicted probabilities are to the observed
probabilities with calibration assessed in term of the degree of deviation of the points (color) from the 45 degree

line (dotted gray).

Updating the main structure with the excluded variable included three arcs (red) between tumor load and tumor
stage, tumor load and the presence of metastasis, the presence of metastasis and two years survival (Figure S3
in the supplemental material). However, the addition of these arcs had no significant improvement on the mean

AUC value. Gender was again not connected to any other variable in the structure.
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Fig 2. The area under the curve and calibration plot of the structure for predicting two-years survival.

To assess the expert-algorithm method, the structure and performance of an expert pre-specified structure from
Jochems et al. [18] was compared with a structure resulting from the expert-algorithm procedure with a threshold
of 0.7 and the same variables. The aggregated arcs results from the bootstrap runs based on these variables are

presented in table 3

Table 3. Bootstrap run output with arcs and strength for structure comparison.
Arcs Dependencies (A)

Parent node Child node Strength
WHO PS Two year survival 0.43

Age Two year survival 0.38
Age WHO PS 0.94
Tumor stage Two year survival 0.36
Tumor stage WHO PS 0.10
Tumor stage Nodal stage 0.68
Nodal stage Two year survival 0.74
Nodal stage WHO PS 0.92
WHO PS: World Health Organization performance status

The structure from Jochems et al. [15] was adapted in this analysis because of the missing total tumor dose variable.
Figure 3 shows the adapted structure from Jochems et al. [18] and that resulting from the expert-algorithm method
respectively. The only similarity in the structures is that the outcome has just one parent but the variables are
completely different with the adapted structure having WHO performance score as parent and nodal stage for the
expert-algorithm structure. Based on the differences, the expert-algorithm structure uses one variable and arc less

with the outcome being an end node (having no child) compared to the adapted structure.
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Tumor stage

Two year
survival

Nodal stage

Two year
survival

Fig 3. Adapted structure from Jochems et al. [15] and that from the expert-algorithm procedure respectively. The
oval structure represents the variables (Node), and the arrows indicate the direction of the causal-effect
relationships. Grey arrows indicate a direct parental link to the outcome of interest

WHO PS: World Health Organization performance status

The performance of both structures was only slightly better than flipping a coin (Figure S5 supplemental material)
with an area under the curve of 0.56 (0.517 - 0.613) for the expert-algorithm structure and 0.53 (0.489 - 0.582) for the
adapted structure from Jochems et al. [15]. Though both structures had poor performance with just one arc to the
outcome, the expert-algorithm structure had a slightly higher discriminating ability than the adapted structure,

but this difference was not statistically significant (p-value = 0.413).

To further evaluate the performance of the structures, their respective calibration plots were produced and overlaid
(Figure S5 supplemental material). They show that both plots were poorly calibrated given how distant the points
are from the diagonal dotted gray line. However, the expert-algorithm structure is better calibrated relatively with

more points closer to the diagonal line.
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Discussion

We have developed a novel structure learning method to produce clinically plausible and interpretable Bayesian
networks resulting from an interplay of a learning algorithm and experts’ restrictions. The structure produced due
to our expert-algorithm method was used to predict two-year survival in NSCLC patients. A resulting structure
from the application of our expert-algorithm method was compared to an adapted expert pre-specified structure.
Both structures produced comparable results in terms of AUC and calibration. However, the expert-algorithm
structure had a slightly better performance with one variable and arc less than the adapted structure and more

clinically plausible arcs.

Numerous Bayesian network structures have been developed to predict survival in lung cancer patients [19],
and some of these structures stem from our group [12, 18, 20-22]. These structures were either inferred from
the data by a structure learning algorithm or pre-specified by expert(s). Jochems et al. [15] has even compared
the performance of structures derived from both methods and showed that expert-based structures were more
performant than algorithm-based structures, although the difference was not statistically significant. To our
knowledge, this is the first time a Bayesian network structure has been developed from routine clinical care
data that applies both structure learning methods while considering the clinical sanity and interpretability of
the resulting structure—in other words, developing a Bayesian network structure which is suited for clinical
implementation, because Bayesian network structures which captures domain knowledge are more interpretable

which is essential for clinical decision making.

Bayesian network structure learning process can be time-consuming and computer-intensive, especially for expert
base and algorithmic structures like the hill-climbing algorithm, which test pairs of variables to determine whether
edges should be included or removed from the structure respectively. Therefore applying our expert-algorithm
method, which restricts candidate solutions (arcs) from being evaluated during the search process, could sig-
nificantly improve structure learning in radiotherapy fields, which involves using high dimensional data, as is
the case with radiomics studies. Furthermore, our expert-algorithm method could serve as a means to perform
variable selection in the structure learning process of Bayesian networks, something missing in literature since
variable selection is mainly performed manually by experts. When a high threshold is applied to the bootstrap
object, it leads to the removal of arcs with strength smaller than the specified threshold and possibly variables
with arc strength inferior to the threshold as in the case for gender in figure 1. Finally, the expert restriction and the
use of a threshold ensure that the resulting structure is clinically correct and includes only relevant relationships

in the data with optimal performance.
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This study hypothesized that combining experts” knowledge with a learning algorithm would yield a more
clinically correct structure. The results comparing the structures from both methods support this hypothesis.
Although both structures performed relatively poorly, we observed a significant improvement in our expert-
algorithm structure as most of the arcs in the adapted structure were either reversed or modified to clinically
acceptable arcs. However, the arc from WHO PS to the outcome, present in the adapted structure, was absent in the
expert-algorithm structure. One possible explanation for this difference could be that WHO PS alone is not a good
correlate to survival, but its interplay with other variables increases its influence on survival, as seen in the primary
structure ( Figure 1) with an arc strength of 0.73 as opposed to 0.43 ( Table 2 and 3 respectively). Similar conclu-
sions can be drawn from the study by Jayasurya et al. [20] as the arc (WHO PS to Survival) was also present in

their structure with a link weight of -0.169, suggesting that WHO PS has limited ability to predict survival correctly.

The structures presented in this study are not intended for clinical use at the moment but to encourage further
research on how to merge these two methods best to develop a Bayesian network structure for a more clinically
correct structure but with optimal predictive performance. Therefore, this study is not devoid of limitations
mainly because of its retrospective nature, which implies the possibility of data bias. Furthermore, the main
structure did not include predictive variables such as the number of positive lymph nodes on the PET scan (PLNS)
and tumor load. Although tumor load was available as a variable in this study, it was excluded due to missing
information. Faehling, Schwenk, Kopp, Fallscheer, Kramberg, and Eckert [23] has shown that tumor load is an
essential factor for overall survival, and patients with lower tumor load have a better outcome than patients with
larger tumor load. PLNS, on the other hand, was unavailable in this study which makes the structural comparison
somewhat unfair. Also, information is lost with the discretization of continuous variables, which might explain
the low predictive power of tumor load in this study coupled with the high missingness. Lastly, this study’s
threshold selection is set arbitrarily, which means a large threshold will lead to a sparse network that only partially
represents the domain, and a small threshold yields a dense network (complex, squiggly, and harder to read )
that might overfit the data. Future researchers should focus on finding an optimal threshold that addresses the

shortcomings of the present thresholding.

Conclusion

We have developed a Bayesian network structure from routine clinical data for predicting two-year survival in
lung cancer patients treated with (chemo) radiotherapy. Our expert-algorithm method uses bootstrapping with
arc restriction in the structure learning process and assesses the robustness of causal relationships. Therefore,

selecting the most robust relationships overall bootstrapping samples produces a structure that captures all
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relevant relationships within the data with a reduced chance of adding spurious links. In the future, we intend to
use this method to evaluate different structures learned from different data sets and perform a privacy-preserving

distributed learning approach to structure learning in Bayesian networks.
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Fig 1. The convergence check plot shows the mean (left) and standard deviation (right) of the imputed values
against iteration number. The plot suggests the imputation has converged to the target distribution given the good
mix/intermingling of the streams and its trends-free nature at the later part of the iterations
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, Table 2. WHO Performance status

Grade | Explanation of activity

0 Fully active, able to carry on all pre-disease performance without restriction

1 Restricted in physically strenuous activity but ambulatory and able to carry out work
of a light or sedentary nature, e.g., light housework, office work

2 Ambulatory and capable of all self-care but unable to carry out any work activities.
Up and about more than 50% of waking hours

3 Capable of only limited self-care, confined to bed or chair more than 50% of waking
hours

4 Completely disabled. Cannot carry on any self-care. Totally confined to bed or
chair.

5 Dead
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