1	Pontine pathology mediates common symptoms of
2	blast-induced chronic mild traumatic brain injury
3	James S. Meabon ^{1,2*} , Abigail G. Schindler ^{2,3} , Daniel R. Murray ¹ , Elizabeth A. Colasurdo ¹ , Carl
4	L. Sikkema ¹ , Joshua W. Rodriguez ¹ , Mohamed Omer ¹ , Marcella M. Cline ⁴ , Aric F. Logsdon ³ ,
5	Donna J. Cross ⁵ , Todd L. Richards ⁶ , Kole D. Meeker ^{3,7} , Andrew Shutes-David ^{1,3} , Mavumi Yagi ³ ,
6	Daniel P. Perl ⁸ , Desiree A. Marshall ⁹ , C. Dirk Keene ⁹ , William A. Banks ^{2,3,11} , Ronald G.
7	Thomas ^{12,13} , Cory McEvoy ¹⁴ , Adam Crabtree ¹⁴ , Jake R. Powell ¹⁵ , Jason P. Mihalik ¹⁵ , Kathleen
8	F. Pagulayan ^{1,16} , Murray A. Raskind ^{1,2} , Elaine R. Peskind ^{1,2} , & David G. Cook ^{3,10,11}
9	
10 11 12 12	¹ VA Northwest Mental Illness Research, Education, and Clinical Center (MIRECC), VA Puget Sound Health Care System (VA Puget Sound), Seattle, WA, USA.
13 14 15	² Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA, USA.
10 17 18 10	³ Geriatric Research, Education, and Clinical Center (GRECC), VA Puget Sound Health Care System (VA Puget Sound), Seattle, WA, USA.
20 21 22	⁴ Department of Molecular and Cellular Biology, University of Washington, Seattle, WA, USA.
22 23 24	⁵ Department of Radiology, University of Utah, Salt Lake City, UT, USA.
25 26	⁶ Department of Radiology, University of Washington, Seattle, WA, USA.
20 27 28	⁷ Immusoft, Seattle, WA, USA.
29 30 31	⁸ Department of Pathology, DoD/USU Brain Tissue Repository and Neuropathology Core Laboratory, Uniformed Services University, Bethesda, MD, USA.
32 33 34	⁹ Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA.
35 36	¹⁰ Department of Pharmacology, University of Washington, Seattle, WA, USA.
37 38	¹¹ Department of Medicine, University of Washington, Seattle, WA, USA.
39 40 41	¹² Alzheimer's Disease Cooperative Study, University of California San Diego, La Jolla, CA, USA.

42 43	¹³ Division of Biostatistics, Department of Family Medicine & Public Health, University of California San Diego, La Jolla, CA, USA.						
44 45	¹⁴ United States Army Special Operations Command, Fort Bragg, NC, USA.						
46 47 48	¹⁵ Physical Therapy, Department of Allied Health Sciences, School of Medicine, University of North Carolina, Chapel Hill, NC, USA.						
49 50 51 52	¹⁶ Department of Rehabilitation Medicine, University of Washington, Seattle, WA, USA.						
53 54	* To whom correspondence should be addressed:						
55							
56	James S. Meabon, PhD						
57	MIRECC, VA Puget Sound Health Care System						
58	Department of Psychiatry and Behavioral Science						
59	University of Washington School of Medicine						
60	1660 S. Columbian Way						
61	Seattle, WA 98108 USA						
62							
63	Phone: 206-277-4631						
64	Email: james64@uw.edu						
65							

66 Abstract

67 Understanding how diffuse mild traumatic brain injuries can provoke common and persistent 68 post-concussive symptoms (PCS), such as impaired sleep, is crucial to prevent and treat chronic 69 disability and neurodegeneration. We mapped the spatially-resolved single cell landscape of 70 diffuse mTBI pathology in a mouse model of blast exposure; identifying brainstem injuries 71 predictive of later PCS. Repeated mTBI was necessary to establish chronic microglial activation 72 and phagocytosis of myelin in the pontine reticular formation; where IL33 release by 73 oligodendrocytes predicted microgliopathy. In postmortem brainstem tissues from patients with 74 traumatic brain injury, chronic microglial activation and myelin phagocytosis was evident up to 75 20 years after diffuse mTBI caused by blast. In living patients with chronic blast mTBI, myelin 76 injury in pontine projections mediated sleep disturbance and other PCS, with a dose dependent 77 effect of mTBI number on sleep disturbance severity. These results support a mechanism for 78 diffuse mTBIs to cause delayed persistent PCS.

80 Main

81	Mild traumatic brain injuries (mTBIs), or concussions, account for ~55 million annual global					
82	TBI cases. ¹ Although the causes of these injuries vary, persistent post-concussive symptoms					
83	(PCS) following mTBI-e.g., development of impairments in concentration, memory, mood,					
84	sensation, and sleep—are remarkably consistent. ² This consistency suggests that mTBIs share a					
85	common underlying neuropathology that may map to specific brain areas subserving these					
86	functions (e.g., brainstem nuclei). However, the mechanisms underlying these deficits are poorly					
87	understood, in part because mTBIs are undetectable on clinical neuroimaging.					
88	Evidence suggests that TBIs may provoke the delayed development of deficits via					
89	neuroimmune axes that regulate the microstructural repair of the nervous system. ^{3,4} This means					
90	that two critical determinants of long-term TBI outcomes are injury location and the subsequent					
91	cellular response. An improved anatomical understanding of specific TBI pathologies under					
92	conditions of diffuse injury, such as those caused by blast shock waves moving through the					
93	brain, could help predict the development of generalized functional or behavioral deficits					
94	following disease onset. Recent advances in high-dimensional spatially-resolved phenotyping					
95	coupled with precise anatomical brain mapping may help us understand how changes in the					
96	pathological microenvironment relate to persistent PCS following mTBI.					
97	Even with minimal rotational head or body displacement, mTBI caused by exposure to					
98	explosive overpressures transmits a rapid force throughout the brain, diffusely injuring its					
99	tissues. The resulting pathology often differs from more kinetic forms of mTBI (e.g., caused by					
100	falls, assaults, etc.); ⁵ however, blast-mTBIs often cause persistent PCS that are indistinguishable					
101	from other mTBIs. ⁶⁻¹¹ Therefore, we examined mTBIs associated with blast overpressure					
102	exposure in both military veterans and a mouse model of blast-mTBI with attenuated head					

movement.¹² This approach avoids coup-contrecoup and "whiplash" injuries, while testing the
 hypothesis that blast-mTBIs provoke conserved post-concussive symptoms mediated by chronic
 pathological changes in brainstem nuclei.

106 **Results**

107 Brainstem nuclei are vulnerable to mTBI

108 Post-concussive symptoms typically relate to microscopic traumatic axonal injuries near small blood vessels^{13,14} in specific anatomical regions, such as cerebellum and corpus callosum,¹³ 109 110 where vessel lesions can drive circuit dysfunction.¹⁵ Functional injury of microvascular tight 111 junctions can be assessed by measuring the leakage of blood-borne molecules into the brain 112 parenchyma. This method paradoxically shows that after TBI, disruption of the blood-brain 113 barrier to the large molecule human albumin (66 kDa) is detectable prior to disruption to the 114 smaller molecule sucrose (342 Da). However, disruption to sucrose persists longer than 115 disruption to human albumin.¹⁶ We measured the functional integrity of the blood-brain barrier 116 across brain regions 15 minutes to 3 days after a single blast-mTBI using blood-borne ¹⁴C-117 sucrose and ^{99m}Tc-Albumin. Although a non-significant accumulation of sucrose and albumin 118 was observed in the cortex during the acute phase (15 min after mTBI), significant leakages of 119 both large and small molecules were detected in the brainstem, but not cortex (Fig. 1a). This 120 indicates a regional vulnerability of the blood-brain barrier (BBB) to injury, with the brainstem's 121 BBB being more susceptible to injury after a single mTBI than the cortex. Injured neurons in 122 areas of microvascular disruption can be identified by their uptake of blood-borne dyes that leak 123 into the brain across the disrupted BBB, whereas adjacent uninjured neurons remain unlabeled.¹⁷ 124 We used this method to determine the relative frequency of injured neurons across brain regions

125	and white versus gray matter (Fig. 1b, c). Projection neurons, which are clearly distinguished					
126	from glia using this method (Fig. 1d, e), were labeled by extravasated fluorescent dye and					
127	occurred most frequently in the brainstem. In the brainstem, about 30% of mice showed evidence					
128	of neuronal injury within one hour and up to 70% of mice had observable neuronal injury within					
129	four hours of a single mTBI (Fig. 1b). Across sagittal brainstem sections, labeled cells occurred					
130	most frequently in white matter (Fig. 1c). Blood-borne labeling of injured brainstem neurons wa					
131	visually more subtle than injured Purkinje cells of the inferior cerebellum (Fig 1d), a classic					
132	injury pattern of mTBI, ¹⁸ likely owing to their expansive and dense arborizations.					
133	Injured brainstem neurons and areas of BBB damage coincided with local changes in					
134	microglial morphology that are consistent with activation and phagocytosis of extravasated					
135	materials (Fig. 1d). Diffuse axonal and neuronal injuries were primarily observed in the pontine					
136	reticular formation (RF), one of several brainstem regions controlling sleep behavior (Fig. 1e).					
137	Localized cellular injuries were observed laterally toward the brainstem surface, with frequent					
138	prominent injuries along the ventral caudal surface, spinal trigeminal tract, and dorsal columns					
139	and was independently identified by unguided investigators (AFL, KDM) blinded to the study					

140 groups.

141 The development of brainstem tauopathy, indicating axon injury, paralleled increased 142 expression of aquaporin-4 (AQP4), which regulates the brain-wide convection of water. A 143 compensatory increase in the expression of magnesium superoxide dismutase (MnSOD), a 144 mitochondrial redox enzyme responsive to TBI-related cellular injury,¹² paralleled the increase in 145 the fluorescent labeling of injured neurons (**Fig. 1f**). Tauopathy in the pontine gray, medial 146 lemniscus, and RF persisted at least 24 hours after injury (**Fig. 1g, h**).

147 Cerebral edema often follows both clinical and experimental mTBI despite unremarkable 148 neuroimaging results. We postulated that the prominence of diffuse injury from the foramen magnum to the 4th ventricle and the related changes in the AQP4 water transporter would be 149 150 accompanied by tissue swelling. Such swelling, we posited, would result in reduced 4th ventricle 151 volume per T2 MRI and be associated with secondary cerebral edema, yielding enlargement of the 3rd and lateral cerebral ventricles. In group-blinded analyses of mice assessed 24 hours after a 152 153 single blast-mTBI, we found that mTBI induced significant enlargement of the lateral and 3rd ventricular volume while reducing the 4th ventricular volume (Fig. 1i, j). These results indicate 154 155 that a single blast-mTBI can cause axonal injury and inflammation of the brainstem in the 156 absence of gross hemorrhage. Such injuries may contribute to more expansive secondary injuries 157 related to edema throughout the brain.¹⁹

158 mTBI establishes persistent brainstem microgliopathy

159 Repetitive mTBI is an environmental risk factor for chronic neurodegenerative phenotypes.²⁰⁻²² 160 Genetic risk factors for neurodegeneration often map to myeloid cells, including peripheral blood monocytes and brain resident microglia.²³ However, our understanding of how disease-161 162 associated immune phenotypes relate to TBI pathologies is incomplete. To determine the 163 relationship between myeloid phenotypes and the neuropathological landscape of the tissue 164 microenvironment after repeated mTBI, we first tested the *a priori* hypothesis that functional 165 alterations in brain myeloid cells would be a persisting and sensitive indicator of regional injury, 166 with the greatest changes occurring in the brainstem as seen during acute injury. To evaluate this 167 hypothesis, we used a RiboTag strategy to assess the active translatome specifically in brain 168 myeloid cells from mice with repeated TBI or sham exposure (1 per day for 3 days), avoiding the 169 trauma-induced changes in gene signatures evoked by ex vivo dissection of live tissue and cell

170	sorting that are known to occur. ^{24,25} By using a tamoxifen-inducible CX3CR1-creER mouse line					
171	shown to be superior in achieving brain macrophage specificity with the exclusion of neuron-					
172	derived contaminating mRNA, ²⁴ we employed a discovery approach followed by validation in an					
173	additional secondary cohort to identify candidate genes differentially expressed across brainstem,					
174	cerebellum, and cortical tissues in mice one month after repetitive mTBI (3x; 1 per day for 3					
175	days), as compared with gene levels in tamoxifen-induced CX3CR1-creER control mice					
176	receiving an equal number of sham-TBI treatments (Fig. 2a, b, c). Brainstem tissues showed					
177	more differentially expressed myeloid genes than cerebellar or cortical tissues consistent with					
178	acute injury patterns being concentrated in the brainstem.					
179	We then performed gene ontology (GO) term analysis. Given that significantly fewer					
180	genes were confirmed in the cortex and cerebellum, only differentially expressed genes					
181	confirmed in brainstem tissue were used (Fig. 2d). In agreement with previous reports, blast-					
182	mTBI-induced geneset enrichments in brainstem myeloid cells included programs for					
183	macromolecular binding (e.g., APOE), lytic vacuole (e.g., CD68), exosome, cell adhesion and					
184	locomotion. ²³					

Given that microglial properties shift in response to the conditions of their tissue microenvironments, we developed an imaging mass cytometry (IMC) workflow to visualize how the relations between microglial phenotypes and their tissue microenvironments changed in response to TBI (**Fig. 2e**). To do this, we developed a panel of 35 metal-labeled antibodies specific to murine TBI histology, including cellular, pathological, and signaling markers (**Table S2**). Antibody-stained tissue slides were then laser-ablated and the subsequent signal was detected with time-of-flight mass spectrometry, producing a 2-dimensional, rasterized

192 representation of metal abundances analogous to a highly-multiplexed microscope image.

193 Following in silico image segmentation into single cells in CellProfiler, analyses were conducted

194 in HistoCAT and R. We identified 256,295 cells from images of 8 coronal pontine hemisections

195 that were taken from randomly selected study mice and that provide tissue representation of

196 ventral pontine and dorsal structures near the 4th ventricle (**Fig. 2e**).

197 Phenotyping based on nonlinear dimensionality reduction was implemented using

198 Barnes-Hut t-distributed stochastic neighbor embedding (t-SNE) (Fig. 2f; Fig. S1). To define the

199 prominent microenvironmental phenotypes of single cells in the injured brain, we used unbiased

200 phenograph-based clustering to yield 36 distinct clusters for further analysis (Fig. 2g). This

201 method differentiated both unreactive microglia (cluster 4; Iba⁺, CCR2⁻, CD68^{lo}, ApoE^{lo}) and a

disease-associated microglial (DAM) phenotype (cluster 26; Iba⁺, CCR2⁻, CD63⁺, CD68^{hi},

203 ApoE^{hi}) consistent with single-cell RNA sequencing analyses of Alzheimer's disease brain and

204 neurodegenerative models,^{23,26,27} in addition to several non-microglial phenotypes representing

205 neuronal, vascular, glial, and peripheral immune cells. Intercellular associations, as measured by

206 neighborhood analysis, increased between spatially resolved disease-associated microglia with

207 IL33⁺ myelin (clusters 6 and 17), NeuN⁺ neurons (cluster 13) and HTT⁺ neurons (cluster 24) in

208 brain-injured mice whereas similar associations did not change in control mice (Fig. 2h). Taken

209 together, these findings suggest that repetitive mTBI provokes a persisting pontine

210 microgliopathy that is associated with slowly resolving neuronal and IL33⁺ myelin injury, which

211 can be spatially resolved and quantified using unbiased computational means.

212

213 Myelin injury precedes sleep deficits

214	Delayed-onset PCS are thought to reflect progressive changes in cellular phenotypes prior to
215	functional and structural brain changes. We used a data-driven approach to agnostically identify
216	specific regions of persisting brainstem pathology that could cause persistent PCS. More
217	specifically, we gated on disease-associated microglia in IMC images and measured their
218	average frequency distributions (i.e., DAM/total microglia) per subject across exclusive brain-
219	region image masks of whole pontine hemisections. We then used the results to inform later
220	hypothesis testing on the relations between pathology, chronic symptoms, and the known
221	functions of the brain regions. Representative IMC images of pontine disease-associated
222	microglia in blast-mTBI and sham control mice are shown in Figure 3a. TBI increased the
223	frequencies of disease-associated microglia in several areas with post-hoc FDR-adjusted analyses
224	identifying notable increases in the reticular formation (rf; t[62]=3.366, q=0.0019), spinal
225	trigeminal nerve tract (spn; t[62]=3.066, q=0.0034), ventral white matter (vwm; t[62]=3.317,
226	q=0.0019), and ventral cochlear nucleus (vco; t[62]=6.448, q<0.0001) (Fig. 3b). Since blast-
227	mTBI induces the association of DAM with myelin expressing the alarmin molecule IL33 (Fig.
228	2i), we examined the expression of IL33 among all 44,023 spatially resolved single
229	CNPase ⁺ /IL33 ⁺ oligodendrocytes distributed across these regions. Post-mTBI oligodendrocytes
230	of several pontine regions showed significant loss of the alarmin IL33 (vii: t[42]=1.98, q=0.05;
231	rf: t[42]=3.225, q=0.0062; in: t[42]=3.406, q=0.0062; spv: t[42]=3.108, q=0.0062; spn:
232	t[42]=2.782, q=0.0118; pyr: t[42]=2.3, q=0.0278; pcg: t[42]=2.711, q=0.0118; Fig. 3c), through
233	its apparent release from nuclear stores into the surrounding microenvironment (Fig. 3d).
234	Microglia, which express IL33R mRNA (Fig. 3e), accumulate in a predictive linear manner
235	driven by IL33 levels (Fig. 3f).

236 Next, we used a false-discovery rate-adjusted method to focus our analysis on the pontine 237 structure(s) displaying the most consistently altered IL33 expression following TBI. We found 238 highly significant mean IL33 reductions per oligodendrocyte for each blast and sham mouse in 239 the RF indicating robust and persisting white matter injury (Fig. 3g). Disease-associated 240 microglia heavily express the lytic vacuole protein CD68, which is known to facilitate 241 phagocytotic clearance of diseased tissue, including myelin.^{17,28} CNPase is an integral myelin 242 protein required for axon paranode maintenance²⁹ in that its axoglial decoupling is associated with progressive axonal degeneration³⁰ and phagocytosis by microglia during dysmyelination²⁹ 243 244 and Wallerian degeneration.³¹ Because IMC is limited to 2D analyses, we used 3D confocal 245 microscopy of sagittal brainstem sections near midline to measure how microglial internalization 246 of CNPase relates to both injury location across brainstem structures and the number of blast-247 mTBIs administered. Phagocytosis of CNPase by both single-cell and clustered microglia was 248 observed in pons and medulla, with greater apparent co-localization observed in microglial 249 nodules than single microglia (Fig. 3h, arrowheads). One month after single or repeated (3x) 250 blast-mTBI, myelin consumption was measured as the number of CNPase-positive voxels inside 251 Iba-1-stained microglial volumes. Myelin consumption by microglia increased in relation to the 252 number of mTBIs (F(2,85)=7.88, p=0.0007) and anatomical location (F(2,85)=4.536, 253 p=0.0134)(Fig. 3i), with Tukey's post-hoc analyses determining these effects were driven by 254 repeated blast-mTBI (sham vs 1x.: 444 mean dif. (-5150 to 6037, 95%CI), q=ns; sham vs. 3x: -255 8336 mean dif. (-13961 to -2711, 95%CI), q=0.0019). Sleep impairment following TBI occurs in 30–65% of those with persistent PCS.^{32,33} 256 257 Interestingly, insomnia, which is characterized by difficulty initiating and maintaining sleep, is

258 more common with less severe TBIs and blast-related mTBIs.³⁴⁻³⁶ To measure changes in post-

259 traumatic sleep that are caused by blast-mTBI and that may contribute to the development of 260 later sleep impairment, we used a noninvasive sleep monitoring system to record changes in the 261 stereotypical sleep patterns of mice.^{37,38} When measured seven days after blast-mTBI, the sleep 262 bout duration and diurnal sleep-to-wake ratio of blast-mTBI mice was normal compared to sham 263 control mice (Fig. 3j, k) and was consistent with previous reports of TBI mice one week after injury.³⁹ However, following a three-month period of recovery from repeated blast-mTBI, 264 265 injured mice developed a statistically significant increase in sleep fragmentation characterized by 266 a reduced average sleep bout duration and lower diurnal sleep:wake ratio (Fig. 3j, k) that was 267 similar to clinical insomnia in humans. Thus, the development of sleep impairment occurs after 268 the onset of microglial-associated pontine myelinopathy. 269 270 Myelin injury mediates sleep injury 271 We hypothesized a similar pathology would exist in the brainstem of military veterans with 272 blast-mTBI. In a neuropathological analysis of autopsy subjects with (n=4) and without (n=4)273 blast-mTBI, phagocytic microglial nodules that highly express CD68 (i.e., microgliopathy; Fig. 274 4a) were often seen with internalized myelin (i.e., CNPase; Fig. 4b). Microglia nodules were 275 identified in the brainstem and cerebellar white matter tracts of subjects up to 20 years after their 276 last reported TBI. By observing IMC images stained with 6 antibodies specific for human protein 277 targets, we confirmed that human microglial nodules were phagocytic and transcriptionally 278 active (i.e., CD68⁺, negative for histone 3 lysine 27 trimethylation) in contrast to the adjacent, 279 uninvolved, normal-appearing microglia (Fig. 4c). 280 Insidious myelinopathy mediates several clinical diseases including multiple sclerosis,

281 Parkinson's disease, and stroke and may contribute to the earliest occurring changes in age-

related cognitive decline and disability following TBI.⁴⁰ Our findings in mice indicate that
diffuse axonal injury in the brainstem initiates latent white matter pathology that may drive the
development of a spectrum of delayed-onset behavioral impairments related to mTBI. Diverse
cognitive, behavioral, and somatic PCS occur in 77–97% of persons with repetitive TBI.^{35,41}
These persistent PCS develop over hours to months following injury⁴² and may become chronic,
lasting years.⁴³

288 To determine whether brainstem white matter changes caused by diffuse axonal injury 289 are associated with neurobehavioral symptoms in humans with blast-mTBI, we used magnetic 290 resonance diffusion tensor imaging tractography (DTI) in living US veterans with repetitive 291 blast-mTBI (n=20) and veterans deployed to the Iraq/Afghanistan war zones with no lifetime 292 history of TBI (n=19). Subject demographics are provided in **Supplemental Table 3**. Guided by 293 our animal model (Fig. 3), we reconstructed fiber tracts using the entire human pons as the seed 294 region to avoid placement bias or error (Fig. 4d). Consistent with our observation of TBI-related 295 myelin and neuronal injury in the pons of mice, TBI was associated with significant myelin 296 injury of pontine fibers in veterans with mTBI via measures of DTI fractional, axial, and radial 297 anisotropy (Fig. 4e-g). We next evaluated a possible dose-response between the number of blast-298 mTBIs and changes in pontine fractional anisotropy (FA) while controlling for the potential 299 confounding variables of age and posttraumatic stress disorder (PTSD) symptom severity. 300 Reductions in adjusted pons FA were associated with increasing numbers of self-reported blast-301 mTBIs (linear regression, *p*<0.0001; Fig. 4h).

302 Diverse functions are controlled by highly conserved brainstem circuits, including
 303 functions related to the common symptoms following mTBI: sleep structure, emotional state, and
 304 sensorimotor integration. To learn whether the development of these symptoms may be mediated

305 by changes in pontine white matter, we first evaluated the linear relation between age- and PTSD 306 symptom severity-adjusted changes in pontine FA in all subjects and self-reported severity of 307 persistent PCS related to mTBI as measured by the total score on an augmented Neurobehavioral 308 Symptom Inventory (NSI+) questionnaire. Subjects rated symptom severities for dizziness, 309 imbalance, dyscoordination; headache, nausea, vision, sensitivity to light; hearing, ringing in the 310 ears, sensitivity to noise; numbness/tingling, changes in taste/smell; changes in appetite; changes 311 in concentration, forgetfulness, decision-making difficulty, slowed thinking; fatigue, sleep 312 impairment; anxiety, depression; irritability, poor frustration tolerance, getting into fights, 313 disinhibition, mood swings; apathy/withdrawal; and slowness in speech ranging from 0 to 4 (not 314 present, mild, moderate, moderately severe, severe) and symptom scores were summed (NSI+ 315 total score). Using linear regression modeling, the relationship was highly significant 316 (p < 0.0001), indicating that greater total persistent PCS burden was associated with greater 317 reductions in pontine FA (Fig. 4i). The number of lifetime mTBIs (log-10(x+1) transformed) 318 similarly correlated with age- and PTSD symptom severity-adjusted measures of NSI+ total 319 score (Spearman's r = 0.630, 0.5024 to 0.7308 95% CI; $p=2.7 \times 10^{-14}$) indicating that total 320 persistent PCS burden increases with the number of repeated mTBIs caused by blast exposure. 321 Lastly, we used statistical mediation analysis to evaluate the potential causal relationship 322 between pontine white matter injury and persistent PCS burden. Using both pontine FA and 323 NSI+ total scores adjusted for age and PTSD symptom severity, the regression coefficient 324 between the number of blast-mTBIs and persistent PCS burden (i.e., the direct effect, DE) and 325 the regression coefficient between pontine FA values and symptom burden were both significant 326 (Fig. 4j; Fig. S6a). The indirect effect was (-0.006)*(-2715.00) = 16.3 (p<0.01). A validation 327 analysis using nonparametric bootstrapping procedures determined that the effect size 95%

328 confidence interval ranged from 9.460 to 23.05 (Fig. 4k). The validated adjusted causal

- 329 mediation was statistically significant ($p=2 \ge 10^{-16}$), supporting the conclusion that diverse
- 330 persistent PCS following repetitive blast-mTBI are at least partially caused by pontine myelin
- 331 injury. An identical mediation analysis determined a statistically significant relation between
- 332 pontine FA and sleep impairment as measured by the Pittsburgh Sleep Quality Index (PSQI) total
- 333 score similarly adjusted for age and PTSD symptom severity. Using a bootstrap-validated
- 334 mediation analysis, both the adjusted causal mediation effect (ACME) and total effect (TE) were
- 335 significant (ACME: 3.2 (1.991 4.75, 95% CI; *p*<0.0001); TE: 3.866 (2.254 5.56, 95% CI;
- p < 0.0001) (Fig. 41). Taken together these results support the conclusion that chronic pontine
- 337 myelin injury drives diverse persistent PCS following repeated blast-mTBI.

338

340 Discussion

341

342 We showed that brainstem nuclei are vulnerable to a single diffuse blast-mTBI. Within 15 343 minutes, we observed significant and consistent entry of blood-borne molecules into the 344 brainstem parenchyma and highly variable entry into the cortex. One hour after mTBI, nearly 345 30% of experimental animals showed neuronal injury, seen as uptake of extravasated blood-346 borne dyes into axonal projections and cell bodies, whereas <5% of mice showed similar cellular 347 injuries in the cortex. By four hours post-injury, nearly 50% of blast-mTBI mice showed cortical 348 neuronal injuries. This suggests that a therapeutic window to prevent widespread cortical 349 dissemination may exist in the initial 1 to 4 hours following blast-mTBI. Supported mechanisms 350 include subtle neuroinflammatory processes that are likely critical determinants of brain-wide 351 secondary injury, such as swelling of the brain. Such swelling develops within 14 days, is 352 typically seen as significant ventricular enlargement, and is often mistaken for hydrocephalus.⁴⁶ 353 However, when single mTBI-injured rodents are allowed to recover for a month, we found no 354 overt microgliopathy or myelinopathy (Fig. 3i); this suggests that repeated injury is the key 355 driver of these phenotypes.

356 The way in which repeated TBIs provoke the development of chronic pathology and 357 persistent PCS is not well understood. We tested whether repeated diffuse mTBI causes the 358 progressive disruption of brainstem structures responsible for changes in arousal and sensation. 359 Using a data-driven approach, we agnostically identified injured areas by surveying the 360 distribution of spatially-resolved, disease-associated microglial phenotypes across pontine nuclei. 361 As expected, we observed that disease-associated microglia respond to neuronal and myelin 362 injuries following the acute-injury patterns marked by microvascular extravasation and diffuse 363 axon injury. We discovered, however, that release of oligodendroglial nuclear IL33 predicts the

regional density of disease-associated microglia, which can appear as single cells and small clusters, or "nodules", previously reported to facilitate the removal of degenerating axons and myelin.^{31,47} Persisting pathologies of the pontine RF, first identified in our mouse model, were subsequently verified in living veterans with repeated blast-mTBI and in neuropathological studies in veterans with blast-mTBI from four independent laboratories.

369 We observed several highly stereotypical injury patterns to specific pontine nuclei 370 following repeated blast-mTBI. Among these, a key brainstem area critical for good sleep 371 hygiene is the pontine reticular formation. In living veterans with chronic repetitive blast-mTBI, 372 the myelin integrity of the combined rostral and cerebellar pontine projections that were 373 reconstructed by DTI tractography, were significantly correlated with the severity of persistent 374 PCS including sleep impairment. Projections of the ascending RF strongly innervate central thalamic neurons^{48,49} that modulate the depolarization and firing of neocortical circuits through 375 input to the anterior forebrain mesocircuit and frontoparietal network.⁵⁰ These projections 376 377 thereby affect the organization of goal-directed behaviors⁵⁰ and modulate arousal levels affecting 378 cognition, stress, and sleep. ^{48,51,52} Likewise, the pontine projections to the cerebellum integrate 379 cerebellar function with diverse brainstem nuclei, including most raphé nuclei, the locus coeruleus, the pedunculopontine nucleus, and several segments of the RF.⁵³ Although lesions and 380 381 DTI abnormalities of the SCP have been frequently reported across a variety of TBI mechanisms of injury and severity of TBI,^{17,54,55} their role in the development of persistent PCS remains 382 383 unknown. What is known is that experimental lesions of the SCP in cats result in nightly sleep 384 loss,⁵⁶ whereas cerebellectomized cats display increased drowsiness without sleep loss;⁵⁷ this 385 suggests that the prominent cerebellar injuries caused by TBI may also be a significant source of 386 sleep morbidity. Lastly, in keeping with our hypothesis that pontine myelin injury is a causal

387	mediator of persistent PCS, as opposed to the injury of specific output tracts which were not
388	declared <i>a priori</i> , we did not evaluate the individual contributions of rostral versus cerebellar
389	projections. Subsequent study is needed to determine the relative contributions of TBI-induced
390	injuries to the SCP versus the pontothalamic projections in the development of persistent PCS,
391	since each may pose unique diagnostic and interventional opportunities. Taken together, the
392	results of this study indicate that diffuse traumatic brain injuries caused by blast overpressures
393	may provoke common, though diverse, neurobehavioral symptoms caused by chronic pontine
394	white matter injuries in nuclei subserving their function.
395	
396	Methods

397 Study Design

398 The aim of this study was to determine the frequency and pattern of diffuse axonal and white 399 matter injury in the brainstem following blast-mTBI and to evaluate its relationship with 400 common persistent PCS in both a mouse model of diffuse blast-mTBI with attenuated head 401 movement and in military veterans with history of blast mTBI. Blast exposures occur from all 402 directions, and may not be accompanied by any focal blunt force trauma. This study in a military 403 veteran cohort with primarily repetitive blast-mTBI enabled us to examine the effect of repetitive 404 diffuse blast mTBI on the relationship between brainstem structure and persistent PCS that may 405 be generalizable across mTBI without the confounds associated with excessive head movement, 406 which is well established to injure brainstem centers following TBI caused by diverse forms of 407 trauma.

408 A total of 39 male veterans reporting from 0 to 102 blast-induced mTBIs were studied.
409 Although female veterans were eligible for study inclusion, none enrolled. Study inclusion

410	criteria included documented military service in Iraq and/or Afghanistan with the US Armed
411	Forces during Operations Enduring Freedom, Iraqi Freedom, and/or New Dawn. Veterans
412	meeting VA/Department of Defense/American Congress of Rehabilitation Medicine criteria for
413	mTBI following at least one blast exposure were included in the TBI group.
414	Exclusion criteria for the study included a history of moderate to severe TBI, seizure
415	disorder, insulin-dependent diabetes, DSM-IV diagnosis of alcohol or other substance use
416	disorder, dementia, bipolar affective disorder, and psychotic disorders. Subjects using
417	medications likely to affect cognitive or behavioral assessments, such as opiates,
418	benzodiazepines, and sedating antihistamines, were also excluded. MRIs were contraindicated
419	for veterans with retained shrapnel or other metal objects, who were thus excluded from MRI.
420	A total of 232 male wild-type C57BL/6J, 20 Cx3cr1 ^{EGFP} /CCR2 ^{RFP} and 15
421	Cx3cr1tm2.1 ^{cre/ERT2} / Rpl22tm1.1 ^{Psam/J} mice age 3 to 6 months were studied. Mice were randomly
422	assigned to either TBI or sham control groups. Group sizes were based on pathology in this and
423	other established TBI models. ^{17,58-60} In each experiment, mice from the control and TBI groups
424	were analyzed under identical conditions.
425	

426 Human subjects

Human studies were approved by the VA Puget Sound Health Care System Institutional Review
Board. All living veteran participants provided written informed consent prior to any study
procedures. The study conformed to institutional regulatory guidelines and principles of human
subject protections in the Declaration of Helsinki. Veterans with and without mild TBI were
characterized by physical, neurological, and behavioral examinations that included assessments
for PTSD using the PTSD Checklist-Military version total score, for sleep disturbance using the

433	PSQI total score, and for current post-concussive symptoms using the Likert-scaled NSI+						
434	symptom questionnaire. The NSI+, based on the standard NSI, is a self-report instrument						
435	consisting of the base 22 NSI questions plus the following six TBI-associated PCS: 1)						
436	disinhibition, 2) apathy/withdrawal, 3) ringing in the ears, 4) mood swings, 5) getting into fights,						
437	and 6) slowness in speech. Responses are scored on scale of 0-4; (0) None, (1) Mild, (2)						
438	Moderate, (3) Severe, and (4) Very Severe. The Structured Clinical Interview for DSM-IV was						
439	used to establish diagnoses of Axis I psychiatric disorders. A lifetime history of TBI was						
440	obtained using a semi-structured TBI interview performed by two expert TBI clinicians						
441	simultaneously. ⁶¹ Magnetic resonance DTI was performed within 3 months of clinical						
442	evaluation.						
443							
444	Clinical neuropathology						
445	Human donor research brain specimens and their related clinical/exposure information were						
446	collected and used as de-identified materials in accordance with procedures approved, as						
447	appropriate, by the VA Puget Sound Health Care System, University of Washington, and the						
448							
	Uniformed Services University Institutional Review Boards. Lissue samples were obtained from						
449	brains donated, with informed consent by their legal next of kin, of veterans with a history of						
449 450	brains donated, with informed consent by their legal next of kin, of veterans with a history of mTBI caused by blast exposure and control subjects matched by age and sex but without a						
449 450 451	Uniformed Services University Institutional Review Boards. Tissue samples were obtained from brains donated, with informed consent by their legal next of kin, of veterans with a history of mTBI caused by blast exposure and control subjects matched by age and sex but without a lifetime history of TBI. Formalin fixed paraffin embedded (FFPE)-brain sections were de-						
449 450 451 452	Uniformed Services University Institutional Review Boards. Tissue samples were obtained from brains donated, with informed consent by their legal next of kin, of veterans with a history of mTBI caused by blast exposure and control subjects matched by age and sex but without a lifetime history of TBI. Formalin fixed paraffin embedded (FFPE)-brain sections were de- paraffinized and rehydrated using previously described procedures, ¹⁷ blocked in 10% normal						
449 450 451 452 453	Uniformed Services University Institutional Review Boards. Tissue samples were obtained from brains donated, with informed consent by their legal next of kin, of veterans with a history of mTBI caused by blast exposure and control subjects matched by age and sex but without a lifetime history of TBI. Formalin fixed paraffin embedded (FFPE)-brain sections were de- paraffinized and rehydrated using previously described procedures, ¹⁷ blocked in 10% normal goat serum (1 hour at room temperature), and stained overnight at 4°C using the following						
 449 450 451 452 453 454 	Uniformed Services University Institutional Review Boards. Tissue samples were obtained from brains donated, with informed consent by their legal next of kin, of veterans with a history of mTBI caused by blast exposure and control subjects matched by age and sex but without a lifetime history of TBI. Formalin fixed paraffin embedded (FFPE)-brain sections were de- paraffinized and rehydrated using previously described procedures, ¹⁷ blocked in 10% normal goat serum (1 hour at room temperature), and stained overnight at 4°C using the following antibodies: rabbit polyclonal anti-GFAP (Abcam, Burlingame, CA; 1:1,000), mouse monoclonal						

456 Clara, CA; 1:100). Heat-mediated antigen retrieval was performed in citrate buffer (pH 8.0;
457 80°C) for 30 minutes and then cooled to room temperature before further use. Stained slides
458 were mounted with ProLong Diamond antifade mountant (ThermoFisher Sci, Waltham, MA).
459

460 Diffusion Tensor Imaging (DTI)

Magnetic resonance DTI was performed using an established protocol^{17,61} on a 3.0 T Philips
Achieva whole-body scanner (Philips Medical Systems, Best, Netherlands) equipped with a 32channel radiofrequency head coil. Briefly, images were acquired using a single-shot spin-echo
echo-planar sequence with TR=10.76 sec; TE=93.5 msec; flip angle=80 degrees; matrix
size=128•128; field-of-view (FOV)=256•256; slice thickness=2mm; 64 gradient directions; and
b-factors=0 and 3,000s/mm2.

467 Images were preprocessed to correct for head motion, eddy current, and B0-field 468 inhomogeneity-induced geometric distortion using the Oxford FMRI Software Library (FSL) 469 DTI toolbox. Image slices with large within-slice intensity differences, wrapping abnormalities, 470 or other artifacts were identified by analysis with DTIPrep and subsequently removed. DTI 471 tractography was used to test for correlations between DTI parameters, the number of reported 472 TBIs, and symptom areas related to known brainstem functions. To conduct tractography, 473 DICOM-formatted diffusion images were converted to nrrd data file/header (nhdr) format 474 (http://teem.sourceforge.net/nrrd/format.html) in g-Fortran. Fiber tracts were created in SLICER 475 4.3.1 (http://www.slicer.org/). After the diffusion data were loaded into Slicer in nhdr format, tensor estimates were created by converting the diffusion weights. 476 477 The resulting process created scalar measurements that were used to create corresponding 478 images of FA. The Editor module in Slicer was used to create a label map and a region of interest

479 (ROI) located in the four ROIs in the pons (Fig. 4d). Fiber tracts for each individual participant 480 were reconstructed from these seed regions using 1mm spacing thresholds, and the resulting fiber 481 tract vtk file was read into g-Fortran for quantitation of FA, mean diffusivity, radial diffusivity, 482 and axial diffusivity. These values were analyzed using nonparametric Spearman correlation 483 statistical analysis with respect to the log10 (number of reported TBIs + 1), hours of self-reported 484 nightly sleep, and other symptoms (Fig. 4), with final reported p-values controlled for multiple 485 comparisons using a rigorous 1% false discovery rate (FDR) adjustment. Each volume of interest 486 (VOI) had a volume of approximately 20mm³ and was manually positioned. Evaluation of 487 pontine DTI averaged bilateral VOIs for rostral pontine (RP) and pontocerebellar (PC) tracts 488 with Montreal Neurologic Institute atlas x, y, z coordinates of (Left RP [-27.1, -20.0, -6.0]), 489 (Right RP [5.0, -20.0, -6.0]), (Left PC [-30.0, -38.0, -33.0]), and (Right PC [5.0, -38.0, -33.0]; 490 exemplars are found as white boxes in Fig. 4d). 491 492 Animals

493 Mice used in this study comprised group-housed, 3-to-6-month-old male C57Bl/6J wildtype,

494 Cx3cr1^{EGFP}/CCR2^{RFP} [B6.129(Cg)-Cx3cr1tm1Litt-Ccr2tm2.1Ifc/JernJ (JAX stock # 032127)],

495 and microglial RiboTag mice [heterozygous offspring of B6.129P2(C)-Cx3cr1tm2.1(cre/ERT2)

496 mice (JAX stock # 020940)] crossed with RiboTag flox mice (JAX stock # 011029 B6N.129-

497 Rpl22tm1.1Psam/J)). Animals were maintained on a 12-hour light/dark cycle with *ad libitum*

498 food and water access. All study procedures were in accordance with Association for Assessment

499 and Accreditation of Laboratory Animal Care guidelines and approved by the VA Puget Sound

500 Health Care System Institutional Animal Care and Use Committee.

502 Modeling blast overpressure

503 TBI was modeled with a shock tube designed to simulate open-field blast explosions (Baker 504 Engineering and Risk Consultants, San Antonio, TX) as described elsewhere.^{12,17} Briefly, 505 anesthetized mice were maintained on a non-rebreathing anesthesia apparatus (2% isoflurane in 1 506 Lpm oxygen) while secured on a gurney with their ventral side oriented toward the oncoming 507 blast overpressure wave and then placed into the shock tube. TBI mice were paired with sham 508 control mice and both were similarly secured in the shock tube while under anesthesia for an 509 identical amount of time. Mice received blast or sham procedures once per day, with 3x 510 treatment mice receiving one treatment per day for three days. The mean overpressure wave 511 characteristics for 102 blast overpressure waveforms generated in this experiment are 20.62+/-512 0.15psi; 5.65+/-0.036ms; 0.038+/-0.00019psi ms, including peak intensity (psi), initial pulse 513 duration (ms), and impulse (psi ms), respectively. Figure S2 displays an average of waveforms 514 from the study; this image, taken at random, consists of 102 overpressures and is consistent with the accepted properties of mild to moderate blast exposure, 17,62,63 resulting in a >95% survival 515 516 rate. After TBI and sham exposures, mice were monitored and generally regained normal 517 appearance within 4 hours of exposure.

518

519 **Tamoxifen treatments**

520 Three weeks after TBI or sham treatments, gene recombination was induced in microglial

521 RiboTag mice by two i.p. injections of tamoxifen (4mg in 200µl corn oil [Sigma, St. Louis, MO;

522 C8267]) that were administered two days apart.

523

524 RiboTag immunoprecipitation

525 Tamoxifen-treated Cx3cr1creER-Rpl22 RiboTag mice were deeply anesthetized with a lethal 526 injection of sodium pentobarbital (210 mg/kg, i.p.) followed by transcardial perfusion with PBS-527 containing cycloheximide (100µg/ml). Brains were removed; subdissected on ice into brainstem, 528 cerebellum, and cortical hemisections; weighed; flash frozen; and stored at -80°C until used. 529 Upon use, approximately 20 to 30mg of each frozen tissue was cut and collected into RNase-free 530 tubes followed by homogenization by hand with a tube-fitting disposable pestle using 2-3% 531 weight per volume of the following buffer (HB-S): DTT (Sigma, St. Louis, MO; 646563, 1mM), 532 Protease Inhibitor Cocktail (Sigma, St. Louis, MO; P8340, 1x), RNAsin (Promega, Madison, 533 WI; N261B, 200 units/ml), cyclohexamide (Sigma, St. Louis, MO; C7698, 100µg/ml), heparin 534 (Sigma, St. Louis, MO; H3393, 100 mg/ml) in RNase-free deionized water. Homogenized 535 samples were centrifuge-clarified (12,000 x g, 10min, 4°C), and supernatants were transferred 536 into fresh RNase-free tubes followed by incubation (4°C for 4 hours with tube rotation) with 537 mouse monoclonal anti-HA.11 (Covance, MMS-101R, 3 uL/sample). After 4 hours, 200uL of 538 Protein A/G Magnetic Beads (Promega, Madison, WI; 88803) were added to each sample and 539 rotated at 4°C overnight. Beads were washed and pre-equilibrated in homogenization buffer and 540 blocked with 4% bovine serum albumin (Sigma, St. Louis, MO; 3117332001) for 1 hour prior to 541 use. The next day, mRNA transcripts and their associated antibody-bound ribosomes were 542 precipitated by magnet and washed (3 x 15 minutes each, 4°C with rotation) in 1 ml high salt 543 buffer (500 mM Tris pH 7.4, 300 mM KCl, 12 mM MgCl₂ 1% NP-40, 1 mM DTT, 100 µg/ml 544 cyclohexamide in RNase-free water). Immediately after the final wash, transcripts were 545 dissociated from their precipitating complexes by addition of RLT Buffer (Qiagen, Germantown, 546 MD; 79216) supplemented with 10 μ l/ml RNase-free β -mercaptoethanol (Sigma, St. Louis, MO; 547 63689). RNA was purified by RNeasy Plus Micro kit (Qiagen, Germantown, MD; 74034)

548	according to	manufacturer's	protocol,	followed by	y RNA q	uantification	using a	Nanodrop
	0			-		1	0	

- 549 spectrophotometer (Thermofisher Sci, Waltham, MA). cDNA of precipitated transcripts was
- made using the SuperScript VILO cDNA synthesis kit (Thermofisher, Waltham, MA; 11754050)
- according to the manufacturer's protocol. Yield of cDNA preparations was determined by
- 552 nanodrop (input: ~5ng/µl; immunoprecipitant: ~1.5-2.5 ng/µl). To verify enrichment of mouse
- 553 microglial genes, immunoprecipitants were analyzed in triplicate by real-time PCR on a
- 554 StepOnePlus Real-Time PCR System (Thermofisher, Waltham, MA), using KAPA Universal
- 555 SYBR Green master mix and the following primers: Aif1(NM019467.3) forward 5'-
- 556 GGATTTGCAGGGAGGAAAAG, reverse 5'-TGGGATCATCGAGGAATTG; NTRK2
- 557 (NM008745.3) forward 5'-TGTTGCCTATCCCAGGAAGTG, reverse 5'-
- 558 CTGCAGACATCCTCGGAGATTA; GFAP (NM010277) forward 5'-
- 559 ACCATTCCTGTACAGACTTTCTCC, reverse 5'-AGTCTTTACCACGATGTTCCTCTT;
- 560 GAPDH (NM008084) forward 5'-CTGCACCACCAACTGCTTAG, reverse 5'-
- 561 ACAGTCTTCTGGGTGGCA GT. Representative results are shown in Figure S3.
- 562 The following thermocycler settings were used: 95°C for 20 seconds followed by 40 cycles of
- 563 denaturation (95°C for 3 seconds), primer annealing and extension (60°C, 30 seconds) followed
- by a melting curve. Gene expression was normalized within subjects to GAPDH levels and
- for quantified using the $2^{-\Delta\Delta CT}$ method. ROX was used as a reference dye.
- 566

567 mRNA preparation and analysis

- 568 RiboTag-immunoprecipitated mRNA was ribosomal RNA depleted using the Ribo Zero Gold
- 569 Magnetic system (Epicenter/Illumina, San Diego, CA). We prepared RNA-sequencing libraries
- 570 using ScriptSeq v2 kit (Epicenter) followed by single-end sequencing (1x50bp) on an Illumina

571	HiSeq 2500, generating 4×10^6 mean reads per sample. RNA-seq fastq files were aligned to the						
572	mouse genome build <i>mm10</i> with <i>STAR</i> aligner and processed into transcript-level summaries						
573	using the expectation maximization algorithm RSEM. Transcript-level summaries were						
574	combined into gene-level summaries by adding all transcript counts from the same gene. Gene						
575	counts were normalized across samples using RLE normalization, and the gene list was filtered						
576	based on mean \log_2 (counts per million reads) > 4 in at least 3 samples in any group, which left						
577	about 14,000 "detected" genes for further analysis. Consistency of replicates was inspected by						
578	principal component analysis using R. Differential expression was assessed through sequential						
579	analyses of both an initial discovery cohort to identify candidate genes (α =0.05) and a secondary						
580	validation cohort (α =0.05). The candidate differential genes, defined as the shared set of						
581	overlapping genes, was further evaluated. Forty-percent of the identified candidate differentially						
582	expressed genes have been previously reported (Table S1).						
583	Gene set enrichment analysis (GSEA) was conducted in DAVID						
584	(https://david.ncifcrf.gov/tools.jsp) using the full list of candidate differentially expressed genes						
585	for brainstem. Official gene symbols were queried against the Mus musculus species using the						
586	default settings for analyses conducted by DAVID. Gene Ontology terms with Benjamini-						
587	corrected $p < 0.05$ were reported.						
588							
589	Data availability						
590	Data are available through reasonable requests addressed to the corresponding author.						
591							
592	Neurovascular permeability studies						

593 Radiolabeled tracer preparation: Albumin (Sigma, St. Louis MO) was radiolabeled using established protocols⁶⁴ with ^{99m}Tc (GE Healthcare, Piscataway, NJ). Hydrochloric acid was used 594 595 to pH-adjust a solution of aqueous stannous tartrate (240 mg/ml) and albumin (1 mg/ml) to a final pH of 3.0 before the addition of one millicurie of ^{99m}Tc-NaOH4 to the mixture, which was 596 597 then allowed to react for 20 min. The resulting radiolabeled ^{99m}Tc-albumin was column-purified 598 (G-10 Sephadex; GE Healthcare, Piscataway, NJ) in 0.1 ml fractions of phosphate buffer (250 599 mM). Purified 99m Tc-albumin was > 90% acid precipitable in 1% bovine serum albumin and trichloroacetic acid (30%) (1:1 mixture). Each mouse was administered 5×10^6 counts per 600 601 minute (cpm) of purified ^{99m}Tc-albumin fraction in 0.2 ml lactated Ringer's solution containing 602 1% BSA. ¹⁴C-sucrose was supplied as an ethanol-dissolved product (GE Healthcare, Piscataway, 603 NJ). Ethanol was evaporated before use and resuspended at 1 x 10⁷ cpm in 1% BSA lactated 604 Ringer's solution. Radiolabeled tracer injections: At 15 minutes, 24 hours, or 72 hours after 605 mTBI or sham treatments, mice were anesthetized with urethane (4 g/kg; 0.2 ml; i.p.) followed by exposure of the jugular vein and injection with ¹⁴C-sucrose or ^{99m}Tc-albumin in 0.2 ml of 606 607 lactated Ringer's solution with 1% BSA for 10 minutes. The descending abdominal aorta was cut 608 to collect blood. Vascular contents of the brain were cleared by left cardioventricular perfusion 609 (20 ml lactated Ringer's solution per minute) after clamping the descending thoracic aorta and 610 severing both jugular veins. Two brains with incomplete blood washout were excluded from 611 analysis. After perfusion, the brain was removed; subdissected into cortical hemispheres, 612 brainstem, and cerebellum; and individually weighed. The analytical results of these experiments with respect to cerebellum were recently published by our group.⁶⁴ Radioactivity was calculated 613 614 as cpm/g tissue or cpm/ml serum, as appropriate. The brain tissue radioactivity was then divided 615 by the corresponding serum radioactivity to yield units of microliters/gram of brain tissue.

6	1	6
~		~

617 In vivo dextran labeling of injured cells

618 Extravasation of blood-borne dextran to label coincident vascular and neural injury was 619 accomplished as described elsewhere.¹⁷ Briefly, following induction of isoflurane anesthesia 620 prior to TBI or sham procedures, mice were injected with 100 µl of 400 mg/ml 10kDa dextran 621 labeled with tetramethylrhodamine (Life Technology, Grand Island, NY) into the retro-orbital 622 sinus. After TBI or sham treatments, mice then recovered for 1 or 4 hours before euthanasia and 623 transcardial perfusion with phosphate-buffered saline followed by 4% formalin. 624 625 **Animal MRI** 626 MR imaging was acquired on 12 mice (6 sham and 6 single mTBI) at 24 hours post-injury and 627 again at 30 days post-injury. Mice were anesthetized with isoflurane and scanned over the entire 628 brain using a high-resolution 14 T MRI (Avance III, vertical bore, Bruker BioSpin Corp, 629 Billerica, MA). T2 quantitative mapping (T2) was acquired with a voxel size of 0.12 x 0.12 x 1.0 630 mm³, 15 slices, TR 1/4 2000 ms, 16 echoes, spacing: 6.7 ms, TE Effective 1: 6.7 ms, TE Effective 631 2: 13.4 ms, and was used to measure ventricular volume and scan for evidence of parenchymal 632 bleeding within visible areas. All analyses were performed by a blinded investigator (DJC). 633 Analysis of T2 quantitative maps required threshold bounding set from 36 to 200, which 634 included ROIs but excluded normal cortex and white matter. Manually drawn ROI analysis was 635 performed using Image J software. ROIs included the volume of voxels within the threshold boundary comprising the lateral, 3rd, and 4th ventricles, across a total of seven image slices, and 636 637 total volumes were calculated by multiplying with voxel size in mm³.

638 Mouse sleep assessments

639	Noninvasive measurements of sleep bout duration and the sleep:wake ratio were acquired using
640	an automated sleep/wake scoring system designed for rodents (PiezoSleep; Signal Solutions,
641	Lexington, KY). One week after the final TBI or sham procedure and again three months later,
642	mice were placed in open-floored chambers installed with piezoelectric sensors are designed to
643	detect and track the previously characterized sleep activity of mice.65 Mice were allowed to
644	acclimate for 2 days before their undisturbed activity was recorded over the next 3 days
645	following previously established methods. ^{37,66} Data were analyzed using the Sleep Statistics
646	Toolbox (Signal Solutions, Lexington, KY).
647	
648	Microscopy
649	Microscopy was performed as described elsewhere. ¹⁷ Briefly, brains were post-fixed in 10%
650	neutral buffered formalin at 4°C for 3 to 5 days followed by 24 hours of equilibration in 30%
651	sucrose/PBS prior to embedding in OCT (Tissue-Tek, Torrance, CA). Antigen retrieval was
652	performed using 50 mM of sodium citrate (pH 8.0) with heat (80°C, 30 min). Cryopreserved
653	floating tissue sections were permeabilized with 1% Tx-100 (Sigma, St. Louis, MO), blocked
654	with 10% bovine serum albumin (1 hour, room temperature), and immunostained and mounted
655	using Prolong Gold Antifade Reagent (Thermofisher, Waltham, MA). The following antibodies
656	were used overnight at 4°C: mouse anti-CNPase clone SMI-91 (Biolegend, Dedham, MA;
657	1:1,000), astrocyte marker anti-GFAP (Millipore, Billerica, ME; 1:1000), neuronal marker anti-
658	neurofilament-heavy chain (Nf-HC) (Aves, Tigard, OR; 1:1000), mouse monoclonal TauC3
659	(ThermoFisher, Waltham, MA; 1:1000), rabbit anti-phospho Tau 396 (AnaSpec, Freemont, CA;

660 1:1000), and mouse monoclonal anti-Iba-1 (Wako Chemicals, Richmond, VA; 1:1,000).

661 Corresponding secondary antibodies were applied for 2 hours at room temperature (Jackson

662	Immunoresearch, West Grove, PA; 1:1,000). Confocal microscopy was performed with a Leica
663	TCS SP5 II with tunable emission gating. Representative brainstem regions imaged for analyses
664	are identified in Supplemental Figure 5. To quantify the degree of myelin internalization by
665	microglia, z-plane images of tissue areas (approximately 600 μ m x 600 μ m x 50 μ m) were
666	acquired by performing sequential, between-stack, single-photon excitation at 488 nm and 543
667	nm using system optimized stepping (~2 μ m). Images were acquired with the Leica Application
668	Suite and processed using linear contrast and brightness adjustments applied identically and
669	simultaneously to all data being directly compared within each experiment.
670	
671	Imaging mass cytometry
672	Metal-conjugated antibodies were either purchased (Standard Biotools, San Francisco, CA) or
673	custom-made by conjugation using the MaxPar X8 labelling kit (Standard Biotools, San
674	Francisco, CA) and carrier and preservative-free antibody formulations following the
675	manufacturer protocol. Typical antibody recovery was $59 \pm 0.16\%$. Tissue staining with metal-
676	labeled antibodies was similarly accomplished using the manufacturer's protocol for formalin-
677	
	fixed paraffin-embedded slides with minor modifications. Briefly, tissue sections of either

679 mouse brain sections were used for imaging mass cytometry. Paraffin embedding and sectioning

680 followed standard histological procedures, whereas preparation of agarose-block embedded

681 brains followed procedures developed and published by the Allen Institute for Brain Science for

use in serial two-photon tissue tomography (dx.doi.org/10.17504/protocols.io.bf65jrg6). One

683 each TBI and sham mouse brain were randomly paired and embedded together into the agarose

684 block. The brains were oriented in parallel such that the sham brain cortex was always oriented

685	facing outward. Agarose block–embedded sections were cut at 50 μ m thickness (immediately
686	after aqueous two-photon imaging). Slices cut from agarose block-embedded brains were
687	robotically mounted with a TissueVision 1600FC SlicerPlacer module (Tissuecyte, Newton,
688	MA) onto superfrost plus slides (Thermo Fisher Scientific Bothell, WA) and subsequently air-
689	dried for up to one year before use. DNA intercalator (Iridium 191/193, 201192B; Standard
690	Biotools, San Francisco, CA) was diluted 1:4000 in Dulbecco's phosphate buffered saline
691	(21600-051, in 18.2 M Ω water; Thermo Fisher Scientific; Bothell, WA) for 30 minutes at room
692	temperature before slides were washed in 18.2 M Ω water, air-dried overnight, and stored at room
693	temperature until used.
694	Coronal brainstem hemisections were routinely ablated using the Hyperion UV laser
695	system with 1 μ m ² diameter (Standard Biotools, San Francisco, CA). The ablated materials are
696	carried by helium into the Helios mass cytometer, which uses a time-of-flight mass detector to
697	detect and timestamp the abundance of a user-defined mass range for each rasterized 2-
698	dimensional location. ⁶⁷ The Hyperion instrument was tuned daily according to the
699	manufacturer's protocol.
700	
701	Single cell gating, analysis, and image visualization
702	Imaging mass cytometry datasets were collected in MCD file format and exported as single
703	channel TIFs for bulk import into CellProfiler. There, segmentation of single cells based on the
704	watershed gradient algorithm using DNA intercalator channels (191Ir, 193Ir) and a proprietary

705 mix of plasma membrane markers (channels 195Pt, 196Pt, 198Pt; IMC Cell Segmentation Kit,

706 TIS-00001; Standard Biotools, San Francisco, CA) was performed to define cell nuclei and

⁷⁰⁷ single cell boundaries, respectively. Microglia were gated by selecting cells with marker

708	intensities for CCR2 ⁻ (<2.5) and Iba1 ⁺ (> 6) to delineate them from peripheral immune cells
709	expressing higher levels of CCR2. DAMs were gated by selecting the following parameters:
710	Iba1 > 6, CD68 > 10, CCR2 < 2.5, ApoE > 8, and CD63 >2. The thresholds for CCR2, ApoE,
711	and CD63 positive signals was determined by comparison of the CD63+ microglial cells that
712	were identified by manual observation, relative to other cell types. The threshold for CD68 high
713	or low signal was determined by the comparison to manually identified microglia in sham
714	control animals establishing the lower limit. All major cell types, including astrocytes, neurons,
715	oligodendrocytes, peripheral immune cells, and vascular endothelium, were validated by manual
716	annotation.
717	Brainstem images were aligned to the Allen mouse brain reference map ⁶⁸ and segmented
718	by anatomical region in HistoCAT. ⁶⁹ Using HistoCAT, Barnes-Hut t-SNE, and phenograph,
719	neighborhood analyses (using a proximity of 6) were conducted using default settings. Images
720	representing single and merged channels, such as Fig. 2f, were saved as TIF files via MCD
721	viewer software (Fluidigm), imported into Adobe Photoshop 2021 (Adobe Systems, San Jose,
722	CA), and processed with a Gaussian blur filter to de-speckle images. Afterward, all images being
723	directly compared within a figure panel were uniformly and simultaneously adjusted to optimal
724	brightness and contrast levels using a single adjustment mask.
725	
726	Western blot analyses

727 Brains were dissected in PBS on ice. Protein lysates were prepared as described elsewhere.¹⁷

728 Briefly, phosphatase inhibitor cocktail sets 2 and 3 (Sigma, St. Louis, MO) were added (10

729 µl/ml) to lysis buffer, and tissues were homogenized twice by hand using an Eppendorf tube-

730 fitting pestle (Eppendorf, Hauppauge, NY) before centrifuge clarification at 12,000xg for 10

731	minutes. TGX Criterion 4-20% SDS-polyacrylamide gels (Bio-Rad, Hercules, CA) were loaded
732	with 20 μ g protein per lane using supernatants of the clarified lysates from individual animals.
733	Membranes were then blocked with 10% nonfat milk (1 hour at room temperature) and probed
734	with antibodies recognizing the following targets: anti-pathological tau clones AT8 and AT270
735	(Thermo Fisher Scientific, Rockford, IL); anti-mouse tau (total) clone Tau5 and anti-phospho
736	Tau S396 (Life Technologies, Grand Island, NY); MOBP (Genetex, Irvine, CA); CNPase
737	(Biolegend, San Diego, CA); mouse anti-MBP and rabbit antibodies anti-LINGO1, anti-GFAP,
738	and anti-MnSOD (EMD-Millipore, Billerica, MA); and Pyruvate kinase (Rockland, Gilbertsville,
739	PA). Probes for the load control protein, pyruvate kinase, were conducted after stripping.
740	
741	Causal mediation analysis
742	Mediation analysis evaluates the statistical probability of a known third (declared) variable to
743	mediate the primary relationship between independent and dependent variables. The effect of
744	changes in pontine FA (adjusted for age and PCL-M total scores for PTSD symptom severity) to
745	mediate behavioral and physiological symptoms (dependent variables) following self-reported
746	TBI (independent variable) was first evaluated with multivariable linear regression in R (Fig. 4j).
747	A subsequent validation analysis was conducted with the R statistical package Mediate using

nonparametric bootstrapping procedures and also used age- and PTSD symptom severity-

adjusted pontine FA (Fig. 4k). This indirect effect is measured as the portion of the relationship

750 between two variables mediated by the third variable.^{70,71} In validation analyses, unstandardized

751 indirect effects were computed thrice for each of 10,000 bootstrapped samples, and the 95%

confidence interval was computed by determining the indirect effects at the 2.5th and 97.5th

753 percentiles. Sensitivity analyses were conducted in R and are illustrated in Figure S5.

754

755 Statistical analyses

756	Data are presented a	s distributions	(violin plots)) or mean \pm standard	d error of the mean	(bar
-----	----------------------	-----------------	----------------	--------------------------	---------------------	------

- 757 graphs). Multivariable linear regression: Standard analysis of variance (ANOVA) was used for
- 758 planned statistical tests involving multiple measures or groups. False discovery rate-adjusted
- post-hoc analyses with alpha = 0.05 were conducted as indicated. T-tests were used for planned
- 760 comparisons involving two normally distributed groups, with nonparametric Mann-Whitney tests
- regression was used to predict DAM frequency based on IL-33 expression. Multivariate linear
- regression analysis reported correlations adjusted for age, depression, PTSD symptom severity,

sleep apnea, and alcohol use. Statistical significance was defined as $p \le 0.05$. Sample sizes were

based on previous reports.^{17,60,72} All analyses were determined using Prism 8.4 (GraphPad, San

766 Diego, CA), SPSS software (IBM, Armonk, NY), or R version 3.6.1 (R Core Team, Vienna,

767 Austria).

768

769 Acknowledgments

- 770 Author contributions
- JSM: Conceptualization, formal analysis, supervision, funding acquisition, investigation,
- visualization, writing—all drafts, writing—review and editing; AGS, MMC, AFL, CM, AC,
- JRP, AS-D, and RGT, KFP, DAM, CDK: Formal analysis, investigation; MY: Validation; TLR
- and KDM: Formal analysis, performed the DTI analyses; DJC and DGC, DRM, JWR, MO:
- 775 Investigation; DPP, WAB, JPM, MAR, EAC, CLS, CDK, DAM and ERP: Conceptualization,
- resources.

777	We'd like to thank Dr. Erica Melief and Aimee Schantz for outstanding administrative
778	support, and Lisa Keene, Amanda Keen, and Katelyn Kern for expert technical assistance, and
779	the incredible generosity of the military Veteran and civilian participants, and their families,
780	without whom this work would be impossible.
781	
782	Funding
783	This study was supported by the Veterans Affairs Office of Biomedical Laboratory Research &
784	Development (JSM, I01BX004896; DGC, I01BX002311; AGS, 1IK2BX003258), VA
785	Rehabilitation Research & Development (ERP, I01RX000521, I01RX001612, I01RX003087),
786	VA Puget Sound R&D Seed grant (JSM), University of Washington Friends of Alzheimer's
787	Research (DGC, ERP), UW Royalty Research Fund (DGC), and the Northwest Network Mental
788	Illness Research, Education, and Clinical Center (JSM, MAR, ERP). Human brain tissue
789	specimens were derived from the Uniformed Services University neuropathology repository
790	(D.P.), University of Washington BioRepository and Integrated Neuropathology (BRaIN)
791	Laboratory with support from the Nancy and Buster Alvord Endowment (to C.D.K.), the Henry
792	Jackson Foundation, and the Neuropathology Core of the UW Alzheimer's Disease Research
793	Center (P30 AG066509).

to a single blast mTBI. a, Time course and quantitation of blood-borne small (¹⁴C-sucrose) and large (^{99m}Tc-albumin) molecule extravasation into brainstem, cortex, and whole brain. b, Time course and distribution of injured neurons labeled with a blood-borne fluorescent dve as observed using confocal microscopy. c, Injured cell distributions viewed across white vs. gray matter. (b) and (c) show the average number of animals per experiment with labeled cells (mice, 1 hr: N=35,35; 4 hr: N=40,40; average ~5 mice per group per cohort; 7 cohorts). d, Representative micrographs of injured, dye-labeled neurons and accompanying microglial response 1 hr following TBI. Staining of injured pontine cells is subtle compared to cerebellar Purkinje cells. PRNR, rostral pontine reticular nucleus. e, Example micrographs of injured locations often observed. RF, reticular formation. f, Western blots document increasing tauopathy (Tau396, AT8, AT270; axon injury markers) and gliovascular injury (aqp4) during the 1-4 hr acute inflammatory phase after a single diffuse mTBI (5 mice/group). Tau5, total tau; PK, pyruvate kinase (load control). g and h, Confocal micrographs of (g) caspasecleaved Tau (Tau C3) and (h) pathologically associated tau hyperphosphorylation (pS396) in the pons 1 day after TBI. i, Representative T2 MRI of mice 24 hrs after a single TBI or sham procedure. Red color indicates pixels that exceed the threshold value (representative of CSF) and green is the region-of-interest (ROI) bounding box. j, Quantification of ventricle volumes (6 mice/group). Oneway ANOVA (a), two-way ANOVA (c, j), and mixed effects model (b). Scale bars are 100µm.

Figure 1. Pontine nuclei are vulnerable

839

840

852 (Phenograph cluster 26) and phenograph-defined tissue microenvironments.

855 Figure 3. mTBI-induced IL33 release by oligodendrocytes is associated with microglial-856 mediated myelin remodeling. a, Representative IMC images of pontine hemisections from 857 repeated TBI and sham mice. **b**, Average frequency of DAM per subject detected in IMC across 858 pontine regions. c, Average expression of oligodendrocyte IL33 per mouse measured across 859 pontine regions. d, Redistribution of nuclear oligodendroglial IL33 into the surrounding parenchymal microenvironment measured as a frequency histogram of IL33 signal intensity 860 861 across pixels from insets in (a). e, Quantitation of microglial-specific IL33R transcript determined from microglial RiboTag mice (N=7 sham, 8 TBI (3x)). f. Release of 862

- 863 oligodendroglial IL33 predicts the accumulation of DAMs. DAM frequency significantly
- 864 increased with loss of oligodendroglial IL33 among all pontine regions. Linear regression model.
- 865 **g**, Volcano plot of q values (FDR-adjusted p-values) identifying robust myelin injury in the
- 866 pontine RF, as measured by IL33 depletion from oligodendrocytes. **h**, Example of maximum
- 867 intensity projection images from 3D confocal micrographs of microglia (red, Iba1) and myelin
- 868 CNPase (green). Arrowheads denote microglial nodules consuming myelin. i, Violin plots show
- the total amount of CNPase internalized by microglial cells in each $50\mu m \ge 632\mu m^2$ 3D confocal
- 870 image. **j**, Length of average sleep bouts and (**k**) sleep-to-wake ratios at 1 week and 3 months
- after repeated TBI. Red represents TBI data; blue represents sham control data. Data are a
- 872 distribution of measured means from individual mice. Regions in (b,c,g) correspond to map in
- Fig. 2e. dm, dorsal medulla; rf, pontine reticular formation; scp, superior cerebellar peduncle;
- spn, spinal trigeminal nerve tract; vco, ventral cochlear nucleus; vm, ventral medulla.

876 Figure 4. Pontine myelin injury mediates chronic blast-mTBI symptoms. a, Representative examples of brainstem glia in blast-mTBI and control subjects observed in three separate clinical 877 neuropathology labs. **b**, Example confocal micrograph of clinical microglial nodule (red) with 878 879 apparent internalization of myelin CNPase (green). c, IMC of pontine DAM (arrowheads) 880 phagocytosing a neuron as seen in a clinical TBI subject. Purple, NeuN; cvan, CNPase; green, 881 Iba-1; red, CD68; white, GFAP; blue, H3K27Me3. d, DTI tractography generated from pontine 882 seed points. Boxes indicate the approximate locations of volumes of interest (VOIs) used for 883 clinical DTI measures of major pontine projection tracts. Seed points were selected based on the 884 acute pontine injury pattern observed in our animal study. CR, corona radiata; SCP, superior 885 cerebellar peduncle. e-h, Quantification of chronic myelin injury is averaged across VOIs in 886 living subjects. e, DTI fractional anisotropy (FA) is reduced in TBI subjects compared to control 887 subjects; with groupwise changes in (f) axial and (g) radial anisotropy. h, Cumulative TBI-dose 888 dependent decreases in pontine FA values adjusted for age and PTSD severity using linear 889 regression modeling. i, Path diagram for causal mediation modelled with multivariable linear 890 regression. ACME: adjusted causal mediation effect estimate, DE: direct effect estimate, ADE: 891 adjusted direct effect estimate, TE total effect estimate. *p<0.05, **p<0.01, ***p<0.001. j, 892 ACMEs for NSI+ total score related to blast-mTBI as mediated by reductions in mean pontine 893 fiber FA (adjusted for age and PTSD). k, Results of bootstrap validation of mediation path 894 illustrated in (j). I, Boot-strap validated mediation analysis of blast-induced pontine fiber injury

- 895 to cause sleep injury using PTSD and age-adjusted PSQI total scores. Two-tailed t-tests in (e-g).
- 896 Scale bars are (**e**) 100μm and (**b**, **i**) 10μm.

897 Supplemental Table 1.

898

Table S1. Table of candidate DEGs previously reported

	Ensembl gene number	Official Gene Symb	ol Mouse Genome	Informatics ID UniProtKB	Previous Reports by PubMed ID
	ENEMUSC00000027122.15	Aul14am	MCI-1026020	OPPIX2	
j ⊑ jej	ENSMOSG0000027122.15	Ari14ep	MGI:1926020	Q8BIX3	
S T	ENSMUSG0000073102.7	Drc1	MGI:2685906	030553	
1 8 8	ENSMUSG00000056116.18	H2-122	MGI:95956	<u>Q31615</u>	
	ENSMUSG0000072294.5	<u>KIT12</u>	MGI:1333796	035738	
ज्ञ छ	ENSMUSG0000090553.8	Snrpe	MGI:98346	<u>P62305</u>	
t g	ENSMUSG0000046985.11	Tapt1	MGI:2683537	Q4VBD2	
I LE D	ENSMUSG0000041353.12	<u>Tmem29</u>	MGI:1923420	<u>A2ANF5</u>	
10° h	ENSMUSG0000041747.3	<u>Utp15</u>	MGI:2145443	Q8C7V3	
<u> </u>	ENSMUSG00000103567.1	Pcdhga5	MGI:1935217	<u>Q91XY3</u>	
	ENSMUSG0000024998.17	Plce1	MGI:1921305	<u>Q8K4S1</u>	
	ENSMUSG0000064043.13	<u>Trerf1</u>	MGI:2442086	Q8BXJ2	
	ENSMUSG0000022382.15	Wnt7b	MGI:98962	<u>P28047</u>	
.⊑ ⊂	ENSMUSG0000030697.7	Ppp4c	MGI:1891763	<u>P97470</u>	
l on Ll	ENSMUSG0000056306.5	Sertm1	MGI:3607715	<u>Q8CD78</u>	
l e ⊒	ENSMUSG0000037761.16	Actr5	MGI:1924748	Q80US4	
e at l	ENSMUSG0000033021.16	<u>Gmppa</u>	MGI:1916330	<u>Q922H4</u>	
일	ENSMUSG0000021884.18	Hacl1	MGI:1929657	<u>Q9QXE</u> 0	
P	ENSMUSG0000032360.16	Hcrtr2	MGI:2680765	<u>P58308</u>	
1 5 3	ENSMUSG0000046523.5	Kctd4	MGI:1914766	<u>Q9D7X1</u>	
180	ENSMUSG0000030226.12	Lmo3	MGI:102810	Q8BZL8	
	ENSMUSG0000024146.9	Cript	MGI:1929655	070333	
	ENSMUSG0000052928.8	Ctif	MGI:2685518	Q6PEE2	
	ENSMUSG0000048644.8	Ctxn1	MGI:88566	Q8K129	
	ENSMUSG0000011148 14	Adssl1	MGI:87947	P28650	
1	ENSMUSG0000021557 15	Agtnbn1	MGI:2159437	0641K1	
1	ENSMUSG0000025135 12	Anapc11	MGI:1913406	OACAXA	
1	ENSMUSG0000023135.12	Anop	MGI-88057	P08226	30082275 33333014 30471926 30185219 31998844 comacar 33257666 28602251 20206100
	EN310030000002385.10	Apoe	10101.88057	<u>F08220</u>	20082275, 55555014, 50471520, 50185215, 51556644, 5018524, 55257600, 28002551, 50200150
1	ENSMUSC0000076441.0	Acc1	MGI-82000	P16460	11406204 17000560 11556547
	ENSMUSC0000076441.5	ASSI A+fE	MGI.00090	070101	11400254, 17500505, 11550547
	ENSINUSCO0000010043 10	Atto 2h1	MGI.2141637	<u>070131</u>	
	ENSINGSG0000019945.10	AtpEn	MGI:104055	0000020	
	ENSIMUSG00000022956.11	Atp50	MGI:106341	<u>Q9DB20</u>	
	ENSIMUSG0000006273.14	Atp6V1D2	MGI:109618	<u>P62814</u>	
	ENSMUSG0000002602.16	AxI	MGI:1347244	000993	304/1926, 30185219, scrnaseq: 3325/666, 28602351, 30206190, 31061494, 33029008
	ENSMUSG0000043300.2	B3gaInt1	MGI:1349405	<u>Q920V</u> 1	
	ENSMUSG0000051223.14	<u>Bzw1</u>	MGI:1914132	<u>Q9CQC6</u>	
	ENSMUSG0000056737.14	Capg	MGI:1098259	<u>P24452</u>	30082275
	ENSMUSG0000019122.8	<u>Ccl9</u>	MGI:104533	<u>P51670</u>	32059938
	ENSMUSG0000034652.12	<u>Cd300a</u>	MGI:2443411	<u>Q6SJQ</u> 0	
	ENSMUSG0000000682.7	<u>Cd52</u>	MGI:1346088	<u>Q64389</u>	ribotag: 30082275, scrnaseq 30471926, 30185219, 31998844, 30206190
	ENSMUSG0000018774.13	<u>Cd68</u>	MGI:88342	<u>P31996</u>	26764157, ribotag: 33333014, nanostring: 31440141, 33452227, scrnaseq: 33257666, 30206190,
					31061494, 33029008, masscytometry: 31740814, 32470397, 32917850, 32917850
	ENSMUSG0000015396.4	<u>Cd83</u>	MGI:1328316	<u>088324</u>	31440141, scrnaseq: 33257666
	ENSMUSG0000046722.14	Cdc42se1	MGI:1889510	<u>Q8BHL</u> 7	
	ENSMUSG0000050370.4	<u>Ch25h</u>	MGI:1333869	<u>Q9Z0F5</u>	ribotag: 29777220, scrnaseq: 31998844, 32371549
	ENSMUSG0000068129.5	Cst7	MGI:1298217	<u>089098</u>	30082275, 30471926, 31998844, scrnaseq: 33257666, 28602351, 30206190, 31061494
	ENSMUSG0000021939.8	<u>Ctsb</u>	MGI:88561	<u>P10605</u>	30185219, 31998844, scrnaseq: 33257666, 28602351, 30206190, 32371549, 31061494, 33029008
	ENSMUSG0000037149.10	Ddx1	MGI:2144727	<u>Q91VR</u> 5	
	ENSMUSG0000063904.3	Dpp3	MGI:1922471	<u>Q99KK7</u>	
	ENSMUSG0000022842.18	Ece2	MGI:1101356	B2RQR8	19541930
	ENSMUSG0000038418.7	Egr1	MGI:95295	<u>P08046</u>	31998844, scrnaseq: 32371549, 31061494
- Se - Fe	ENSMUSG0000058655.9	<u>Eif4b</u>	MGI:95304	Q8BGD9	
st st	ENSMUSG0000074802.11	Gas2l3	MGI:1918780	<u>Q3UWW</u> 6	
1 PP PC	ENSMUSG0000072772.3	Grcc10	MGI:1315201	<u>035127</u>	
ai Gi	ENSMUSG0000020330.16	Hmmr	MGI:104667	<u>Q00547</u>	
L L L	ENSMUSG0000050335.17	Lgals3	MGI:96778	<u>P16110</u>	30082275, 30471926, 31998844, scrnaseq: 33257666, 29020624, 31061494
ц ю ш	ENSMUSG0000015568.16	Lpl	MGI:96820	<u>P11152</u>	30082275, 30471926, 31998844, scrnaseq: 33257666, 28602351, 30206190
	ENSMUSG0000034854.8	Mfsd12	MGI:3604804	Q3U481	
	ENSMUSG0000033307.7	Mif	MGI:96982	P34884	scrnaseg 30471926 (development), 31998844, 33029008
1	ENSMUSG0000022453.8	Naga	MGI:1261422	Q9QWR8	
1	ENSMUSG0000027698.14	Nceh1	MGI:2443191	Q8BLF1	
	ENSMUSG0000041560.12	Nop53	MGI:2154441	08BK35	
1	ENSMUSG0000040771 14	Oard1	MGI:2146818	08R5F3	
1	ENSMUSG0000023191.9	P3h3	MGI:1315208	08CG70	
1	ENSMUSG0000046139 7	Patl1	MGI:2147679	03TC46	
1	ENSMUSG0000031921 17	Terf2	MGI:1195972	035144	
1	ENSMUSG0000027750 16	Postn	MGI:1926321	062009	25580734 (in glioma, recruits macs)
1	ENSMUSG0000027951 16	Rcan1	MGI-1890564	Odifice	20967884, 23144708, 18485347.
1	ENSMUSG0000032518.6	Rnsa	MGI:105381	P14206	19196078
1	ENSMUSG0000032318.0	Runy?	MGI-90820	002775	24768841 runx2 driven by P2X7 activity
1	ENSMUSC0000033133.10	SIG1522	MGI-1020201	000773	ATT OUT A TAIN A UTVET BY FANT OUTVILY
	ENSMUSC0000060702.12	SIE	MGI:1323031	LOBPAS P1APDC	
1	ENSMUSC0000000030304.14	<u>2007</u>	MCI-00200	B10022	20002375 21000044 20101521 21000570 15004504 12123502 00000000 20602251 22020000
1	ENSMUSC00000029304.14	<u>spp1</u>	MGI:30309	K10373	20002213, 31330044, 20101231, 31000370, 12004504, 12132583, scmased: 28602351, 33029008
1	ENSIVIUSG0000029538.14	SISTA	MGI:104896	<u>CADORO</u>	20082375
1		<u>st14</u>	MGI:1338881	<u>P56677</u>	30082273
	ENSIVIUSG0000022415.12	Syngr1	IVIGI:1328323	055100	schlasey of ALS mouse prainstem: 32360664
1		Zcwpw1	NGI:2685899	<u>Q6IR42</u>	Ceceteo2 (AD Fisk polymornism associated with microglial expression)
1	ENSMUSG0000027506.15	1pd52	MGI:107749	<u>Q62393</u>	
	ENSMUSG0000056019.12	<u>Ztp709</u>	MGI:2384299	<u>Q99PJ</u> 6	

901 Supplemental Table 2.

902

903

Table S2. Table of imaging mass cytometry antibodies

Mass Channel	Antibody	Supplier	Suppler Cat #	LOT #	[ug/ml] (final)	Validation
141	mouse monoclonal anti- human Smooth muscle Actin (Clone 1A4)	FLUIDIGM	3141017D	1261907	2	endogenous expression in Human, rat, mouse; KO validated for IHC / IF / WB
142	rabbit monoclonal anti- human APP y188	Abcam	ab256586	GR3337706-2	6.5	endogenous expression in Human, rat, mouse; KO validated for IHC / IF / WB
143	rabbit monoclonal anti- human AQP4 (Clone D1F8E)	Cell Signaling Technologies	59678BF	2	8	endogenous expression in Human, rat, mouse; validated by IHC / IF / WB / IP
144	rabbit monoclonal anti- mouse calbindin (Clone EPR22698-236)	Abcam	ab255691	GR3279332-2	3	endogenous expression in rat, mouse; validated by IHC / IF / WB / IP
145	rabbit monoclonal anti- mouse CD63 (Clone EPR21151)	Abcam	ab227892	GR3274484-1	8	endogenous expression in mouse; validated by IF / WB
147	rabbit monoclonal anti-CD31 (Clone D8V9E)	Cell Signaling Technologies	92841BF	3	1.6	endogenous expression, with positive and negative controls
148	mouse monoclonal anti- human pan cytokeratin (C11)	FLUIDIGM	3148020D	1681901	2.5	endogenous expression in rat, mouse; validated by IHC / IF
149	rabbit monoclonal anti- h3k27me3 (Clone C36B11)	Cell Signaling Technologies	9733BF	20	5	endogenous expression in rat, mouse, human; validated by IHC / IF / WB / IP $$
150	rat monoclonal anti- mouse CD3 (Clone 17A2)	Biolegend	100238	B305614	10	endogenous expression for mouse, reported applications FC, ICFC, ICC, IHC, IP, WB, FA
151	rabbit monoclonal anti- thrombospondin (Clone EPR22928-10)	Abcam	ab263952	GR3297011-2	6.5	endogenous expression in rat, mouse, human; validated by IHC / IF / WB / IP
152	rabbit monoclonal anti- htt (Clone EPR5526)	Abcam	ab209668	GR3271602-1	3.3	endogenous expression in human, rat, mouse; KO validated, for IHC / IF / WB / Flow Cyt
153	rat monoclonal anti- mouse CD8a (Clone 53-6.7)	FLUIDIGM	clone 53-6.7	101806	6.5	endogenous expression in mouse; validated, for IF / Flow Cyt
154	rabbit monoclonal anti- mouse CCR2 (Clone	Abcam	ab273061	GR3341831-1	12.5	endogenous expression in mouse, rat; validated, for IF / IP / IHC /
155	EPR20844-15) rabbit monoclonal anti- ApoE (Clone EPR3326)	Abcam	ab215274	GR3309685-1	5	Flow Cyt endogenous expression in Human, rat, mouse; KO validated for IP/
156	rabbit monoclonal anti- mouse iNOS (Clone	Cell Signaling	13120BF	6	10	WB endogenous expression in mouse; validated for IP/ WB / IF / Flow Cyt
158	D6B6S) goat polyclonal anti- mouse IL33	Technologies R&D	AF3626	YJE0819121	3.3	endogenous expression in mouse; validated for ELISA / IP / Flow Cyt /
159	rabbit monoclonal anti- human PSD95 (Clone	Cell Signaling	3409BF	5	4	IF / IHC endogenous expression in mouse, rat, human: validated for IHC / WB.
160	D74D3) mouse monoclonal anti- human CD184 (Clone	Technologies	306523	B235925	8	endogenous expression in human; validated for Flow Cyt / IF / IHC.
161	12G5) rabbit monoclonal anti- fibrinogen (Clone	Abcom	ab227062	CP2104492 1	10	Used as negative control in mouse. endogenous expression in mouse, rat, human; validated for Flow Cyt / $$
161	EPR18145-84) rabbit monoclonal anti- human Tau (Clone	Cell Signaling	20227005	3	2.2	IHC. endogenous expression in mouse, rat, human; KO validated for Flow
102	D1M9X) rabbit monoclonal anti- EAAT2 (Clone	Technologies	25564	2	5.5	Cyt / IHC / WB / IF. endogenous expression in mouse, rat, human; validated for IHC / WB /
163	EPR19798) rabbit monoclonal anti- mouse CD68 (Clone	Abcam Cell Signaling	2/19/0	GK3340947-1	8	IP. endogenous expression in mouse; positive and negative control
164	E3O7V) mouse monoclonal anti- mouse/rat MAP2	Technologies	97778BF	2	8	validated for IHC / IF / WB / Flow Cyt. endogenous expression in mouse, rat; positive and negative control
165	(Clone SMI 52)	Biolegend	801801	B266835	5	validated for ELISA / IHC / IF / WB / Flow Cyt.
166	(Clone EPR21752-214)	Abcam	ab237032	GR3234347-2	7.5	IP / WB / Flow Cyt.
167	mOC31)	Abcam	ab251334	GR3336463-1	3	endogenous expression in mouse, human; validated for IHC .
168	mouse monoclonal anti- Ki67 (Clone B56)	FLUIDIGM	3168022D	2411806	2.5	endogenous expression in mouse, rat, human; KO validated for IF / IHC / Flow Cyt.
169	hamster monoclonal anti- mouse MCP1 (Clone 2H5)	Biolegend	505912	B296185	10	endogenous expression in mouse, rat, human; validated for WB / IHC / Flow Cyt / ELISA.
170	rabbit monoclonal anti- dopamine beta hydroxylase	Abcam	ab223130	GR3180359-1	4	endogenous expression in mouse, rat, human; validated for WB / IHC / IP.
171	rat monoclonal anti- mouse/human CD44 (Clone IM7)	Biolegend	103046	B338510		endogenous expression in mouse, human; validated for IHC / IP / IF.
172	rabbit polyclonal anti- human LINGO1	Sino Biological	101252-T08	HD10MA1826-B	3.5	endogenous expression in mouse, human; validated for IHC.
173	mouse monoclonal anti- gfap (Clone SMI 22)	Biolegend	835304	missing	0.8	endogenous expression in mouse, rat, human; validated for IHC / ICC / WB.
174	rabbit monoclonal anti- Iba (Clone EPR16589)	Abcam	ab221790	GR3347998-4	1.6	endogenous expression in mouse, rat, human; validated for IHC / ICC / WB.
175	rabbit monoclonal anti- NeuN (Clone EPR12763)	Abcam	ab209898	GR3271481-4	10	endogenous expression in mouse, rat, human; validated for IHC / ICC / IF / WB / Flow Cyt.
176	mouse monoclonal anti- CNPase (Clone SMI-91)	Biolegend	836404	missing	2.5	endogenous expression in mouse, rat, human; validated for IHC / ICC / IF / WB.
195	PM1	FLUIDIGM	TIS-00001 (ICSK1)	1742007	4	
196	PM2	FLUIDIGM	TIS-00001 (ICSK2)	1742008	4	endogenous expression in mouse, human; validated for IHC.
198	PM3	FLUIDIGM	TIS-00001 (ICSK3)	1882005	4	

905 Supplemental Table 3.

906

907 Subject Demographics

Demographics	Mean (SD), range
Age (years)	31.5 (9.4), 23–60
Education (years)	13.7 (1.5), 11–16
Race, nonwhite, n (%)	8 (24.2%)
APOE-ε4–positive (%)	8 (25.8%)
Blast exposures	
Number of blast-related mild TBIs during military service (lifetime)	25.8 (24.2), 1–102, Median = 13
Number of lifetime mild TBIs with loss of consciousness	1.8 (1.8), 0–6, Median = 1
Time since last blast-related mild TBI (years)	3.6 (1.5), 1–7, Median = 4
Behavioral and neurological measures	
PCL-M score	40 (19.7), 17–79, Median = 34
PHQ-9 score	9.6 (7.4), 0–25
PSQI score	8.6 (5.8), 1–20;
AUDIT-C score	3.4 (2.7), 0–9
NSI total score	20.6 (17.8), 0–59, Median = 18
NSI+ total score	25.4 (21.7), 0-73, Median = 22

909 Supplemental Figure 1.

910

- DNA and Cell membrane segmentation markers not shown
- 911 912
- 913 Figure S1. T-SNE plots for separate IMC mass channels included in the study.
- 914
- 915

916 Supplemental Figure 2.

921 Figure S2. Average overpressure waveform for diffuse mTBI model. Data represent the

average timestamped pressure measurements taken 5 cm above the animal over 102 trials

923 occurring over several days (red shown with black bars indicating \pm SEM). The blue line

924 represents the idealized Friedlander waveform produced by 11.35 kg of trinitrotoluene (TNT) at925 a distance of 6.2 m.

927 Supplemental Figure 3.

931

932 Figure S3. Analysis of mRNA enrichment by RiboTag immunoprecipitation. (a-d) Real-

time (RT) PCR amplification curves of (a) microglial Iba-1, (b) astrocytic GFAP, (c) neuronal

NTRK2, and (d) the ubiquitous housekeeping gene GAPDH. Each curve represents either

935 immunoprecipitated mRNA or input samples from individual mice. (e) Quantification of RT-

936 PCR enrichment analyses using cortical hemisection tissue (N=4-8 per tissue). (f) Relative Iba-1

enrichment across brainstem (BS), cerebellum (CR), and cortical tissues (CTX) (N=2-6 pertissue).

938 tis 939

940 Supplemental Figure 4.

Iba-1

942 943

- Figure S4. Locations used for confocal microscopy analyses of microglia internalization of
- 944 myelin CNPase. Sagittal mouse brain section shows location of images taken from brainstem
- 945 pons, dorsal medulla (DM), and ventral white matter (VWM).

952 953 Figure S5. Sensitivity analyses for Pons FA mediation of cumulative blast exposure effects.

954 a) Sensitivity analysis for mediated effects on TBI-associated neurobehavioral symptoms using

955 NSI+ total score. The results show that for the point estimate of the to be zero, the correlation of ACME between the adjusted Pons FA value and PSQI total score must be approximately -0.9. b) 956

957 Sensitivity analysis for mediated effects on sleep using PSQI total score. The results show that

958 for the point estimate of the to be zero, the correlation of ACME between the adjusted Pons FA

959 value and PSQI total score must be approximately -0.4. Gray area is the 95% CI.

961 962	Refer	ences
962	1	Derrow M.C. et al. Estimation the shift of the state of the second in the indicator I
963	1.	Dewan, M.C., <i>et al.</i> Estimating the global incidence of traumatic brain injury. <i>J</i>
964	2	Neurosurg, 1-18 (2018).
965	2.	Renga, V. Clinical Evaluation and Treatment of Patients with Postconcussion Syndrome.
966		Neurol Res Int 2021, 5567695 (2021).
967	3.	Benusa, S.D. & Lafrenaye, A.D. Microglial process convergence on axonal segments in
968		health and disease. Neuroimmunol Neuroinflamm 7, 23-39 (2020).
969	4.	Eyolfson, E., Khan, A., Mychasiuk, R. & Lohman, A.W. Microglia dynamics in
970		adolescent traumatic brain injury. <i>J Neuroinflammation</i> 17 , 326 (2020).
971	5.	Meaney, D.F., et al. Biomechanical analysis of experimental diffuse axonal injury. J
972		Neurotrauma 12, 689-694 (1995).
973	6.	Lippa, S.M., Pastorek, N.J., Benge, J.F. & Thornton, G.M. Postconcussive symptoms
974		after blast and nonblast-related mild traumatic brain injuries in Afghanistan and Iraq war
975		veterans. J Int Neuropsychol Soc 16, 856-866 (2010).
976	7.	Mac Donald, C.L., et al. Prospectively assessed clinical outcomes in concussive blast vs
977		nonblast traumatic brain injury among evacuated US military personnel. JAMA Neurol
978		71, 994-1002 (2014).
979	8.	Cooper, D.B., Vanderploeg, R.D., Armistead-Jehle, P., Lewis, J.D. & Bowles, A.O.
980		Factors associated with neurocognitive performance in OIF/OEF servicemembers with
981		postconcussive complaints in postdeployment clinical settings. J Rehabil Res Dev 51,
982		1023-1034 (2014).
983	9.	Belanger, H.G., <i>et al.</i> Symptom complaints following reports of blast versus non-blast
984		mild TBI: does mechanism of injury matter? <i>Clin Neuropsychol</i> 25 , 702-715 (2011).
985	10.	Cooper, D.B., <i>et al.</i> Association between combat stress and post-concussive symptom
986	101	reporting in OEF/OIF service members with mild traumatic brain injuries. <i>Brain Ini</i> 25.
987		1-7 (2011).
988	11	Belanger H.G. Kretzmer T. Yoash-Gantz R. Pickett T & Tunler I. A. Cognitive
989	11.	sequelae of blast-related versus other mechanisms of brain trauma <i>Lint Neuronsychol</i>
990		Soc 15 1-8 (2009)
991	12	Huber BR $et al$ Blast exposure causes early and persistent aberrant phospho- and
997	12.	cleaved-tay expression in a murine model of mild blast-induced traumatic brain injury.
993		Alzhoimors Dis 37 309-323 (2013)
9975 997	13	McKee A C Daneshvar DH Alvarez VE & Stein TD The neuronathology of
005	15.	sport Acta Nauronathol 127, 20, 51 (2014)
995	14	Oppenheimer D. P. Microscopic lesions in the brain following head injury <i>I Naurol</i>
990	14.	Neurosung Deschigten 21 , 200, 206 (1068)
997	15	Neurosurg r sychiary 51, 299-500 (1906).
998	13.	Korn, A., Golan, H., Melamed, I., Pascual-Marqui, K. & Friedman, A. Focal cortical
999		<i>L</i> (<i>Lin</i>) Norman busist 22 , 1,0 (2005)
1000	17	J Clin Neurophysiol 22, 1-9 (2005).
1001	16.	Logsdon, A.F., <i>et al.</i> Blast exposure elicits blood-brain barrier disruption and repair
1002		mediated by tight junction integrity and nitric oxide dependent processes. Sci Rep 8,
1003	1 –	11344 (2018).
1004	17.	Meabon, J.S., <i>et al.</i> Repetitive blast exposure in mice and combat veterans causes
1005		persistent cerebellar dysfunction. Sci Transl Med 8, 321ra326 (2016).

1006 18. Corsellis, J.A., Bruton, C.J. & Freeman-Browne, D. The aftermath of boxing. Psychol Med 3, 270-303 (1973). 1007 1008 19. Unterberg, A.W., Stover, J., Kress, B. & Kiening, K.L. Edema and brain trauma. 1009 Neuroscience 129, 1021-1029 (2004). 1010 20. Kang, J.H. & Lin, H.C. Increased risk of multiple sclerosis after traumatic brain injury: a 1011 nationwide population-based study. J Neurotrauma 29, 90-95 (2012). 1012 21. Lehman, E.J., Hein, M.J., Baron, S.L. & Gersic, C.M. Neurodegenerative causes of death 1013 among retired National Football League players. Neurology 79, 1970-1974 (2012). 1014 Gardner, R.C., et al. Mild TBI and risk of Parkinson disease: A Chronic Effects of 22. 1015 Neurotrauma Consortium Study. Neurology 90, e1771-e1779 (2018). 1016 Keren-Shaul, H., et al. A Unique Microglia Type Associated with Restricting 23. 1017 Development of Alzheimer's Disease. Cell 169, 1276-1290 e1217 (2017). 1018 24. Haimon, Z., et al. Re-evaluating microglia expression profiles using RiboTag and cell 1019 isolation strategies. Nat Immunol 19, 636-644 (2018). 1020 Mattei, D., et al. Enzymatic Dissociation Induces Transcriptional and Proteotype Bias in 25. 1021 Brain Cell Populations. Int J Mol Sci 21(2020). 1022 Olah, M., et al. Single cell RNA sequencing of human microglia uncovers a subset 26. 1023 associated with Alzheimer's disease. Nat Commun 11, 6129 (2020). 1024 Xu, J., et al. Multimodal single-cell/nucleus RNA sequencing data analysis uncovers 27. 1025 molecular networks between disease-associated microglia and astrocytes with 1026 implications for drug repurposing in Alzheimer's disease. Genome Res 31, 1900-1912 1027 (2021). 1028 28. Fu, R., Shen, Q., Xu, P., Luo, J.J. & Tang, Y. Phagocytosis of microglia in the central 1029 nervous system diseases. Mol Neurobiol 49, 1422-1434 (2014). 1030 29. Trapp, B.D. & Nave, K.A. Multiple sclerosis: an immune or neurodegenerative disorder? 1031 Annu Rev Neurosci 31, 247-269 (2008). 1032 30. Rasband, M.N., et al. CNP is required for maintenance of axon-glia interactions at nodes 1033 of Ranvier in the CNS. Glia 50, 86-90 (2005). 1034 31. Singh, S., et al. Microglial nodules in early multiple sclerosis white matter are associated 1035 with degenerating axons. Acta Neuropathol 125, 595-608 (2013). 1036 Viola-Saltzman, M. & Watson, N.F. Traumatic brain injury and sleep disorders. Neurol 32. 1037 Clin 30, 1299-1312 (2012). 1038 Mathias, J.L. & Alvaro, P.K. Prevalence of sleep disturbances, disorders, and problems 33. 1039 following traumatic brain injury: a meta-analysis. Sleep Med 13, 898-905 (2012). 1040 Ouellet, M.C., Beaulieu-Bonneau, S. & Morin, C.M. Insomnia in patients with traumatic 34. 1041 brain injury: frequency, characteristics, and risk factors. J Head Trauma Rehabil 21, 199-1042 212 (2006). 1043 35. Collen, J., Orr, N., Lettieri, C.J., Carter, K. & Holley, A.B. Sleep disturbances among 1044 soldiers with combat-related traumatic brain injury. Chest 142, 622-630 (2012). 1045 Clinchot, D.M., Bogner, J., Mysiw, W.J., Fugate, L. & Corrigan, J. Defining sleep 36. 1046 disturbance after brain injury. Am J Phys Med Rehabil 77, 291-295 (1998). 1047 Donohue, K.D., Medonza, D.C., Crane, E.R. & O'Hara, B.F. Assessment of a non-37. 1048 invasive high-throughput classifier for behaviours associated with sleep and wake in 1049 mice. Biomed Eng Online 7, 14 (2008). 1050 38. Flores, A.E., et al. Pattern recognition of sleep in rodents using piezoelectric signals 1051 generated by gross body movements. IEEE Trans Biomed Eng 54, 225-233 (2007).

1052 1053	39.	Rowe, R.K., <i>et al.</i> Diffuse brain injury induces acute post-traumatic sleep. <i>PLoS One</i> 9 , e82507 (2014).
1054	40.	Liu, H., et al. Aging of cerebral white matter. Ageing Res Rev 34, 64-76 (2017).
1055	41.	Farrell-Carnahan, L., Franke, L., Graham, C. & McNamee, S. Subjective sleep
1056		disturbance in veterans receiving care in the Veterans Affairs Polytrauma System
1057		following blast-related mild traumatic brain injury. <i>Mil Med</i> 178 , 951-956 (2013).
1058	42.	Norris, J.N., Sams, R., Lundblad, P., Frantz, E. & Harris, E. Blast-related mild traumatic
1059		brain injury in the acute phase: acute stress reactions partially mediate the relationship
1060		between loss of consciousness and symptoms. Brain Ini 28, 1052-1062 (2014).
1061	43.	Leng, Y., et al. Traumatic Brain Injury and Incidence Risk of Sleep Disorders in Nearly
1062		200,000 US Veterans. <i>Neurology</i> 96 , e1792-e1799 (2021).
1063	44.	Meythaler, J.M., Peduzzi, J.D., Eleftheriou, E. & Novack, T.A. Current concepts: diffuse
1064		axonal injury-associated traumatic brain injury. Arch Phys Med Rehabil 82, 1461-1471
1065		(2001).
1066	45	van Horssen, L <i>et al</i> Clusters of activated microglia in normal-appearing white matter
1067	101	show signs of innate immune activation. J Neuroinflammation 9, 156 (2012).
1068	46.	Aoun, R., Rawal, H., Attarian, H. & Sahni, A. Impact of traumatic brain injury on sleep:
1069		an overview. <i>Nat Sci Sleep</i> 11 , 131-140 (2019).
1070	47.	Nassan, M. & Videnovic, A. Circadian rhythms in neurodegenerative disorders. <i>Nat Rev</i>
1071		Neurol 18, 7-24 (2022).
1072	48.	Schiff, N.D. Central thalamic contributions to arousal regulation and neurological
1073		disorders of consciousness. Ann N Y Acad Sci 1129, 105-118 (2008).
1074	49.	Edlow, B.L., et al. Neuroanatomic connectivity of the human ascending arousal system
1075		critical to consciousness and its disorders. J Neuropathol Exp Neurol 71, 531-546 (2012).
1076	50.	Schiff, N.D. Recovery of consciousness after brain injury: a mesocircuit hypothesis.
1077		Trends Neurosci 33, 1-9 (2010).
1078	51.	Steriade, M. Arousal: revisiting the reticular activating system. Science 272, 225-226
1079		(1996).
1080	52.	Moruzzi, G. & Magoun, H.W. Brain stem reticular formation and activation of the EEG.
1081		Electroencephalogr Clin Neurophysiol 1, 455-473 (1949).
1082	53.	Newman, D.B. & Ginsberg, C.Y. Brainstem reticular nuclei that project to the cerebellum
1083		in rats: a retrograde tracer study. Brain Behav Evol 39, 24-68 (1992).
1084	54.	Ryan, N.P., et al. White matter microstructure predicts longitudinal social cognitive
1085		outcomes after paediatric traumatic brain injury: a diffusion tensor imaging study.
1086		<i>Psychol Med</i> 48 , 679-691 (2018).
1087	55.	Drijkoningen, D., et al. Regional volumes in brain stem and cerebellum are associated
1088		with postural impairments in young brain-injured patients. Hum Brain Mapp 36, 4897-
1089		4909 (2015).
1090	56.	De Andrés, I. & Reinoso-Suàrez, F. Participation of the cerebellum in the regulation of
1091		the sleep-wakefulness cycle through the superior cerebellar peduncle. Arch Ital Biol 117,
1092		140-163 (1979).
1093	57.	Cunchillos, J.D. & De Andres, I. Participation of the cerebellum in the regulation of the
1094		sleep-wakefulness cycle. Results in cerebellectomized cats. Electroencephalogr Clin
1095		Neurophysiol 53, 549-558 (1982).
1096	58.	Boehme, N.A., et al. Axonopathy precedes cell death in ocular damage mediated by blast
1097		exposure. Sci Rep 11, 11774 (2021).

1098	59.	Perez-Garcia, G., et al. PTSD-Related Behavioral Traits in a Rat Model of Blast-Induced
1099		mTBI Are Reversed by the mGluR2/3 Receptor Antagonist BCI-838. eNeuro 5(2018).
1100	60.	Corrigan, F., et al. NK1 antagonists attenuate tau phosphorylation after blast and repeated
1101		concussive injury. Sci Rep 11, 8861 (2021).
1102	61.	Petrie, E.C., et al. Neuroimaging, behavioral, and psychological sequelae of repetitive
1103		combined blast/impact mild traumatic brain injury in Iraq and Afghanistan war veterans.
1104		<i>J Neurotrauma</i> 31 , 425-436 (2014).
1105	62.	Goldstein, L.E., et al. Chronic traumatic encephalopathy in blast-exposed military
1106		veterans and a blast neurotrauma mouse model. Sci Transl Med 4, 134ra160 (2012).
1107	63.	Cernak, I., et al. The pathobiology of blast injuries and blast-induced neurotrauma as
1108		identified using a new experimental model of injury in mice. Neurobiol Dis 41, 538-551
1109		(2011).
1110	64.	Logsdon, A.F., et al. Nitric oxide synthase mediates cerebellar dysfunction in mice
1111		exposed to repetitive blast-induced mild traumatic brain injury. Sci Rep 10, 9420 (2020).
1112	65.	Yaghouby, F., Donohue, K.D., O'Hara, B.F. & Sunderam, S. Noninvasive dissection of
1113		mouse sleep using a piezoelectric motion sensor. J Neurosci Methods 259, 90-100
1114		(2016).
1115	66.	Mang, G.M., et al. Evaluation of a piezoelectric system as an alternative to
1116		electroencephalogram/ electromyogram recordings in mouse sleep studies. Sleep 37,
1117		1383-1392 (2014).
1118	67.	Giesen, C., et al. Highly multiplexed imaging of tumor tissues with subcellular resolution
1119		by mass cytometry. Nat Methods 11, 417-422 (2014).
1120	68.	Lein, E.S., et al. Genome-wide atlas of gene expression in the adult mouse brain. Nature
1121		445 , 168-176 (2007).
1122	69.	Schapiro, D., et al. histoCAT: analysis of cell phenotypes and interactions in multiplex
1123		image cytometry data. Nat Methods 14, 873-876 (2017).
1124	70.	Imai, K., Tingley, D. & Yamamoto, T. Experimental identification of causal mechanisms:
1125		Technical report Department of Politics, Princeton University (2009).
1126	71.	Imai, K., Keele, L., Tingley, D. & Yamamoto, T. Causal mediation analysis using R. In
1127		Advances in Social Science Research Using R, Vol. 196, ed. Vinod, H. (Springer, New
1128		York, NY, 2010).
1129	72.	Bittar, A., et al. Neurotoxic tau oligomers after single versus repetitive mild traumatic
1130		brain injury. Brain Commun 1, fcz004 (2019).
1131		