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ABSTRACT  
Background: Interoperable clinical decision support system (CDSS) rules provide a 
pathway to interoperability, a well-recognized challenge in health information 
technology. Building an ontology facilitates creating interoperable CDSS rules, which 
can be achieved by identifying the keyphrases (KP) from the existing literature. 
Ontology construction is traditionally a manual effort by human domain experts, and 
the newly advanced natural language processing techniques, such as KP identification, 
can be a critical complementary automatic part of building ontology. However, KP 
identification requires human expertise, consensus, and contextual understanding for 
data labeling.  

Methods: This paper presents a semi-supervised KP identification framework (long 
short-term memory-based encoders and the conditional random fields -based decoder 
models, BiLSTM-CRF) using minimal human labeled data based on hierarchical 
attention (i.e., at word, sentence, and abstract levels) over the documents and domain 
adaptation. We created synthetic labels for initial training and human-labeled data for 
fine-tuning. We also tested different options during NLP preprocessing and ML training 
to optimize the ML pipeline. 

Results: Our method outperforms the prior neural architectures by learning through 
synthetic labels for initial training, document-level contextual learning, language 
modeling, and fine-tuning with limited gold standard label data. After comparison, we 
found that the BIO encoding schema performed slightly better than Blue, and domain 
adaptation techniques can improve the quality of synthetic labels. In addition, 
document-level context, pre-trained LM, and pre-trained WE all contributed to better 
model performance in our tasks. Add 2 to 4 human-labeled documents for every 100 
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synthetic labeled documents improves the model performance without exhausting 
human-labeled documents too quickly. 

Conclusions: To the best of our knowledge, this is the first functional framework for the 
CDSS sub-domain to identify KPs, which is trained on limited human labeled data. It 
contributes to the general natural language processing (NLP) architectures in areas 
such as clinical NLP, where manual data labeling is challenging, and light-weighted deep 
learning models play an important role in real-time KP identification as a 
complementary approach to human experts’ effort. 

KEYWORDS 
Clinical Decision Support System, Minimal labeled data, Hierarchical context, Semi-
supervised learning, Domain adaptation, Natural language processing 

Abbreviations: 
NLP: Natural language processing 
CDSS: Clinical decision support system 
HDE: Human domain expert 
BiLSTM: Bidirectional long short-term memory 
BiLM: Bidirectional language model 
CRF: Conditional random field 
GS: Gold standard 
KP: Keyphrase 

 

1. Introduction 

Interoperability [1,2] is a well-recognized barrier in health informatics. For example, 
a lack of interoperability can create chaos when transmitting patients’ health records 
between institutions. Despite good progress in interoperability in healthcare, it is not 
yet a common reality. Clinical decision support systems (CDSSs), especially rule-based 
CDSSs have been effective in improving the quality of healthcare and preventive 
services [3,4]. However, developing and maintaining CDSS rules are resource-
demanding, and it is not yet a reality to share such rules across institutions. One way to 
achieve interoperable CDSS rules is via an ontology [5,6] that uses unambiguous 
concepts and their relationships.  

In a text corpus, such as an article, concepts can be identified as an orderly sequence 
of words or N-grams, namely, keyphrases (KP). A KP is a gold standard (GS) if it is 
selected by a human domain expert (HDE) for a particular purpose, such as constructing 
an ontology, after careful review and with consensus among multiple HDEs[7]. 
Typically, ontology construction is a manual process with the HDE input and curators’ 
deep understanding of the domain and application contexts. Automatic KP 
identification can be a critical complement to the manual construction and curation 
process. 

We aim to build a system using natural language processing (NLP) to speed up KP 
identification in CDSS literature. KPs will be reviewed by HDE before they can be added 
to a CDSS ontology. NLP neural network architectures [8, 9] can be used to automate 
identifying possible KPs. 
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Classic NLP algorithms (supervised and rule-based approaches) [8, 9] require 
human-labeled data as the GS terms, which is costly and labor-intensive since only HDE 
can provide labeled data. Unsupervised algorithms [8,9] work with text similarity or 
semantic relatedness and do not need human labels.  

Although Transformer models [10, 11] have been quite popular in accomplishing 
such a task using the context information with attention, they are computationally 
intense and require labeled data to fine-tune or to adapt from the biomedical domain to 
the CDSS domain. To avoid the above-mentioned challenges, inferior neural 
architectures (compared to the Transformer [10,11] and other [12,13] models) can help 
us identify the possible N-gram combination of tokens as candidate KPs. For example, 
long short-term memory (LSTM)-based encoders [14] and the conditional random 
fields (CRF)-based decoder models [15] (a statistical modeling method for text pattern 
recognition, where current prediction is affected by neighbors). This encoder-decoder 
network accommodates the customization of text features and various attention levels 
over the text while recognizing the candidate KPs from the CDSS literature. 

Bidirectional attention for LSTM enhances the prediction of KP [16], focusing more 
on contextual understanding. Our approach is based on the NLP architectures 
(attention-based BiLSTM-CRF model) presented by Yang, et al and Gu, et al. [17, 18] to 
create a hybrid approach by augmenting document-level attention layer, preserving its 
light-weighted heritage, and adding context awareness.   

In this paper, we describe harnessing the power of the newly augmented framework 
with a minimally labeled dataset for KP identification in our domain of interest, CDSS, 
and the challenges we faced. The main objectives include the following:  
• Identifying KPs with long-range contextual dependencies with a hierarchical 

attention-based encoder (Hier-Attn-BiLSTM) neural network architecture, 
incorporating document, word, and sentence-level attentions. 

• Creating high-quality synthetic labels in CDSS to bootstrap a machine learning (ML) 
model with a pre-trained Bidirectional Encoder Representations from 
Transformers (BERT) model in the biomedical domain.  

• Harnessing and optimizing the fine-tuning process when the ML model with limited 
HDE labeled data in a semi-supervised approach. 
 

The paper discusses the related research in Section 2; formulates the task and describes 
the method and architecture in Section 3; outlines the CDSS dataset, training procedure, 
experiments, and results in Section 4; discusses the analysis and the challenges 
identified during this project in Section 5; and concludes in Section 6.  
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2. Background 
2.1. CDSS Ontology 

CDSS has been broadly adopted in healthcare settings due to its effectiveness in 
improving healthcare quality and adherence to prescriptions and other clinical orders 
[3,4]. CDSS is usually a part of an electronic health record system. For rule-based CDSS, 
the rules dictate CDSS’ operational behavior. However, creating and maintaining these 
rules are tedious, resource-demanding, and challenging in resource-constrained 
settings. A CDSS ontology can facilitate the interoperability of CDSS rules [4,7]. 
Traditionally, ontology construction is an expert-driven manual process. Leveraging the 
NLP technique to automatically identify KP can be a critical complement to the manual 
effort of building an ontology. 
2.2. Similarity with other NLP problems 
The NLP-based ML approaches use unstructured text data to extract information and 
identify patterns and the KP. Identifying a KP involves (1) extracting N-grams, limiting 
them to noun phrases only, and (2) ranking the N-grams to find the best and mark them 
as KP. Some of the popular methods of KP extraction, as given by Zhiyong He et al. [8] 
will be summarized in the forthcoming sections, as well as the differences between our 
focus and others. 

2.2.1. Statistical and unsupervised methods 

For limited labeled data, ML methods involving no labeled data, statistical, or 
unsupervised, can be an ideal solution, as proposed by Kazim et al. [9]. Some statistical 
features, such as term frequency-inverse document frequency (TF-IDF) [19, 20] and 
Best Match 25 (BM25) [21], differentiate the KP into good or bad categories. But the 
approaches fail to deal with the unseen data, as the statistics are drawn from the 
existing corpus. 

In unsupervised methods, the KPs are determined using semantic similarity. A graph 
using the KP as nodes and their semantic similarity as the relations can be used to rank 
algorithms, such as Google’s PageRank [22], MultiPartiteRank [23], PositionRank [24], 
and TopicRank [25] by scoring the terms across the relations drawn. However, the 
relation is given by the similarity between N-gram tokens without considering the 
document’s context. 

2.2.2. Supervised methods 

KP identification can be considered as a classification task, the supervised algorithms, 
such as Naïve Bayes [26], Decision Trees [27], and Support Vector Machines (SVM) [28], 
can be used to solve binary classification. However, KPs are not independent entities 
and are always an N-gram combination, which creates chaos in the conceptual 
formulation of the problem. 

Using ranking and marking the top N entities as the KP, Witten Ian et al. [29] 
developed a Keyword Extraction Algorithm, which uses statistical features like TF-IDF 
and Word’s First Occurrence Position (WFOP). Chengzhi Zhang et al. [30] included 
additional features such as the length of the token and linguistic features such as Part of 
Speech (POS) [31] tags to normalize the position and occurrence of the KP. A linear 
ranking SVM was used to rank the KP [32]. The BiLSTM-CRF model [33] considers KP 
identification a sequence tagging problem with superior performance [34]. However, 
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the direct implementation of supervised methods does not solve the problem of limited 
labeled data. 
 
2.2.3. Named Entity Recognition (NER) 

Named entity recognition (NER), a classical NLP task, extracts and classifies N-gram 
entities into predefined categories, such as name, drug, gene, disease, organization, 
quantity, numeric values, location, and data, is known as NER [35]. It can be handled as 
two problems: entity identification and entity classification.  NER can be achieved by 
grammar-based or statistics-based methods. Although NER is based on a contextual 
understanding of the text, it is often comprehended by confidence in classifying an 
entity into one of the predefined categories. As shown in Figure 1, the entities 
identified by NER are mostly nouns. Other grammatical entities are disregarded. 
Objectively, it differs from KP identification, which includes an N-gram combination of 
all grammatical entities.  

 

 
Figure 1.  Entities identified on sample CDSS abstract demonstrate differences between human 

labeled Gold Standards and NER by sciSpacy. 

2.3. Domain adaptation 
KP identification is a fundamental task for NLP applications. Training deep learning 

models can facilitate KP identification; however, the process is challenging and needs 
significant resources, time, and data. Domain adaptation [36,37] adapts the pre-trained 
ML models into a similar domain and fine-tunes them with minimal use of labeled data 
for specific tasks. Therefore, it can be used for KP identification. 
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A popular model in entity identification, Spacy [38], based on BERT [10,11], is trained 
on OntoNotes5 [39] and WordNet [40] open-source corpora. Although it works very 
well with English language modeling and text comprehension, it fails to identify the 
entities in biomedical and clinical informatics sub-domains. Therefore, Spacy, a large 
language model (LLM), has been domain-adapted with a 785 K vocabulary and 600-
word vectors into sciSpacy, specializing in the identification of biomedical entities [42]. 
We further fine-tuned the sciSpacy model to the CDSS sub-domain and strengthened the 
transfer learning approaches to achieve our goals. 

2.4. Language Model (LM) 

The LM is a critical aspect of NLP architectures [43]. It is a statistical and probabilistic 
technique to determine the conditional probability of each word’s occurrence in a given 
sentence based on the hidden Markov model (HMM) [44]. It is often used when the 
labeled training data is limited. To create such an LM, all the sentences in the document 
are unified into one, and punctuation is removed. Then, we slide over the word windows 
to train the LM without using labeled data to provide the context of the words and their 
characteristics. The ML model needs to understand domain-specific language and the 
distribution of words in the domain, CDSS in our case. We can use this trained LM to 
transfer its neural network parameters to the actual model, the process helps the model 
learn the language distribution for the CDSS domain [45]. 
 
3. Methods 

As shown in Figure 1, our task diverges from NER. We aim to identify KP that can be added 
to the CDSS ontology. We designed a pipeline for the task, which includes a bidirectional 
long short-term memory (BiLSTM) as the encoder and a CRF layer as the decoder. For 
a given sentence, it can learn the N-gram entity patterns and their occurrence over the 
context[16, 17]. 
    Word embeddings (WE) play a significant role in transforming text information into 
mathematical representation, which provides input for deep learning models. We 
propose a hierarchical attention strategy during model training and learning, including 
word, sentence, and document level attentions. The details are presented in the 
following sections. 

3.1. Overview 
3.1.1. Defining the task 

KP identification is a typical sequence labeling task to find the N-gram KP from the 
document. For a document with m sentences, 𝑑𝑑 = (𝑠𝑠1, 𝑠𝑠2, … , 𝑠𝑠𝑚𝑚):  each sentence 
contains n tokens or words, 𝑠𝑠𝑖𝑖 = (𝑤𝑤𝑖𝑖1,𝑤𝑤𝑖𝑖2, … ,𝑤𝑤𝑖𝑖𝑖𝑖) is the input to the model and output 
𝑧𝑧𝑖𝑖 = (𝑧𝑧𝑖𝑖1, 𝑧𝑧𝑖𝑖2, … , 𝑧𝑧𝑖𝑖𝑖𝑖) would be a sequence of tags in BIO token tagging representation 
[46]. 
In BIO token tagging [46], the first N-gram phrase word is labeled B-KP, the rest are 
labeled I-KP, and the non-KP tokens are marked as O. Figure 2 presents a BIO token 
tagging example with an input document. The model can output the sequence tag (B-
KP/I-KP/O) where the keyphrases can be generated by decoding the output tags. 
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Figure 2. Flow of labeling Keyphrases (KP) from a sentence 

We provide the document-level context by combining hierarchical attentions (i.e., 
adding word-level and sentence-level attentions to create the document vector), yo 
improve the model performance. Thus, all the sentences in the form of embeddings and 
their corresponding attentions are used to represent the current sentence. That is, the 
input to our model will be all the sentences from a single document, and for each 
sentence, we find its relevance compared to other sentences and their words to 
calculate hierarchical attention to represent the context. 

3.1.2. High-level design 

Our approach to building ML model architecture includes (1) creating synthetic labels 
for unlabeled data, (2) pre-train model, (3) implementing BiLSTM-CRF model, and (4) 
fine-tuning with HDE (GS) labeled data, as illustrated in Figure 3. Based on the research 
of Xu, et al. [18] and Saad, et al. [47], we created  synthetic labels using BERT. In parallel, 
we trained the word embedding (word2vec) model and bidirectional language model 
(BiLM) without using labels.  Then we transferred their knowledge into the BiLSTM-
CRF model’s initial layers for embedding and LSTM, respectively. Second, all the 
sentences from a single document are fed into the BiLSTM-CRF model in batches, one 
document at a time.  Each word in the sentence is transformed into a vector via the WE 
model. Then, we introduced the hierarchical attention, i.e., attention at word and 
sentence levels, to aggregate them into sentence and document vectors, respectively. 
 

Figure 3. High-level design of the proposed pipeline for KP identification 
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Using these embedding and attention vectors, we calculated the hierarchical 
attention for any given word using the second LSTM, which is further deduced into the 
final linear network (Appendix A) along with the outputs of the first LSTM (BiLM) 
network completely, encoding one document at-a-time. Lastly, we used the encoded 
information to feed the conditional random fields (CRF) layer which decodes the best 
probable sequence decisions to mark the output labels with BIO token tag 
representations. Later, we fine-tuned the model to enhance its performance using a 
minimally labeled dataset. 

3.2. Synthetic labels 

Due to limited HDE labeled datasets, domain-adapted or fine-tuned models can be used 
to generate the synthetic labels, which can help to bootstrap the ML model’s training 
process as shown in Figure 3. Later, the BiLSTM-CRF model can be fine-tuned with the 
HDE labels to avoid the exhaust of HDE-generated labels.  

To achieve this, we performed domain adaptation of a sciSpacy BERT model [42] by 
generating the KPs (intermediate) on the CDSS dataset and using them to fine-tune the 
sciSpacy BERT to the CDSS sub-domain BERT. Then, we generated the synthetic KP on 
the CDSS dataset and marked the labels in the BIO format, namely the synthetic dataset 
with synthetic labels. We used this dataset to train and test our BiLSTM-CRF model. 

3.3. Pre-training 

3.3.1. Word Embedding (WE) model 

   Word embedding (WE) provides a mathematical vector representation for a given 
word, which ensures minimal distance between the vectors with similar meaning. These 
embeddings capture the language semantics and syntactic information using the 
Word2Vec [48] skip-gram approach. Vectors can be used as input to train deep learning 
models. We tested with fastText [49, 50] and GloVe [51] embeddings as alternative 
embedding models to compare their performances for our tasks. While Word2Vec and 
GloVe work on semantic similarity between vectors, the latter uses word-pair co-
occurrence with reduced dimensions and works faster on large volumes of data. 
Conversely, fastText considers sub-words to generalize unseen vocabulary, and works 
using syntactic analogy. Due to the overhead of character N-grams in constructing sub-
word information, it is slower than others. In addition, both GloVe and fastText have 
dynamic and reduced dimensions in the embedding matrix, creating a hiatus for 
knowledge transfer between them and BiLSTM-CRF. Therefore, we only focused on 
creating a Word2Vec embedding model for our approach. 
 
3.3.2. Bi-Directional Language Modeling (BiLM) 

To learn the probability distribution over sequences of words, we use a shallow layered 
bidirectional RNN [52] (e.g., LSTM and GRU) to learn the joint probabilities represented 
by WE. To ensure the network learns such a distribution, we evaluate its perplexity as 
a metric. A network that learns the word distribution is known as the BiLM [43]. It 
computes the conditional probability of occurrence of the next word (𝑤𝑤𝑖𝑖) based on the 
previous (𝑤𝑤1, … ,𝑤𝑤𝑖𝑖−1) and future words (𝑤𝑤𝑖𝑖+1, … ,𝑤𝑤𝑛𝑛) in a sentence (s) as shown in Eq. 
(A. 1), (A. 2) [43], where each sentence (s) is represented by the last word’s context  
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(given by LSTM’s cell state) in both left ( 𝑐𝑐 �⃖��𝑛𝑛𝐿𝐿𝐿𝐿) and right ( 𝑐𝑐 ���⃗ 𝑛𝑛𝐿𝐿𝐿𝐿) directions. Here Eq. (A. 
2) is the probability of LM in the reversal order when compared with the Eq. (A. 1). 

𝑝𝑝(𝑤𝑤1,𝑤𝑤2, … ,𝑤𝑤𝑛𝑛) = 𝑝𝑝(𝑤𝑤2|𝑤𝑤1) … 𝑝𝑝(𝑤𝑤𝑛𝑛|𝑤𝑤𝑛𝑛−1) = �𝑝𝑝(𝑤𝑤𝑖𝑖|𝑤𝑤1,𝑤𝑤2, … ,𝑤𝑤𝑖𝑖−1)
𝑛𝑛

𝑖𝑖=2

 

(A. 1) 

𝑝𝑝(𝑤𝑤𝑛𝑛,𝑤𝑤𝑛𝑛−1, … ,𝑤𝑤1) = 𝑝𝑝(𝑤𝑤𝑛𝑛−1|𝑤𝑤𝑛𝑛) …𝑝𝑝(𝑤𝑤1|𝑤𝑤2) = � 𝑝𝑝(𝑤𝑤𝑖𝑖|𝑤𝑤𝑛𝑛,𝑤𝑤𝑛𝑛−1, … ,𝑤𝑤𝑖𝑖+1)
1

𝑖𝑖=𝑛𝑛−1

 

(A. 2) 
𝑠𝑠 = [ 𝑐𝑐 �⃖��𝑛𝑛𝐿𝐿𝐿𝐿;  𝑐𝑐 ���⃗ 1𝐿𝐿𝐿𝐿] 

(A. 3) 
 
For a given word (𝑤𝑤𝑖𝑖), the forward and backward LSTMs encode the history of previous 
tokens in each direction into fixed dimensional vectors ( ℎ �⃖���𝑖𝑖−1𝐿𝐿𝐿𝐿 ,  ℎ ����⃗ 𝑖𝑖−1𝐿𝐿𝐿𝐿 ), where a soft-max 
layer maximizes the likelihood (p) of the word (𝑤𝑤𝑖𝑖) in the given sentence (s) in the 
corpus. After training, a BiLM can represent a sentence of a document by concatenating 
the last cell (i.e., the last word of the sentence) state carrying the context in either 
direction to represent the input sentence as shown in Eq. (A. 3). 

3.4. Hierarchical-Attention-BiLSTM-CRF Model 

3.4.1. Encoder 

This architecture is adopted from Zichao Yang, Guohai Xu, and Luo L et al. (Figure 4) 
[17, 18, 53]. To capture the context of the KP, we encode one document at-a-time to 
capture document-level context with a stacked BiLSTM [11]. Here, the rudimentary 
layers of stacked BiLSTM are initiated with a transfer strategy from pre-trained WE and 
BiLM models’ weights. 

The embedding and first LSTM layers in our encoder share the architecture of the 
pre-trained models, and can seamlessly transfer the model parameters or weights 
between the models [18]. Using the transfer strategy, our model can efficiently initiate 
learning and adapt to the CDSS-domain language distribution.   
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Figure 4. Detailed encoder - word encoding with Hierarchical-Attention-BiLSTM with 

document-level context. 

We used all the sentences in a document, 𝑑𝑑 = (𝑠𝑠1, 𝑠𝑠2, … , 𝑠𝑠𝑚𝑚), where each sentence is 
represented by 𝑠𝑠𝑖𝑖 = (𝑤𝑤𝑖𝑖1,𝑤𝑤𝑖𝑖2, … ,𝑤𝑤𝑖𝑖𝑖𝑖) and its words by 𝑤𝑤𝑖𝑖𝑖𝑖∀𝑡𝑡 ∈ [1,𝑛𝑛]. We embed the 
words into a vector (𝑥𝑥𝑖𝑖𝑖𝑖) through an embedding matrix (We). BiLSTM summarizes the 
bidirectional context information as shown in Eq. (B. 1)(B. 2)(B. 3) where each word 
vector’s hidden state ( ℎ𝑖𝑖𝑖𝑖 ) is obtained by concatenating the forward (  ℎ �⃖���𝑖𝑖𝑖𝑖 ) and 
backward ( ℎ ����⃗ 𝑖𝑖𝑖𝑖 ) hidden state vectors, i.e., ℎ𝑖𝑖𝑖𝑖 = � ℎ �⃖���𝑖𝑖𝑖𝑖;  ℎ ����⃗ 𝑖𝑖𝑖𝑖� . The hidden state vector 
provides sentence-level context to each word [12]. 

𝑥𝑥𝑖𝑖𝑖𝑖 = 𝑊𝑊𝑒𝑒 .𝑤𝑤𝑖𝑖𝑖𝑖∀𝑡𝑡 ∈ [1,𝑛𝑛] 
(B. 1) 

 ℎ ����⃗ 𝑖𝑖𝑖𝑖 = 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿�����������⃗ (𝑥𝑥𝑖𝑖𝑖𝑖)∀𝑡𝑡 ∈ [1,𝑛𝑛] 
(B. 2) 

 ℎ �⃖���𝑖𝑖𝑖𝑖 = 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿�⃖����������(𝑥𝑥𝑖𝑖𝑖𝑖)∀𝑡𝑡 ∈ [1,𝑛𝑛] 
(B. 3) 

 
We calculated word similarity (𝑢𝑢𝑖𝑖𝑖𝑖) using a neural network’s parameter for weighted 

matrix (𝑊𝑊𝑤𝑤) and word representation (ℎ𝑖𝑖𝑖𝑖) given by BiLSTM along with bias (𝑏𝑏𝑤𝑤) [54]. 
Then we calculated the word-level attention by aggregating the ℎ𝑖𝑖𝑖𝑖  and 𝑢𝑢𝑖𝑖𝑖𝑖  using a 
word-level context vector (𝑢𝑢𝑤𝑤)  [19, 20] to get a word-level normalized importance 
weight (𝛼𝛼𝑖𝑖𝑖𝑖). Finally, we compute the sentence vector (𝑠𝑠𝑖𝑖) as a weighted sum of word 
representations as shown in Eq. (C. 1)(C. 2)(C. 3). Initially, 𝑢𝑢𝑤𝑤  is the neural network 
parameter with random initialization, learned during the training process. 

 
𝑢𝑢𝑖𝑖𝑖𝑖 = tanh(𝑊𝑊𝑤𝑤 .ℎ𝑖𝑖𝑖𝑖 + 𝑏𝑏𝑤𝑤)∀𝑡𝑡 ∈ [1,𝑛𝑛] 

(C. 1) 

𝛼𝛼𝑖𝑖𝑖𝑖 = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠�𝑢𝑢𝑖𝑖𝑖𝑖𝑇𝑇 .𝑢𝑢𝑤𝑤� =
ex p�𝑢𝑢𝑖𝑖𝑖𝑖𝑇𝑇 .𝑢𝑢𝑤𝑤�
∑ ex p�𝑢𝑢𝑖𝑖𝑖𝑖𝑇𝑇 .𝑢𝑢𝑤𝑤�𝑡𝑡

∀𝑡𝑡 ∈ [1,𝑛𝑛] 

(C. 2) 
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𝑠𝑠𝑖𝑖 = �𝛼𝛼𝑖𝑖𝑖𝑖

𝑡𝑡

.ℎ𝑖𝑖𝑖𝑖∀𝑡𝑡 ∈ [1,𝑛𝑛] 

(C. 3) 
 

Similarly, a document vector can be computed using sentence-level attention over 
the sentence vectors ( 𝑠𝑠𝑖𝑖 ) [19, 20] using a second BiLSTM network and thereby 
concatenating the forward ( ℎ �⃖���𝑖𝑖) and backward ( ℎ ����⃗ 𝑖𝑖) states to encode a sentence, ℎ𝑖𝑖 =
� ℎ �⃖���𝑖𝑖;  ℎ ����⃗ 𝑖𝑖� based on neighbor sentences as shown in Eq. (D. 1)(D. 2). 

  
 ℎ ����⃗ 𝑖𝑖 = 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿�����������⃗ (𝑠𝑠𝑖𝑖)∀𝑖𝑖 ∈ [1,𝑚𝑚] 

(D. 1) 

 ℎ �⃖���𝑖𝑖 = 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿�⃖����������(𝑠𝑠𝑖𝑖)∀𝑖𝑖 ∈ [1,𝑚𝑚] 
(D. 2) 

 
As shown in Eq. (E. 1)(E. 2)(E. 3), to estimate the sentence-level context vector (𝑢𝑢𝑠𝑠), 
first, we used neural network parameter for weighted matrix ( 𝑊𝑊𝑠𝑠 ), sentence 
representation (ℎ𝑖𝑖 ) and bias (𝑏𝑏𝑠𝑠 ) to calculate sentence similarity (𝑢𝑢𝑖𝑖 ). Second, we 
randomly initialize us, to calculate the sentence-level normalized importance weight 
(𝛼𝛼𝑖𝑖), which yields a document vector(di) for each word representing the sentences that 
are important to consider for a given word while identifying it as a KP as provided [17]. 
 

𝑢𝑢𝑖𝑖 = tanh(𝑊𝑊𝑠𝑠.ℎ𝑖𝑖 + 𝑏𝑏𝑠𝑠)∀𝑖𝑖 ∈ [1,𝑚𝑚] 
(E. 1) 

𝛼𝛼𝑖𝑖 = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠�𝑢𝑢𝑖𝑖𝑇𝑇 .𝑢𝑢𝑠𝑠� =
ex p�𝑢𝑢𝑖𝑖𝑇𝑇 .𝑢𝑢𝑠𝑠�
∑ ex p�𝑢𝑢𝑖𝑖𝑇𝑇 .𝑢𝑢𝑠𝑠�𝑖𝑖

∀𝑖𝑖 ∈ [1,𝑚𝑚] 

(E. 2) 
 

𝑑𝑑𝑖𝑖 = 𝛼𝛼𝑖𝑖.ℎ𝑖𝑖∀𝑖𝑖 ∈ [1,𝑚𝑚] 
(E. 3) 

 
Unlike the previous work proposed by Guohai Xu et al. [18], we concatenated the first 

LSTM’s hidden local state (hit) with the document vector (di) into a new vector 
[ℎ𝑖𝑖𝑖𝑖;𝑑𝑑𝑖𝑖]∀𝑡𝑡 ∈ [1,𝑛𝑛], given the word’s relatedness to other words in the document. That 
is, providing document-level context to each word. Next, the extended representation 
was further used by the final LSTM layer to identify the labels. 

3.4.2. Decoder 

As described by Ling Luo et al. [53], we used the CRF [15] layer as the decoder, which 
produces the confidence scores for the words with each label (B-KP/ I-KP/ O) as the 
output score of the decoder. Given the transition and network scores, we make tagging 
decisions independently, considering P, the matrix of scores of the network output. 

The score of sentence (𝑠𝑠𝑖𝑖), with a sequence of predictions 𝑦𝑦𝑖𝑖 = �𝑦𝑦𝑖𝑖1, … , 𝑦𝑦𝑖𝑖𝑖𝑖 , … ,𝑦𝑦𝑖𝑖𝑖𝑖�, is 
given by the sum of transition scores and network scores as shown in Eq.(F. 1). Here 
each 𝑃𝑃𝑎𝑎,𝑏𝑏 represents the matrix of scores of bth tag of the ath word in the sentence. 
Furthermore, the tagging transformation matrix (T) is trained as the model parameter. 
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Here 𝑇𝑇𝑎𝑎,𝑏𝑏  represents the transition score from tag a to tag b through successive words 
where 𝑇𝑇0,𝑏𝑏  is the initial score starting from tag b. 

To generate the conditional probability of the path (y), we normalize the score for all 
possible paths (𝑦𝑦�) using a soft-max function using Eq. (F. 2). Then, we maximize the log 
probability of valid tag sequences. We obtain the maximum score using the dynamic 
programming approach of Viterbi decoding [55] for the best tag path given by Eq. (F. 3). 

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑠𝑠𝑖𝑖 ,𝑦𝑦𝑖𝑖) = ��𝑇𝑇𝑦𝑦(𝑖𝑖,𝑘𝑘−1),𝑦𝑦(𝑖𝑖,𝑘𝑘) + 𝑃𝑃�𝑘𝑘,𝑦𝑦(𝑖𝑖,𝑘𝑘)��
𝑛𝑛

𝑘𝑘=0

   ∀𝑖𝑖 ∈ [𝑚𝑚, 1] 

(F. 1) 

𝑝𝑝(𝑦𝑦𝑖𝑖|𝑠𝑠𝑖𝑖) =
ex p�𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑠𝑠𝑖𝑖 ,𝑦𝑦𝑖𝑖)�
∑ 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑠𝑠𝑖𝑖,𝑦𝑦�𝑖𝑖)𝑦𝑦�𝑖𝑖

    ∀𝑖𝑖 ∈ [𝑚𝑚, 1] 

(F. 2) 
𝑧𝑧𝑖𝑖  =  𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎

 𝑦𝑦 � 𝑖𝑖
�𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑠𝑠𝑖𝑖 ,𝑦𝑦�𝑖𝑖)�  ∀𝑖𝑖 ∈ [𝑚𝑚, 1] 

(F. 3) 
 
4. Experiments and results 

4.1. Dataset 

The text corpus was obtained from PubMed by retrieving the CDSS (as the Medical 
Subject Headings, MeSH) literature in the MEDLINE format. The articles with a valid 
PubMed Identifier (PMID)  were selected. The corpus profile presents in Tables 1 and 2.  
Appendix B detailed information on the dataset at the various stages during text 
preprocessing. 

Of the total dataset retrieved from PubMed (3545 abstracts), 3326 abstracts were left 
after XML parsing and 133 of them were labeled by HDE (Table 1, Appendix B with 
extended details). During the preprocessing, we removed the articles with abstracts of 
three or fewer sentences, treating the title as one sentence. 
 

Table 1. Profiles of the CDSS corpus 

 FC FC with 
PMIDs 

GS (+8 ACM) No/little abs. Final/total 
dataset 

Articles 3545 3326 133 99 3281 
FC – Full CDSS dataset 
No/little abs. - Abstracts having less than 3 sentences including the title. 
 

Table 2. CDSS Datasets for training, validation, and testing 

 Total Synthetic KP labeled 
dataset 

Training Validation Testing 
(GS91)* 

GS(GS42)* 

Articles 3281 3148 1049 2099 91 42 
* GS91 and GS42 are 2 sets of HDE-labeled datasets. 

In addition, we had 2 sets of HDE labeled datasets (GS91 and GS42). GS91 was unseen 
data to test the model’s performance, and the GS42 was used to fine-tune the ML model. 
Cohen’s kappa rates for the first 42 (GS42) abstracts were 0.93 (annotators 1 and 2) and 
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0.73 (annotators 1 and 3) [41]. For the second set of abstracts (GS91), Cohen’s kappa 
rates were 0.87 (annotators 1 and 2) and 0.97 (annotators 1 and 3). 

For the remaining 3148 articles, they were labeled by the synthetic KP. The synthetic 
KP labeled data were split into training and validation data sets in 1:2 ratio (Table 2).    

4.2. Synthetic label creation 

To maximize the quality of the synthetic labels created, we experimented with different 
unsupervised algorithms (namely, PositionRank, MultiPartiteRank, and 
TopicRank)[19-25] and NER (i.e., sciSpacy). They identified the KP from a given text and 
we compared their performance with the manual labels. As shown in Table 3, BERT-
based sciSpacy [42] outperformed other unsupervised methods. Further, we fine-tuned 
the sciSpacy model over the CDSS domain to enhance the quality of the generated 
synthetic labels. 

Table 3. Evaluation of synthetic KP generated with different approaches 
Approach Accuracy Misclassification Precision Recall Specificity F1-

Score 
sciSpacy 0.69 0.31 0.36 0.81 0.66 0.50 
PositionRank 0.76 0.23 0.39 0.36 0.86 0.38 
MultiPartiteRank 0.76 0.24 0.38 0.36 0.86 0.37 
TopicRank 0.77 0.23 0.39 0.36 0.87 0.37 

4.3. Preparation 

4.3.1. CDSS domain adaptation for synthetic label generation 

To optimize the sciSpacy model for identifying KP in the CDSS context, we performed 
domain adaptation [36,37] for the sciSpacy BERT model. We adapted it from biomedical 
domain to CDSS sub-domain by fine-tuning it via a semi-supervised approach proposed 
by Syed et al. [56]. We generated synthetic labels from the base sciSpacy models on the 
unlabeled CDSS corpus and thereafter used them to adapt the model iteratively over the 
CDSS domain. 
    To test the quality of synthetic labels generated from the fine-tuned model, we 
compared the fine-tuning models with different combinations of training and validation 
sets to identify the best performance model (Table 4 and Figure 8). We found that Level 
1 fine-tuning of the sciSpacy model with the synthetic dataset performed better (Figure 
5) than the base sciSpacy model shown in Figure 1, and further fine-tuning overfitted 
the model’s predictions. Appendix C contains consolidated pictures of predictions, 
Appendix D contains detailed additional evaluation results from Table 4, Figures 1, 5, 
and 7 to aid understanding. 
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Table 4. Evaluation of fine-tuning sciSpacy model for CDSS 
Fine-
Tune 

Base Model Train 
Dataset 

GS 
Dataset 

Precision Recall Accuracy F1-
Score 

Level 
0 sciSpacy sciSpacy 

(en_core_sci_lg) 

3281 
from 

PubMed 

42 0.61 0.18 0.93 0.27 
91 0.59 0.23 0.97 0.33 

133 0.62 0.22 0.96 0.33 

Level 
1 sciSpacy cdssSciSpacy 

Synthetic 
CDSS 
(1866 
Train / 

622 Val) 

42 0.70 0.38 0.97 0.5 
91 0.73 0.64 0.99 0.68 

133 0.74 0.59 0.99 0.66 

1Repeated experiment 50 times on random samples of GS 133. 

 
Figure 5. Entities identified on sample CDSS article context with CDSS-domain adapted 

sciSpacy NER. 

4.3.2. Token tagging representation 

To identify an N-gram sequence, we used token tagging representation where each 
token in the text is marked with either the BIO or BILOU encoding schema [46] to 
represent the KP  (Figure 2). We tested both schemas to determine which one fit the 
CDSS corpus best, and the results are shown in Table 5. Both had similar performance 
metrics; therefore, we chose the BIO token tagging for the label marking as it slightly 
outperformed BILOU in F1-Scores. 

Table 5. Entity-level metric evaluation - token tagging 
Encoding 
Schema 

Dataset Precision Recall Accuracy F1-
Score 

BIO 

Validation Dataset 
(Synthetic) Labels 

0.75 0.68 0.92 0.71 

GS42 Labels 0.60 0.50 0.88 0.54 
GS91 Labels 0.61 0.50 0.88 0.55 

BILOU 

Validation Dataset 
(Synthetic) Labels 

0.76 0.60 0.92 0.69 

GS42 Labels 0.60 0.41 0.87 0.49 
GS91 Labels 0.65 0.42 0.86 0.51 
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4.3.3. Stemming vs. non-stemming 

Stemming the vocabulary is a normalization technique used for text pre-processing 
before feeding it to ML models. It represents the morphological structure of the 
language and although it benefits the document indexing, it can sometimes worsen the 
topic understanding [57]. To analyze the effect of stemming on CDSS corpora, we 
experimented with the performance of KP identification on stemmed and non-stemmed 
KP on the synthetic and GS-labeled data (Tables 6, 7). The performance of the ML 
models deteriorated with stemming, so we opted for non-stemming in the text 
preprocessing steps. 
 

Table 6. Comparison of stemming evaluation on the validation dataset (Synthetic) 

Metrics 
Validation Data Labels 

Non-Stemming Stemming 
B-KP I-KP O B-KP I-KP O 

Accuracy 0.87 0.92 0.92 0.85 0.91 0.90 
Misclassification 0.13 0.09 0.08 0.16 0.09 0.10 

Precision 0.85 0.80 0.91 0.83 0.74 0.87 
Recall 0.92 0.76 0.81 0.92 0.55 0.77 

Specificity 0.83 0.96 0.96 0.74 0.97 0.95 
F1-Score 0.88 0.78 0.86 0.87 0.63 0.82 

Table 7. Comparison of stemming evaluation on the GS42 Dataset 

Metrics 
GS42 Labels 

Non-Stemming Stemming 
B-KP I-KP O B-KP I-KP O 

Accuracy 0.57 0.86 0.51 0.52 0.86 0.53 
Misclassification 0.44 0.15 0.49 0.48 0.14 0.47 

Precision 0.30 0.40 0.83 0.32 0.41 0.81 
Recall 0.74 0.67 0.35 0.80 0.36 0.33 

Specificity 0.52 0.88 0.85 0.42 0.93 0.47 
F1-Score 0.43 0.50 0.49 0.45 0.38 0.47 

4.3.4. Loading pre-trained models 

As discussed in Section 3.4.1, initially a WE model and the BiLM were trained separately 
on the unlabeled corpus (Figures 3 and 4). Then, we transferred the parameter weights 
into the BiLSTM encoder’s initial layers, to bootstrap the CDSS language distribution 
before we started training the BiLSTM-CRF model.  

4.3.5. KP identification ML model training 

After obtaining synthetic labels generated from the best performing domain-adapted 
model (see Sections 4.2 and 4.3.1), we labeled the KP with the BIO token tagging schema 
[46] to start the ML model training procedure for 30 epochs. Then, we evaluated the 
sequence-level entity metrics using standard ML metrics (i.e., precision, 
recall/sensitivity, F1-Score, and accuracy). The parameters and configurations of the 
Hier-Attn-BiLSTM-CRF neural network model are as follows: 
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• WE Dimension: 300 
• LSTM hidden layer dimension: 256 
• Dropout Ratio: 0.2 
• Epoch: 30 (number of times every document is shown to the ML model) 
• Batch Size: 1 (one document at a time is shown to the model, to calculate the context, 

with documents having varying sentences numbers, up to a maximum of 52 for an 
abstract) 

• Max sentence length: 128 (For CDSS corpus, the maximum words per sentence is 105) 
• WE Type: Word2Vec 
• Text pre-processing: remove stop words and punctuation. 
• Stemming: no 
• Train-validation split: 1:2 
• Pre-trained sciSpacy BERT model: en_core_sci_lg 

4.4. KP identification ML model evaluation 
4.4.1. Leveraging document-level context 

Context is a critical factor to consider during KP identification[16, 58]. To reinforce this 
philosophy, we experimented with the different encoding combinations at word and 
character-level embeddings, and CNN-based text features (length, POS tag, text rank, 
TF-IDF score and Position of First Occurrence [59]). We compared them with our 
proposed method (BiLSTM-CRF with Hierarchical-Attention and sentence-level 
embedding working at the document-level context). The results are shown in Table 8, 
Figures 7 and 8.  Our method, which included a hierarchical context-driven model, had 
better metrics than the base BiLSTM-CRF model and performed as well as the other 
models with character embedding and CNN-based text features, but with lesser recall 
values. Appendix C contains consolidated pictures of predictions (Figures 1, 5, and 7) 
for easier understanding. 

Table 8. Comparison of evaluations on different contextual level attention 
Model Encoder 

Details 
Experiment 

Runs 
Train 
Dataset 

Test 
Dataset 

Precision Recall Accuracy F1-
Score 

BiLSTM-
CRF 

BiLSTM (Word 
Embd’s) 1 1049 

Synthetic 

2099 
Synthetic 

0.72 0.66 0.92 0.69 

42 GS 0.54 0.46 0.86 0.49 
91 GS 0.59 0.48 0.88 0.53 

BiLSTM-
CRF 

BiLSTM (Word 
Embd’s) + 

BiLSTM (Char 
Embd’s) 

1 1049 
Synthetic 

2099 
Synthetic 

0.70 0.70 0.85 0.70 

42 GS 0.52 0.56 0.78 0.54 
91 GS 0.58 0.53 0.77 0.55 

BiLSTM-
CRF 

BiLSTM (Word 
Embd’s) 

+ BiLSTM 
(Char Embd’s) 

+ CNN (Text 
Features) 

1 1049 
Synthetic 

2099 
Synthetic 

0.73 0.71 0.85 0.72 

42 GS 0.56 0.55 0.78 0.55 
91 GS 0.58 0.55 0.78 0.57 

Hier-Attn-
BiLSTM-
CRF (our 
method) 

BiLSTM (Word 
Embd’s) 

+ Hierarchical 
Context 

1 1049 
Synthetic 

2099 
Synthetic 

0.75 0.68 0.92 0.71 

42 GS 0.6 0.5 0.88 0.54 
91 GS 0.61 0.5 0.88 0.55 
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(Word-level 
sentence-level 

attentions) 

 
Figure 6. Comparison of results for domain adaptation and hierarchical context (document 

context through word-level and sentence-level attention). 

 
Figure 7. Entities identified on sample CDSS article context with our Hier-Attn-BiLSTM-CRF 

model. 

4.4.2. Fine-tuning with Gold Standard (GS) labels 

As discussed previously, we harnessed the semi-supervised learning approach and 
further fine-tuned the Hierarchical-Attention based BiLSTM-CRF model to strengthen 
its predictions [56]. The experiment included adding the HDE labeled documents to 
synthetic labeled documents in different proportions, i.e., 0, 2, 4, 6, and 8 GS labeled 
documents are sampled for every batch of 100 synthetic labeled documents, 
respectively. It helps us measure the learning performance with human feedback over 
the ML training iterations, by running independent experiments 10 and 50 times. As 
shown in Figure 8, exposing 2–4 HDE labeled documents to 100 synthetic labeled 
documents enabled the model to learn more efficiently from the minimum labeled 
dataset. The tabulated performance metrics are presented in Appendices E and F. 
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Figure 8. Results for fine-tuning with Gold Standard (GS) labels. 

5. Discussion 

Limited HDE-labeled data is a common challenge in clinical NLP and many other 
fields. To achieve our goal, the context is a critical factor to consider because of the long-
range dependencies of natural language. To solve this problem, we used a semi-
supervised approach with hierarchical attention over text to provide a larger but still 
focused context (one document) to the model while working with a word. Our work 
demonstrates an ML model, which can be used to identify KPs by leveraging limited 
expert-labeled data. We want to emphasize that identifying KP in summarizing text is a 
different task from ours. KPs identified by the ML model will be reviewed by human 
experts before they can be added to the CDSS ontology. Therefore, the ML model 
facilitates the screening process in narrowing down the scope of candidate terms for an 
ontology, not making the final decisions on which terms will be included in the ontology. 

5.1. Results interpretation 

In this study, we aim to use minimal HDE labeled data to fine-tune a pre-trained 
language model to identify candidate KP for an ontology automatically for HDE to select, 
which can greatly improve the efficiency of the human curation process. Although the 
task can be presented as a simple yes or no labeling of a sequence of words, but 
identification is much more complicated than a binary task. The HDE uses rich 
background knowledge and expertise to make judgments. We started with a semi-
supervised approach to generate synthetic labels and trained our BiLSTM-CRF model 
with them.  
    Assessing the quality of the generated synthetic labels is crucial because it impacts 
the BiLSTM-CRF model’s initial learning. Therefore, we experimented with 
unsupervised ranking approaches [22–25] and the pre-trained spacy, sciSpacy models 
based on the Transformer neural architectures [10, 11]. We found that sciSpacy [42] 
(BERT model) outperformed the others in matching the synthetic labels to the GS 
candidate terms (Table 3).  
    Although the metrics shown in Table 3 (such as F1-Score ≤ 0.5) could be better, we 
have to point out that the models compared are trained for a different task (Figure 1, 
Appendix C). NER and KP Identification might look like similar tasks on the surface; 
however, the KP identification for our task was different from the NER. Therefore, we 
decided to perform domain adaptation on the sciSpacy NER model using CDSS corpora 
instead of using the sciSpacy NER model directly to create the synthetic labels.  
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We found that domain adaptation provided us with much better labels than the 
sciSpacy NER model, limiting the entities identified outside of the domain (Figure 5, 
Appendix C,  Table 4, and Appendix D).  

To examine the performance improvement of the domain adapted model more 
closely, we performed supplementary fine-tuning with different combinations (42 GS, 
91 GS, and 67 GS, randomly picked train-validate-test data subsets each time) of the 
labeled dataset, where each combination is newly trained at the respective fine-tuning 
level (Table 4). The fine-tuning test results indicate that incremental fine-tuning 
introduced variance into the LM and increased perplexity, dropping its performance 
further as the fine-tuning levels grew. Therefore, we opted to use the CDSS domain-
adapted sciSpacy model, which has 2-fold improvement in F1-Score from 0.33 to 0.66 
on GS133 dataset (Table 4). 

Once we have labels for ML model training, we need to use tokens to represent labels. 
We experimented with the BIO and BILOU encoding schemas’ token tagging 
representations to compare their performances on the CDSS corpus. The BIO encoding 
schema performed slightly better (Table 5). Although standard approaches in NLP pre-
processing include either stemming or lemmatization, which results in high 
performance, our results did not support or align with this popular opinion (Tables 6, 
7).  

Once the words are tokenized, we need embeddings to bind the token information to 
a vector to feed it to the model. Most WE models work with vocabulary from the existing 
text corpus and fail to handle Out of Vocabulary (OOV) words. To solve the OOV 
problem, we could use sub-word information with character N-grams using fastText. 
This reduces the length of the vocabulary as it remembers sub-word information. We 
did not use this, as the reduced dimensions of the matrices create conflict in transferring 
the weights between fastText and BiLSTM-CRF layers. 

The reason for this irregularity in matrix dimensions is that the total vocabulary with 
Word2Vec is around 15.8 K unique words, whereas fastText utilizes only 4.7 K sub-
words to represent words. This difference arises because fastText generates 
embeddings using character-level n-grams rather than whole words, resulting in a 
smaller, more compact vocabulary. Also, it only shows a 0.5%–1% improvement, as 
reported by Benedict et al. [60]. Therefore, we reverted to the older Word2Vec 
approach for pre-training the WE model as it is easier to transfer the embedding matrix 
weights between pre-trained and actual models. Our method uses index-to-token and 
token-to-index mapping while encoding the words. The length of the vocabulary(L) is 
further used as square matrix dimensions of the WE (We) matrix, which helps us find 
the similarity between any two words. 

We then introduced the word-level attention mechanism, as not all words contribute 
equally to the meaning of the sentence. We aggregate the word representations to form 
a sentence vector, which enables us to further create a document vector for each word 
in the broader context of the document and its sentences. We conducted experiments 
on the different encoders (word-level attention, character-level attention, and text-
based CNN) against our hierarchical attention-based encoder (Table 8) and a generic 
CRF decoder to all the models. Furthermore, we evaluated the performance of our 
model with input word representations bearing the document-level context (Table 8 
and Figure 6). Although the metrics are on-par with the other models, our model had no 
hand-crafted features except the pre-training for WE and LM. Therefore, we feel 
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confident that our model has comparable results in identifying KP to other models that 
used GS labels (Appendix C). 

While the visual representation for KPs identified on a sample text (Figure 7, 
Appendix C) looks closer to the GS labels (Figure 1, Appendix C), most of the entities 
spanning N-grams do not have an exact match. Although it looks convincing, the 
complexity of the evaluation will be difficult and will no longer work at the token level. 
Nevertheless, it needs to be evaluated on the entity level with an exact GS label match, 
as proposed by Nancy et al. [61]. Therefore, we used the sequence labeling evaluation 
given by Hiroki et al. [62] to decipher the results. As shown in Figure 6, our model with 
hierarchical attention and loading document one by one improved accuracy by 
10%, from 78% to 88%, compared to the sentence-level attention model. The complete 
match for GS labels brings down the metrics. Without any character-level and textual 
features (e.g., character embeddings, document embeddings, phrase embeddings, text 
rank, TFIDF, topic rank, position rank, word’s first occurrence in text, length of the 
word) the BiLSTM-CRF model’s results (Table 8) infer an improvement in the overall 
performance metrics due to the added hierarchical context provided to each word 
representation. In particular, we noted that it has better precision than the remaining 
models and allowed us to maintain the F1-Score (55% ± 2%) even with the decline in 
recall values (Table 8). 

The hierarchical context requires all the sentences of a single document at-a-time to 
calculate the attention for words and sentences and to create sentence-level and 
document-level vectors, respectively. Usually, a static batch-size (32/64/128) is chosen 
for the data-loader, which yields sentences from different documents grouped together 
as a batch. Therefore, the sentences of a document could span different batches, which 
creates complexity in providing focused context (via hierarchical attention and loading 
one document a time). To overcome this, we used the non-conventional technique of 
dynamic batches for the data-loader, i.e., each time a document with a different number 
of sentences was sent into the encoder-decoder during the ML model training process. 
This means that the number of iterations for the ML model training equaled the number 
of documents shown, ultimately increasing the training time, making it 2–3 times 
slower than models without a hierarchical context.  
    To further strengthen the ML model, we fine-tuned it with the GS labels (42 GS labeled 
documents from the CDSS corpus) to align the model’s predictions from synthetic 
labeling to GS labeling. To evaluate the model’s performance after training, we reserved 
91 GS dataset as unseen data. During the training, we varied the number of HDE-labeled 
documents (0/2/4/6/8 GS) for every 100 synthetic labeled documents during the 
model’s iteration, marking the essence of minimal true labels shown. A poly-fit curve 
over the scores demonstrates that adding 2–4 true samples for every 100 synthetic 
samples during ML model training demonstrates better performance without 
exhausting HDE-labeled documents too quickly. The F1-Score improved from 55% to 
84%, accuracy from 88% to 96%, precision from 61% to 86% and recall from 
50% to 82%. The results guide us to optimize our model and settings for the operation, 
and we hope the results can be a reference point for others when planning their NLP 
tasks. 
5.2. Challenges 

The generation of manually labeled data is an expert-intensive process in fields like 
medicine. To surmount this problem, HDE can label a small set of samples. During the 
HDE labeling process, it is important to pick the samples from different areas of the 
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CDSS sub-domain, which helps the model to learn efficiently from the diversified 
samples. To avoid selection bias, we picked random samples from CDSS corpora for 
human annotation. However, the current data loader randomly picks samples without 
any diversification, which exposes us to selection bias. The same problem occurs in the 
selection of data samples or documents for the fine-tuning process. Although 
randomization can improve model performance by reducing bias, it does not guarantee 
a diverse selection of samples, as the chosen samples may not cover a wide range of 
topics. 
6. Conclusion 
This paper proposes a novel KP identification method using minimal labeled data and 
hierarchical attention to retain longer contextual dependencies. It incrementally builds 
the context at word level and sentence level within one document. The proposed model 
(Hier-Attn-BiLSTM-CRF) demonstrated 10% improved accuracy, from 78% to 88%, for 
KP identification by adding document-level context through document-by-document 
loading during model training. 

Further, the domain adaptation in a semi-supervised approach improved the overall 
performance of the model by creating high-quality synthetic labels, which helped to 
solve the challenges of limited HDE labeled data, a common challenge in NLP. When we 
use a custom batch loader which yields 2-4 samples for batch of 100 synthetic samples 
produced better performance after training when compared to a batch loader which 
loads only synthetic samples.   

Finally, our method contributes to the general architecture of NLP in effectively 
creating ML models with limited HDE labeled data by leveraging domain adaptation 
techniques, document-level context, pre-trained LM, and pre-trained WE.  
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8. Appendices 

Appendix A. Detailed Encoder-Decoder Diagram 

 
 

Appendix B. Dataset Details 

Table B1. Showing explicit details of the CDSS dataset during preprocessing 
Type Abstracts Number 

Total after parsing PubMed XML 3326 
HDE-labeled Set 1 (GS42) 42 

ACM abstracts [8] 
+ 

HDE-labeled Set 2 (PMIDs not in XML) [4] 
8+4 = 12 

New total with duplicates 
(Some articles from GS42 are in full text XML) 3380 

Abstracts (<3 sentences ∼little/no abstract) 99 
New total with duplicates 

(After removing abstracts with <3 sentences) 
3281 

(1093 train + 2188 
test) 

HDE-labeled Set 2 (GS91) 
(ACM 8 + PubMed 83) 83 + 8 = 91 

Total GS 91 + 42 = 133 
Final total 

(Synthetic-labeled dataset) 
(After removing GS 133 from full dataset) 

3148 
(1049 train + 2099 
test) 
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Appendix C. Entities identified on sample CDSS abstract 

 
Figure C1. Entities identified on sample CDSS abstract demonstrate differences between 

human-labeled Gold Standards and different models (sciSpacy, cdssSciSpacy, and Hier-Attn-
BiLSTM-CRF). 
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Appendix D. Evaluation of fine-tuning sciSpacy model for CDSS 

Table D1. Evaluation of fine-tuning sciSpacy model for CDSS 
Fine-
Tune 

Base Model Train 
Dataset 

GS 
Dataset 

Precision Recall Accuracy F1-
Score 

Level 
0 sciSpacy sciSpacy 

(en_core_sci_lg) 

3281 
from 

PubMed 

42 0.61 0.18 0.93 0.27 
91 0.59 0.23 0.97 0.33 

133 0.62 0.22 0.96 0.33 

Level 
1 sciSpacy cdssSciSpacy 

Synthetic 
CDSS 
(1866 
Train / 

622 Val) 

42 0.70 0.38 0.97 0.5 
91 0.73 0.64 0.99 0.68 

133 0.74 0.59 0.99 0.66 

Level 
2 cdssSciSpacy cdssSciSpacy 

GS42 

42 GS 
(33 

Train / 9 
Val) 

91 0.57 0.64 0.99 0.60 

Level 
2 cdssSciSpacy cdssSciSpacy 

GS91 

91 GS 
(72 

Train / 
19 Val) 

42 0.66 0.38 0.97 0.48 

Level 
2 sciSpacy sciSpacy GS42 

42 GS 
(33 

Train / 9 
Val) 

91 0.57 0.54 0.99 0.55 

Level 
2 cdssSciSpacy cdssSciSpacy 

GS66 1 

66 GS 
(52 

Train / 
14 Val) 

67 0.63 0.62 0.99 0.62 

1Repeated experiment 50 times on random samples of GS 133. 

 
Appendix E. Metrics for fine-tuning on GS 

Table E1. Fine-tuning with GS labels - 10 experiments 
GS 0 2 4 6 8 10 12 

Precision 83.78 ± 
11.12 

86.43 ± 
5.78 

86.56 ± 
9.86 

84.32 ± 
4.99 

85.54 ± 
6.94 

84.35 ± 
9.92 

85.99 ± 
10.75 

Recall 80.88 ± 
4.89 

82.41 ± 
7.85 

82.26 ± 
5.69 

82.28 ± 
2.21 

82.91 ± 
9.41 

81.80 ± 
15.32 

82.99 ± 
7.20 

Accuracy 95.62 ± 
0.93 

96.21 ± 
0.51 

96.24 ± 
1.04 

95.65 ± 
0.58 

95.73 ± 
1.12 

95.88 ± 
0.56 

96.13 ± 
0.80 

F1-Score 82.44 ± 
4.82 

83.66 ± 
3.79 

84.48 ± 
5.68 

83.14 ± 
2.05 

83.35 ± 
7.21 

82.81 ± 
4.38 

84.22 ± 
7.42 
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Table E2. Fine-tuning with GS labels - 50 experiments 
GS 0 2 4 6 8 10 12 

Precision 83.78 ± 
10.21 

86.27 ± 
8.28 

86.29 ± 
9.15 

85.30 ± 
8.01 

85.95 ± 
9.16 

85.91 ± 
8.70 

86.22 ± 
11.35 

Recall 80.88 ± 
4.49 

83.16 ± 
8.14 

81.97 ± 
11.91 

82.53 ± 
6.66 

82.50 ± 
7.83 

82.45 ± 
11.26 

82.85 ± 
8.20 

Accuracy 95.62 ± 
0.85 

96.24 ± 
0.74 

96.16 ± 
1.04 

95.92 ± 
0.72 

96.06 ± 
0.82 

96.08 ± 
0.87 

96.27 ± 
0.85 

F1-Score 82.44 ± 
4.43 

84.65 ± 
5.42 

84.05 ± 
7.36 

83.65 ± 
4.54 

83.81 ± 
6.05 

83.91 ± 
6.61 

84.43 ± 
6.59 

 

Appendix F. Plots for fine-tuning on GS 

 
Figure F1. Plot evaluation metrics for fine-tuning with GS labels - 50 experiments 

 
Figure F2. Plot evaluation metrics for fine-tuning with GS labels - 10 experiments 
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