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Abstract 16 

 Gait dysfunction is common in many clinical populations and often has a profound and 17 

deleterious impact on independence and quality of life. Gait analysis is a foundational 18 

component of rehabilitation because it is critical to identify and understand the specific deficits 19 

that should be targeted prior to the initiation of treatment. Unfortunately, current state-of-the-art 20 

approaches to gait analysis (e.g., marker-based motion capture systems, instrumented gait 21 

mats) are largely inaccessible due to prohibitive costs of time, money, and effort required to 22 

perform the assessments. Here, we demonstrate the ability to perform quantitative gait analyses 23 

in multiple clinical populations using only simple videos recorded using household devices 24 

(tablets). We report four primary advances: 1) a novel, versatile workflow that leverages an 25 

open-source human pose estimation algorithm (OpenPose) to perform gait analyses using 26 

videos recorded from multiple different perspectives (e.g., frontal, sagittal), 2) validation of this 27 

workflow in three different populations of participants (adults without gait impairment, persons 28 

post-stroke, and persons with Parkinson’s disease) via comparison to ground-truth three-29 

dimensional motion capture, 3) demonstration of the ability to capture clinically relevant, 30 

condition-specific gait parameters, and 4) tracking of within-participant changes in gait, as is 31 

required to measure progress in rehabilitation and recovery. Importantly, our workflow has been 32 

made freely available and does not require prior gait analysis expertise. The ability to perform 33 

quantitative gait analyses in nearly any setting using only household devices and computer 34 

vision offers significant potential for dramatic improvement in the accessibility of clinical gait 35 

analysis across different patient populations.  36 
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Introduction 37 

Walking is the primary means of human locomotion. Many clinical conditions – including 38 

neurologic damage or disease (e.g., stroke, Parkinson’s disease (PD), cerebral palsy), 39 

orthopedic injury, and lower extremity amputation – have a debilitating effect on the ability to 40 

walk1–3.  Quantitative gait analysis is the foundation for effective gait rehabilitation4: it is critical 41 

that we objectively measure and identify specific deficits in a patient’s gait and track changes 42 

over time. Unfortunately, there are significant limitations with the current state-of-the-art. 43 

Marker-based motion capture laboratories are considered the gold standard measurement 44 

technique, but they are prohibitively costly and available largely to select hospitals and research 45 

institutions. Other commercially available technologies (e.g., gait mats, wearable systems) are 46 

data-limited, relatively costly, and require specific hardware. There is a clear need for new 47 

technologies that can lessen these barriers and provide accessible and clinically useful gait 48 

analysis with minimal costs of time, money, and effort.  49 

Recent developments in computer vision have enabled the exciting prospect of 50 

quantitative movement analysis using only digital videos recorded with household devices such 51 

as smartphones or tablets5–7. These pose estimation technologies leverage computer vision to 52 

identify specific “keypoints” on the human body (e.g., knees, ankles) automatically from simple 53 

digital videos8,9. The number of applications of pose estimation for human health and 54 

performance has increased exponentially in recent years due to the potential for dramatic 55 

improvement in the accessibility of quantitative movement assessment6,7,10. We have previously 56 

used OpenPose8 – a freely available pose estimation algorithm – to develop and test a 57 

comprehensive video-based gait analysis workflow, demonstrating the ability to measure a 58 

variety of spatiotemporal gait parameters and lower-limb joint kinematics from only short (<10 59 

seconds) sagittal (side view) videos of individuals without gait impairment11. Others have also 60 
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used a variety of approaches to combine pose estimation outputs and neural networks to 61 

estimate different aspects of mobility5,12–16. 62 

This foundational work in using pose estimation for video-based gait analysis has 63 

demonstrated significant potential of this emerging technology. There are now prime 64 

opportunities to build upon what has already been developed and progress toward direct clinical 65 

applications. In moving toward clinical application, we considered the needs for: 1) flexible 66 

approaches that can accommodate different perspectives based on the space constraints of the 67 

end user (e.g., a clinician may only have access to a long, narrow hallway or hospital corridor 68 

where a sagittal recording of the patient is not possible), 2) testing and validation directly in 69 

clinical populations with gait dysfunction, 3) measurement of clinically relevant gait parameters 70 

that are of particular relevance to specific populations, and 4) the ability to measure changes in 71 

gait, as would be desired during the rehabilitation and/or recovery processes. 72 

Here, we present a novel, versatile approach for performing clinical gait analysis using 73 

only simple digital videos. First, we developed and tested a novel workflow that performs a gait 74 

analysis using frontal plane recordings of a person walking either away from or toward the 75 

camera (Figs. 1 and 2). We show that this new workflow can produce accurate estimates of 76 

spatiotemporal gait parameters in individuals without gait impairment as compared to three-77 

dimensional (3D) motion capture. Second, we test both our frontal and sagittal workflows 78 

directly in two clinical populations with gait impairments that result from neurologic damage or 79 

disease (persons post-stroke or with Parkinson’s disease). We demonstrate the ability to 80 

measure a battery of spatiotemporal gait parameters, specific parameters that are clinically 81 

relevant to each condition (i.e., metrics of gait asymmetry in stroke and trunk inclination in PD), 82 

and lower-limb joint kinematics in these patients using household video recording devices, again 83 

comparing to 3D motion capture to assess accuracy. Lastly, we show that our workflows can 84 

track the gait changes that accompany increases in walking speed, as improvement in walking 85 

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted January 30, 2023. ; https://doi.org/10.1101/2023.01.26.23285007doi: medRxiv preprint 

https://doi.org/10.1101/2023.01.26.23285007
http://creativecommons.org/licenses/by-nc/4.0/


5 
 

speed is among the most common goals of gait rehabilitation in many different clinical 86 

populations. In sum, the results of this study demonstrate a versatile approach for clinical gait 87 

analysis that requires only a simple digital video that could be recorded using common 88 

household devices.  89 

Results 90 

Development and testing of a novel approach for gait videos recorded in the frontal plane 91 

The first goal of this study was to develop and test a novel method to calculate 92 

spatiotemporal gait parameters from gait videos recorded in the frontal plane. Our approach is 93 

based on tracking the size of the person as they appear in the video image (measured with 94 

keypoints from OpenPose) and using trigonometric relationships to estimate depth and, 95 

ultimately, spatial parameters such as step length and gait speed (Fig. 2; see expanded 96 

description in Methods). We first validated our frontal plane approach during overground walking 97 

in a group of young participants without gait impairment (we have previously demonstrated the 98 

accuracy of obtaining gait parameters using sagittal plane videos in the same dataset of 99 

unimpaired participants11). We then compared spatiotemporal gait parameters (step time, step 100 

length and gait speed; averaged values for a single walking bout) simultaneously obtained with 101 

3D motion capture and with frontal plane videos positioned to capture the person walking away 102 

from one camera and toward the other camera (data collection setup shown in Fig. 3A). 103 

Accuracy in adults without gait impairment (relative to 3D motion capture) 104 

Step time showed average differences (negative values denote greater values in video 105 

data; positive values denote greater values in motion capture data) and errors (absolute 106 

difference) up to one and two motion capture frames (motion capture recorded at 100 Hz; 0.01 107 

and 0.02 s), respectively, between motion capture and frontal plane video (Fig. 3B; Table S1). 108 

The 95% limits of agreement between motion capture and frontal plane videos ranged from 109 

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted January 30, 2023. ; https://doi.org/10.1101/2023.01.26.23285007doi: medRxiv preprint 

https://doi.org/10.1101/2023.01.26.23285007
http://creativecommons.org/licenses/by-nc/4.0/


6 
 

−0.03 to 0.05 s, suggesting that 95% of differences with motion capture fell within this interval. 110 

Step length showed average differences and errors up to about 0.02 and 0.03 m, respectively, 111 

between motion capture and frontal plane videos (Fig. 3C). The 95% limits of agreement 112 

between motion capture and frontal plane videos ranged from −0.052 to 0.094 m. Gait speed 113 

showed average differences and error up to 0.04 and 0.06 m s−1, respectively, with 95% limits of 114 

agreement ranging between −0.11 and 0.17 m s−1 (Fig. 3D). Correlations for all spatiotemporal 115 

gait parameters between motion capture and frontal plane videos were strong (all r values 116 

between 0.872 and 0.981, all P<0.001; Fig. 3B–D). 117 

Testing of video-based gait analysis in persons with neurologic damage or disease 118 

Next, we evaluated both our sagittal and frontal plane workflows in two patient 119 

populations with neurologic damage or disease (persons post-stroke and persons with PD). We 120 

compared spatiotemporal gait parameters (step time, step length, and gait speed), lower-limb 121 

sagittal plane joint kinematics, and condition-specific, clinically relevant parameters (stroke: step 122 

time asymmetry and step length asymmetry; PD: trunk inclination) simultaneously obtained with 123 

3D motion capture and with sagittal and frontal plane videos (data collection setup shown in 124 

Fig. 4A). Note that frontal videos are limited to spatiotemporal gait parameters and that joint 125 

kinematics and trunk inclination can only be obtained from sagittal videos within our current 126 

workflows.  127 

We present gait parameters as averaged values across four overground walking bouts 128 

each at 1) preferred and 2) fast speeds (see Table S2 for values of gait parameters). For 129 

preferred speed trials we instructed participants to walk at their preferred speed; for fast speed 130 

trials we instructed participants to walk at the fastest speed that they felt comfortable. Of the 131 

four trials at each speed, there were two trials of the participants walking away from the frontal 132 

camera (with the left side against the sagittal camera) and two trials walking toward the frontal 133 

camera (with the right side against the sagittal camera). We intend our workflows to have 134 
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clinical applications and therefore present values as session-level values (i.e., the results that 135 

would be obtained as if the four walking trials were treated as a single clinical gait analysis); we 136 

report more detailed comparisons at the level of single trial averages and step-by-step 137 

comparisons in the supplement (Tables S3 and S4). 138 

Testing in persons post-stroke 139 

We then tested how well our workflows could measure gait parameters in persons post-140 

stroke. Step time showed average differences and errors of zero and one motion capture 141 

frames (recorded at 100 Hz; 0 and 0.01 s), respectively, between motion capture and sagittal 142 

videos; and average differences and errors of two and five motion capture frames (0.02 and 143 

0.05 s), respectively, between motion capture and frontal videos (Fig. 4B and Table 1). The 95% 144 

limits of agreement spanned a narrower interval (−0.04 to 0.04 s) for sagittal videos than frontal 145 

videos (−0.09 to 0.10 s). Correlations of step time between motion capture and videos were 146 

strong (Fig. 4B; all r≥0.980).  147 

Step length showed average differences and errors of about 1 and 3 cm between motion 148 

capture and sagittal videos and average differences and errors of about −3 and 7 cm between 149 

motion capture and frontal videos (Fig. 4C and Table 1). The 95% limits of agreement spanned 150 

intervals of −0.058 to 0.079 m for sagittal videos and −0.154 to 0.087 m for frontal videos. 151 

Correlations of step length between motion capture and videos were strong (Fig. 4C; r≥0.922).  152 

Gait speed showed average differences and errors of 0.02 and 0.04 m s−1 between 153 

motion capture and sagittal videos and average differences and errors of −0.07 and 0.10 m s−1 154 

between motion capture and frontal videos (Fig. 4D and Table 1). The 95% limits of agreement 155 

spanned intervals of −0.11 to 0.14 m s−1 for sagittal videos and −0.20 to 0.06 m s−1 for frontal 156 

videos. Correlations of gait speed between motion capture and videos were strong (Fig. 4D; 157 

r≥0.981).  158 
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Step time asymmetry showed average differences and errors of 0.01 and 0.03 between 159 

motion capture and sagittal videos and average differences and errors of 0.02 and 0.07 160 

between motion capture and frontal videos (Fig. 4E and Table 1). The 95% limits of agreement 161 

spanned intervals of −0.04 to 0.07 for sagittal videos and −0.10 to 0.14 for sagittal videos. 162 

Correlations of step time asymmetry between motion capture and videos were strong (Fig. 4E; 163 

all r≥0.865).  164 

Step length asymmetry showed average differences and errors of −0.002 and 0.050 165 

between motion capture and sagittal videos and average differences and errors of −0.042 and 166 

0.106 between motion capture and frontal videos (Fig. 4F and Table 1). The 95% limits of 167 

agreement spanned intervals of −0.142 to 0.138 for sagittal videos and −0.291 to 0.208 for 168 

frontal videos. Correlations of step length asymmetry were strong between motion capture and 169 

sagittal videos (Fig. 4F; r=0.890) but weak between motion capture and frontal videos (Fig. 4F; 170 

r=0.230).  171 

The average mean absolute errors of lower-limb sagittal plane joint kinematics of the 172 

paretic and non-paretic limbs were 3.3°, 4.0°, and 6.3° at the hip, knee, and ankle, respectively, 173 

between motion capture and sagittal videos (Fig. 4G,H). 174 

Testing in persons with Parkinson’s disease 175 

We next evaluated the performance of the video-based gait analysis in persons with PD 176 

(Fig. 5A). Step time showed average differences and errors of zero and one motion capture 177 

frames (0 and 0.01 s) between motion capture and sagittal videos and average differences and 178 

errors of one and three motion capture frames (0.01 and 0.03 s) between motion capture and 179 

frontal videos (Fig. 5B and Table 1). The 95% limits of agreement spanned intervals of −0.02 to 180 

0.02 s for sagittal videos and −0.03 to 0.05 s for frontal videos. Correlations of step time 181 

between motion capture and videos were strong (Fig. 5B; all r≥0.961).  182 
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Step length showed average differences and errors of about −1 and 2 cm between 183 

motion capture and sagittal videos and average differences and errors of −5 and 7 cm between 184 

motion capture and frontal videos (Fig. 5C and Table 1). The 95% limits of agreement spanned 185 

intervals of −0.044 to 0.023 m for sagittal videos and −0.150 to 0.048 m for frontal videos. 186 

Correlations of step length between motion capture and videos were strong (Fig. 5C; all 187 

r≥0.959).  188 

Gait speed showed average differences and errors of −0.02 and 0.03 m s−1 between 189 

motion capture and sagittal videos and average differences and errors of −0.12 and 0.15 m s−1 190 

between motion capture and frontal videos (Fig. 5D and Table 1). The 95% limits of agreement 191 

spanned intervals of −0.07 to 0.03 m s−1 for sagittal videos and −0.28 to 0.04 m s−1 for frontal 192 

videos. Correlations of gait speed between motion capture and videos were strong (Fig. 5D; all 193 

r≥0.982).  194 

Trunk inclination showed average differences and errors of 0° and 1.5° between motion 195 

capture and sagittal videos (Fig. 5E and Table 1; trunk inclination can only be extracted from 196 

sagittal videos, not frontal videos).  197 

The average mean absolute errors of left and right lower-limb sagittal plane joint 198 

kinematics were 2.7°, 3.5°, and 4.8° at the hip, knee, and ankle, respectively, between motion 199 

capture and sagittal videos (Fig. 5F,G). 200 

Measuring changes in gait that occur due to changes in gait speed 201 

Next, to evaluate how accurately video analysis can track within-participant gait 202 

changes, we calculated the changes in spatiotemporal gait parameters that accompanied the 203 

increase in gait speed from preferred to fast speed gait trials in persons post-stroke and with PD 204 

(Fig. 6A). The change in step time as a result of faster walking in persons post-stroke showed 205 

average differences and errors of zero and two motion capture frames (0 and 0.02 s) when 206 
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compared between motion capture and sagittal videos and average differences and errors of 207 

zero and four motion capture frames (0 and 0.04 s) when compared between motion capture 208 

and frontal videos (Fig. 6B and Table 2). The 95% limits of agreement of change in step time of 209 

post-stroke walking spanned intervals of −0.03 to 0.03 s for sagittal videos and −0.08 to 0.07 s 210 

for frontal videos.  211 

In persons with PD, the change in step time showed average differences and error of 212 

zero and two motion capture frames (0 and 0.02 s) between motion capture and sagittal videos 213 

and average differences and errors of zero and three motion capture frames (0 and 0.03 s) 214 

between motion capture and frontal videos (Fig. 6B and Table 2). The 95% limits of agreement 215 

of change in step time of PD walking spanned intervals of −0.02 to 0.02 s for sagittal videos and 216 

−0.05 to 0.04 s for frontal videos. Correlations of change in step time between motion capture 217 

and videos were strong (Fig. 6B; all r≥0.828).  218 

The change in step length as a result of faster walking in persons post-stroke showed 219 

average differences and errors of about 0 and 2 cm between motion capture and sagittal videos 220 

and average differences and errors of about −1 and 5 cm between motion capture and frontal 221 

videos (Fig. 6C and Table 2). The 95% limits of agreement of change in step length of post-222 

stroke walking spanned intervals of −0.031 to 0.037 m for sagittal videos and −0.088 to 0.075 m 223 

for frontal videos.  224 

Change in step length in persons with PD showed average differences and errors of 225 

about 0 and 2 cm between motion capture and sagittal videos and average differences and 226 

errors of about −3 and 7 cm between motion capture and frontal videos (Fig. 6C and Table 2). 227 

The 95% limits of agreement of change in step length of PD walking spanned intervals of 228 

−0.022 to 0.028 m for sagittal videos and −0.122 to 0.070 m for frontal videos. Correlations of 229 

change in step length between motion capture and videos were strong (Fig. 6C; all r≥0.763).  230 
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The change in gait speed from preferred to fast speed gait trials in persons post-stroke 231 

showed average differences and errors of 0.01 and 0.04 m s−1 between motion capture and 232 

sagittal videos and average differences and errors of −0.02 and 0.06 m s−1 between motion 233 

capture and frontal videos (Fig. 6D and Table 2). The 95% limits of agreement of change in gait 234 

speed of post-stroke walking spanned intervals of −0.09 to 0.11 m s−1 for sagittal videos and 235 

−0.14 to 0.11 m s−1 for frontal videos.  236 

Finally, in persons with PD, measured change in gait speed showed average differences 237 

and errors of 0 and 0.03 m s−1 between motion capture and sagittal videos and average 238 

differences and errors of −0.07 and 0.11 m s−1 between motion capture and frontal videos 239 

(Fig. 6D and Table 2). The 95% limits of agreement of change in gait speed of PD walking 240 

spanned intervals of −0.04 to 0.04 m s−1 for sagittal videos and −0.19 to 0.06 m s−1 for frontal 241 

videos. Correlations of change in gait speed between motion capture and videos were strong 242 

(Fig. 6D; all r≥0.949).  243 

Factors that affect accuracy of the frontal video-based gait analysis workflow 244 

We noted that step length errors were occasionally large when calculated from frontal 245 

videos (up to nearly 30% of the average step length). We have previously described factors 246 

such as the position of the person relative to the camera that influence step length errors when 247 

calculated from sagittal videos11. Similarly, we wanted to identify and understand factors that 248 

influence step length errors from videos recorded in the frontal plane.  249 

First, we considered that greater depth of the person relative to the frontal plane camera 250 

may lead to less precise step length estimates (Fig. S1). We partitioned the analysis of step 251 

length errors into videos from the frontal plane where the person walks away from the camera or 252 

toward the camera because OpenPose may track keypoints differently when viewing the front of 253 

the person (when walking toward) or the back of the person (when walking away). We found 254 
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that step length errors increased with greater depth from the camera, so that the person’s size 255 

appeared smaller in the image. Step length errors were more affected by depth when the 256 

person walked away from the camera compared to walking toward the camera: from average 257 

step length errors of about 7 cm nearest the camera (beginning of trial when the person walks 258 

away from the camera; end of the trial when the person walks toward the camera), average 259 

errors increased up to about 16 cm when the person walked away, with a more modest increase 260 

of up to 11 cm when the person walked toward the camera. This suggests that precision may 261 

decrease as the person appears smaller, likely due to less precise keypoint tracking by 262 

OpenPose.  263 

We also considered whether a scaling effect influenced step length errors so that longer 264 

steps had greater errors. We found that step length errors were not influenced by the magnitude 265 

of step length (Fig. S2).  266 

We noted time-lags in the gait cycle detection of the frontal videos relative to motion 267 

capture that could have influenced step length errors (this analysis could only be performed for 268 

the unimpaired participant dataset, in which motion capture and video recordings were 269 

synchronized). The timing of gait cycle detection differed depending on walking direction: when 270 

the person walked away from the camera, gait cycle timings were, on average, four motion 271 

capture frames (~0.04 s) before the timing detected from motion capture, and 15 motion capture 272 

frames (~0.15 s) after motion capture when the person walked toward the camera (Fig. S3A). 273 

Using gait event timings from motion capture to calculate step lengths from frontal videos, there 274 

was a statistical difference in step length errors when the person walked away from the camera 275 

(P=0.024), but not when the person walked toward the camera (P=0.501; Fig. S3B). The 276 

average step length error decreased from about 2 to 1 cm in the unimpaired participant dataset 277 

when using gait event timing from the motion capture data in the videos where the person 278 

walked away from the camera.  279 
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Last, we considered that walking direction relative to the frontal plane camera may have 280 

influenced the accuracy of gait parameters. In the unimpaired participant dataset, in which two 281 

frontal plane cameras simultaneously captured the same walking trial from different vantage 282 

points (see Fig. 3A), we noted a minor overestimation of gait speed by an average of 0.04 m s−1 283 

from the camera that the person walked away from compared to the camera that the person 284 

walked toward (Table S1). We observed similar, albeit exaggerated, trends in the stroke and PD 285 

datasets. When comparing the average gait speed differences between motion capture and the 286 

frontal plane camera, gait speed was overestimated by 0.13 and 0.21 m s−1 for stroke and PD, 287 

respectively, when the person walked toward the frontal plane camera; the overestimation was 288 

only minor at 0.01 and 0.03 m s−1 for stroke and PD, respectively, when the person walked 289 

toward the camera (Table S3). The overestimation of gait speed was accompanied by greater 290 

errors when comparing the frontal camera to motion capture: average errors were 0.14 and 291 

0.23 m s−1 for stroke and PD, respectively, when the person walked away from the camera; 292 

errors were only 0.06 and 0.08 m s−1 when the person walked toward the camera (Table S3).  293 

The trends of overestimation and greater errors from frontal plane recordings where the 294 

person walked away from the camera were mirrored in the results of step length: there were 295 

greater overestimations and errors of step length when the person walked away from the 296 

camera (average overestimations of 0.056 and 0.082 m and errors of 0.084 and 0.092 m for 297 

stroke and PD, respectively) compared to when the person walked toward the camera 298 

(Table S3; average overestimations of 0.013 and 0.021 m and errors of 0.062 and 0.055 m for 299 

stroke and PD, respectively). This suggests that spatial gait parameters obtained from a frontal 300 

plane camera are influenced by walking direction and that the greatest precision was obtained 301 

when the person walked toward the camera. Furthermore, this also suggests that the accuracy 302 

of gait parameters presented here, when calculated as session-level averages, can be improved 303 

if using only gait trials with the same walking direction.  304 

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted January 30, 2023. ; https://doi.org/10.1101/2023.01.26.23285007doi: medRxiv preprint 

https://doi.org/10.1101/2023.01.26.23285007
http://creativecommons.org/licenses/by-nc/4.0/


14 
 

Discussion 305 

 In this study, we demonstrated a new approach for performing clinical gait analyses 306 

using simple videos recorded using common household devices and a workflow that leverages 307 

a freely available pose estimation algorithm (OpenPose) for video-based movement tracking. 308 

We showed that this novel approach can perform accurate gait analyses 1) from videos 309 

recorded from multiple perspectives (e.g., frontal or sagittal viewpoints), 2) across a diverse 310 

range of persons with and without gait impairment, 3) that capture clinically relevant and 311 

condition-specific aspects of gait, and 4) that measure within-participant changes in gait, as are 312 

commonly observed during the course of recovery and/or rehabilitation. These findings 313 

demonstrate the versatility and accessibility of video-based gait analysis and have significant 314 

potential for clinical applications. 315 

 Interest in video-based, markerless gait analysis has accelerated rapidly. Previous 316 

studies have used various approaches to move quantitative clinical gait analysis outside of the 317 

laboratory or research center and directly into the home or clinic5,6,13–15,17. Here, we aimed to 318 

develop a single approach that addressed several outstanding needs, including the needs to 319 

accommodate multiple different types of environments/viewing perspectives, use of datasets in 320 

multiple clinical populations with gait impairment, measurement of both spatiotemporal gait 321 

parameters and lower extremity two-dimensional kinematics, and measurement of within-322 

participant changes in gait. It is also notable that we achieved accurate results using multiple 323 

different video recording devices with different sampling rates. By comparing our results against 324 

gold standard motion capture measurements, we provide data about the accuracy of all findings 325 

with respect to the current state-of-the-art. 326 

 Our findings also enable us to progress toward development of a series of best practices 327 

for video-based clinical gait analysis. Unsurprisingly, we found that video-based gait analyses 328 

generated from videos recorded using a sagittal viewpoint generally led to stronger correlations 329 
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with motion capture data and lower error when compared to videos recorded from frontal 330 

viewpoints. This was particularly evident in gait parameters that require especially high levels of 331 

precision (e.g., step length asymmetry in persons post-stroke). Similar to our previous work11, 332 

we also found that video-based measurements of ankle kinematics were generally less accurate 333 

(relative to motion capture) than measurements of hip or knee kinematics in persons with or 334 

without gait impairment. Therefore, when using the current iteration of our workflow, a user is 335 

likely to obtain best results by recording a sagittal video (if possible) and targeting measurement 336 

of spatiotemporal gait parameters and more proximal lower limb kinematics. We emphasize that 337 

our single-camera, video-based approach is not intended to reach marker-based motion capture 338 

levels of accuracy that other multi-camera approaches may target6,18,19 or that may be required 339 

by various scientific disciplines (e.g., biomechanics, human motor control), but rather offers 340 

clinicians and other end-users access to a reasonably accurate approach for clinical gait 341 

analysis that requires minimal time and only a single video recording device. 342 

 It is informative to consider the accuracy of our workflow relative to reported test-retest 343 

minimal detectable change or minimal clinical important difference values of the population of 344 

interest. For example, a meaningful change in gait speed is often reported as 0.10 m s−1 20, but 345 

may vary from 0.05 up to 0.30 m s−1 depending on the population studied21–32. The average 346 

errors of our video-based measurements relative to motion capture generally fall within these 347 

margins, suggesting that gait speed is likely to be reliably measured in many populations (e.g., 348 

older adults, post-stroke, PD, following hip fracture, cerebral palsy, multiple sclerosis) using our 349 

workflow. Minimal detectable changes in gait kinematics may also be dependent on the 350 

population of interest, with estimates ranging from about 4° to 11° of lower-limb sagittal plane 351 

kinematics26,28,33–36. Average errors of sagittal plane hip and knee kinematics in our study were 352 

less than 4°, while errors at the ankle were up to 6.8°, suggesting that hip and knee kinematics 353 
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from our workflow can be accurately tracked while continued improvement in measurement of 354 

ankle angles is needed. 355 

There remain additional significant hurdles to widespread implementation of video-based 356 

clinical gait analyses. There is a crucial unmet need for improved ease of use, as the user 357 

currently must have access to specific computing hardware (i.e., pose estimation is most 358 

efficient when using a graphics processing unit (GPU)), download all relevant software, record 359 

the videos, and manually process each video through the workflow. This generates an output 360 

that is contained within the software. This process is not well-suited for users without some level 361 

of technical expertise; there is an important need for new technologies that can streamline these 362 

steps and remove much of the technical know-how and burden of manual processing. 363 

Furthermore, there is a need for validation in additional adult and pediatric clinical populations, 364 

as previous work has shown that existing pose estimation algorithms have difficulty with tracking 365 

patient populations with anatomical structures that likely differ significantly from the images used 366 

to train the algorithms13. Thirteen of the participants with stroke used a cane; we did not observe 367 

instances where OpenPose mistakenly identified the cane as a limb. Lastly, it is likely that 368 

accuracy will continue to improve in the future as both computer vision algorithms and methods 369 

for data post-processing continue to advance. In this study, we used a pre-trained network8, 370 

while a different network that was trained to be specific to both gait and clinical condition may 371 

further improve accuracy (the challenges of existing pre-trained networks for human pose 372 

estimation in movement science have been well-documented37). 373 

Conclusion 374 

 In this study, we developed and tested a novel approach for video-based clinical gait 375 

analysis. We showed that this approach accommodates multiple viewing perspectives, provides 376 

accurate and clinically relevant gait analyses (as compared to 3D motion capture) across 377 

multiple participant populations with and without gait impairment, and tracks within-participant 378 
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changes in gait that are relevant to rehabilitation and recovery outcomes. All software needed to 379 

perform these analyses is freely available at https://github.com/janstenum/GaitAnalysis-380 

PoseEstimation/tree/Multiple-Perspectives, where we also provide a series of detailed 381 

instructions to assist the user. There is an urgent need to begin to move these emerging 382 

technologies with potential for significant clinical applications toward more user-friendly 383 

solutions.  384 
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Methods 385 

Participants 386 

We recruited 44 individuals post-stroke (15 female, 29 male; age 61±11 years 387 

(mean±SD); body mass 90±23 kg; height 1.73±0.11 m) and 19 individuals with PD (6 female, 13 388 

male; age 67±7 years; body mass 77±14 kg; height 1.71±0.09 m) to participate in the study; all 389 

participants were capable of walking independently with or without an assistive device. All 390 

participants gave written informed consent before enrolling in the study in accordance with the 391 

protocol approved by The Johns Hopkins School of Medicine Institutional Review Board 392 

(Protocol IRB00255175). Additionally, we used a publicly available dataset38 of overground 393 

walking sequences from 32 unimpaired participants (10 women, 22 men) made available at 394 

http://bytom.pja.edu.pl/projekty/hm-gpjatk. The dataset included synchronized 3D motion 395 

capture files and digital video recordings of the walking sequences. The publicly available 396 

dataset does not contain identifiable participant information and faces have been blurred in the 397 

video recordings. Our analysis of the publicly available videos was deemed exempt by The 398 

Johns Hopkins University School of Medicine Institutional Review Board.  399 

Protocol and data collection 400 

Participants visited our laboratory for one day of testing. They first performed ten-meter 401 

walk tests at their preferred speed and the fastest speed at which they felt comfortable walking. 402 

Participants then performed eight overground walking trials (four trials at each preferred and fast 403 

speeds) across a walkway of 4.83 m. 404 

We mounted two commercially available tablets (Samsung Galaxy Tab A7) on tripods 405 

positioned to capture frontal (CFront) and sagittal (CSag) plane views of the overground walking 406 

trials (video recordings occurred at a 30-Hz sampling rate; see Fig. 1 for overview). Of the eight 407 

total walking trials, the participant walked away from the frontal plane camera with the left side 408 
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turned to the sagittal plane camera during four of the trials; during the other four trials, the 409 

participant walked toward the frontal plane camera with the right side turned to the sagittal plane 410 

camera. Tablet cameras obtained videos with 1920 × 1080 pixel resolution. The frontal-view 411 

tablet was positioned 1.52 m behind the start/end of the walkway and the sagittal-view tablet 412 

was positioned 3.89 m to the side of the midpoint of the walkway. The tablet positions were 413 

chosen to achieve the longest walkway in which the person remained visible to both frontal and 414 

sagittal tablets, given the space restrictions of the laboratory. The frontal- and sagittal-view 415 

tablets were rotated to capture portrait and landscape views, respectively. The height of the 416 

frontal-view camera was set so that the entire participant remained visible when they were 417 

nearest the camera (about 0.85 m). The height of the sagittal-view camera was about 1.18 m so 418 

that the participant appeared in the middle of the image as they travelled across the walkway.  419 

We simultaneously recorded walking trials using ten cameras (Vicon Vero, Denver, CO, 420 

USA) as part of a marker-based, 3D motion capture system at 100 Hz. We placed reflective 421 

markers on the seventh cervical vertebrae (C7), tenth thoracic vertebrae, jugular notch, xiphoid 422 

process, and bilaterally over the second and fifth metatarsal heads, calcaneus, medial and 423 

lateral malleoli, shank, medial and lateral femoral epicondyles, thigh, greater trochanter, iliac 424 

crest, and anterior and posterior superior iliac spines (ASIS and PSIS, respectively).  425 

In the previously published dataset of unimpaired adults without gait impairment, we 426 

used a subset of the data (sequences labelled s1) that consisted of a single walking bout of 427 

approximately 5 m that included gait initiation and termination. We excluded data for one 428 

participant because the data belonged to another subset with diagonal walking sequences. We 429 

used data from two digital cameras (Basler Pilot piA1900-32gc, Ahrensburg, Germany) that 430 

simultaneously recorded frontal plane views of the person walking away from one camera and 431 

toward the other camera (see Fig. 3A for overview). The digital cameras obtained videos with 432 

960 × 540 pixel resolution captured at 25 Hz. The average distance from the starting position of 433 
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the participants to the cameras were 2.50 and 7.28 m for the camera that recorded the 434 

participant walking away and toward, respectively. Cameras were mounted on tripods and the 435 

height was about 1.3 m. Motion capture cameras (Vicon MX-T40, Denver, CO, USA) recorded 436 

3D marker positions at 100 Hz. Markers were placed on the seventh cervical vertebrae, tenth 437 

thoracic vertebrae (T10), manubrium, sternum, right upper back and bilaterally on the front and 438 

back of the head, shoulder, upper arm, elbow, forearm, wrist (at radius and ulna), middle finger, 439 

ASIS, PSIS, thigh, knee, shank, ankle, heel, and toe.  440 

Data processing and analysis 441 

Motion capture data from the participants with stroke or PD were smoothed using a zero-442 

lag 4th order low-pass Butterworth filter with a cutoff frequency of 7 Hz. The motion capture data 443 

from the participants without gait impairment in the publicly available dataset had already been 444 

smoothed. We identified left and right heel-strikes and toe-offs as the positive and negative 445 

peaks, respectively, of the anterior-posterior left or right ankle markers relative to the torso39. 446 

All digital video data were processed in two steps: 1) using OpenPose to automatically 447 

detect and label two-dimensional coordinates of various anatomical keypoints, 2) post-448 

processing in MATLAB using custom-written code. The OpenPose analysis was similar for all 449 

video data, whereas we divided the post-processing workflows into two separate pipelines for 450 

videos capturing frontal or sagittal plane views. 451 

1. OpenPose Analysis 452 

a. We ran the OpenPose demo8 over sequences of the video recordings that 453 

contained each walking bout. We have previously used a cloud-based service to 454 

run OpenPose with remote access to GPUs. Here we used a local computer with 455 

a GPU (NVIDIA GeForce RTX 3080) so that videos containing identifiable 456 

participant information were not shared with any third-party services.  457 
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b. Videos were analyzed in OpenPose using the BODY_25 keypoint model that 458 

tracks the following 25 keypoints: nose, neck, mid-hip and bilateral keypoints at 459 

the eyes, ears, shoulders, elbows, wrists, hips, knees, ankles, heels, halluces, 460 

and fifth toes.  461 

c. The output of the OpenPose analysis yielded: 1) JSON files for every video 462 

frame containing pixel coordinates of each keypoint detected in the frame, and 2) 463 

a new video file in which a stick figure that represents the detected keypoints is 464 

overlaid on the original video recording.  465 

2. MATLAB Post-processing 466 

We created custom-written MATLAB code to process the JSON files that were output 467 

from the OpenPose analysis (https://github.com/janstenum/GaitAnalysis-468 

PoseEstimation/tree/Multiple-Perspectives). As an initial step, we checked whether 469 

multiple persons had been detected by OpenPose in the video (this can be the case 470 

when multiple people are visible or when OpenPose incorrectly detects keypoints in 471 

inanimate objects). Note that OpenPose has an optional flag to track only a single 472 

person; however, we did not use this option to avoid scenarios where the participant had 473 

not been tracked in favor of other persons (e.g., the experimenter). If multiple persons 474 

were detected, three MATLAB scripts were called that 1) required user input to identify 475 

the participant in a single frame of the video, 2) automatically identified the participant 476 

throughout the video and 3) allowed the user to visually inspect that the participant had 477 

been identified and correct any errors. Following the person-identification step, MATLAB 478 

workflows were different depending on whether the camera captured a frontal or sagittal 479 

plane view of the walking trial. We describe each workflow below.  480 

a. Frontal plane videos 481 
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i. We changed the pixel coordinate system so that the positive vertical was 482 

directed upward and that positive horizontal was directed toward the 483 

participant’s left side.  484 

ii. We visually inspected and corrected errors in left-right identification of the 485 

limbs. In all, 362 (less than 1% of the 131,519 frames in total) frontal 486 

video frames were corrected. 487 

iii. We gap-filled keypoint trajectories using linear interpolation for gaps 488 

spanning to up 0.12 s.  489 

iv. We identified events of left and right gait cycles by local maxima and 490 

minima of the vertical distance between the left and right ankle keypoints. 491 

Gait events on the left limb were detected at positive peaks and gait 492 

events on the right limb were detected at negative peaks in trials where 493 

the participants walked away from the frontal plane camera; and vice 494 

versa in trials where the participants walked toward the camera. In order 495 

to unify the nomenclature of gait events across motion capture data and 496 

sagittal and frontal plane video data, we refer to the gait events of the 497 

frontal plane analysis as heel-strikes.  498 

v. Last, we calculated a time-series of depth-change of the torso relative to 499 

the initial starting depth. We used the following equation to calculate 500 

depth-change (∆𝑑𝑑𝑖𝑖): 501 

 ∆𝑑𝑑𝑖𝑖 = 𝑑𝑑Ref
𝑠𝑠Ratio

− 𝑑𝑑Ref , (Eq. 1) 

where 𝑑𝑑Ref is the initial reference depth of the person relative to the frontal 502 

camera position and 𝑠𝑠Ratio is the ratio of the pixel size of the person 503 

relative to the pixel size of the torso at the initial reference depth. 504 

Equation 1 is derived from trigonometric relations between the actual size 505 
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of the person and the pixel size of the person as they appear on the 506 

image plane of the camera (see Fig. 2A,B for an overview). We assume a 507 

fixed position of a pinhole camera with no lens distortion. We know the 508 

following relation when the person is at an initial reference depth from the 509 

camera: 510 

 
𝑠𝑠Ref
𝑓𝑓

= 𝑠𝑠
𝑑𝑑Ref

 , (Eq. 2) 

where 𝑓𝑓 is the focal length, 𝑠𝑠Ref is the pixel size of the person at the 511 

reference distance and 𝑠𝑠 is the actual size of the person. With a depth-512 

change ∆𝑑𝑑𝑖𝑖 we obtain the following relationship: 513 

 
𝑠𝑠𝑖𝑖
𝑓𝑓

= 𝑠𝑠
𝑑𝑑Ref+∆𝑑𝑑𝑖𝑖

 , (Eq. 3) 

where 𝑠𝑠𝑖𝑖 is the pixel size of the person as they appear with a depth-514 

change. From Equations 2 and 3, we obtain: 515 

 𝑠𝑠Ratio = 𝑠𝑠𝑖𝑖
𝑠𝑠Ref

= 𝑑𝑑Ref
𝑑𝑑Ref+∆𝑑𝑑𝑖𝑖

 . (Eq. 4) 

Using Equation 4 we obtain the expression in Equation 1. From 516 

Equation 1 we can estimate depth changes using only information about 517 

the reference depth of the person and the pixel size of the person. We 518 

validated this approach in Fig. 2C by comparing the predicted value of 519 

𝑠𝑠Ratio based on Equation 4 (with a reference depth of 4.88 m) with values 520 

of 𝑠𝑠Ratio found by manually tracking the pixel size of images of a person 521 

standing at depth-changes up to 18.29 m. The predicted relationship 522 

closely tracks the manually annotated pixel sizes in Fig. 2C, suggesting 523 

that Equation 1 can be used to accurately calculate depth-changes in the 524 

frontal plane.  525 

Next, we considered methodological factors that may affect accuracy of 526 

the calculated depth-changes. We chose to track the size of the torso 527 
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because there are only minor rotations in the transverse plane during the 528 

gait cycle, which ensures a consistent perspective during a gait trial40. 529 

Torso size can be represented by 1) torso height (vertical distance 530 

between neck and midhip keypoints), 2) shoulder width (horizontal 531 

distance between left and right shoulder keypoints) and 3) the torso area 532 

(calculated as the square root of the product of torso height and shoulder 533 

width to ensure that size scales appropriately with Equation 1). We 534 

evaluated the best tracking and smoothing method from the combination 535 

that yielded the lowest step length error and SD of step length differences 536 

between motion capture and frontal plane videos (See Fig. S4). Based on 537 

the evaluation, we chose to track torso size and low-pass filter size ratio 538 

using a cutoff frequency at 0.4 Hz.  539 

b. Sagittal plane videos 540 

i. We changed the pixel coordinate system so that positive vertical was 541 

direction upward and positive horizontal was the direction of travel.  542 

ii. We visually inspected and corrected errors in left-right identification of the 543 

limbs. In all, 5,369 (about 3.5% of the 153,669 frames in total) of sagittal 544 

video frames were corrected.  545 

iii. We gap-filled keypoint trajectories using linear interpolation for gaps 546 

spanning up to 0.12 s.  547 

iv. We smoothed trajectories using a zero-lag 4th order low-pass Butterworth 548 

filter with a cutoff frequency at 5 Hz.  549 

v. We calculated a scaling factor to dimensionalize pixel distance. The 550 

scaling factor was as a ratio of a known distance in the line of progression 551 

relative to the pixel distance. We used the distance between strips of tape 552 

on the walkway.  553 

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted January 30, 2023. ; https://doi.org/10.1101/2023.01.26.23285007doi: medRxiv preprint 

https://doi.org/10.1101/2023.01.26.23285007
http://creativecommons.org/licenses/by-nc/4.0/


25 
 

vi. We identified left and right heel-strikes and toe-offs as the positive and 554 

negative peaks, respectively, of the horizontal trajectories of the left or 555 

right ankle keypoints relative to the mid-hip keypoint. 556 

We cross-referenced gait events that had independently been identified in motion 557 

capture data and sagittal or frontal plane video data to ensure that all gait parameters were 558 

obtained based on the same gait cycles. 559 

We calculated the following spatiotemporal gait parameters: 560 

• Step time: duration between consecutive bilateral heel-strikes.  561 

• Step length (we used two methods to calculate step lengths): 1) as the horizontal 562 

distance between ankle markers or keypoints at instants of heel-strike and 2) as the 563 

distance travelled by the torso between consecutive bilateral heel-strikes. We used the 564 

distance travelled by the torso because the distances between the ankles at a heel-strike 565 

instant cannot be obtained from frontal plane videos. When comparing step lengths 566 

between motion capture and sagittal plane videos, we used the distance between the 567 

ankles; all step length comparisons with frontal plane data used the distance travelled by 568 

the torso. Step length methods were highly correlated (r=0.938) with an average 569 

difference of −0.069 m, suggesting that the distance travelled by the torso was about 570 

7 cm longer than the distance between the ankles (Fig. S5). 571 

• Gait speed: step length divided by step time. 572 

In stroke and PD data, we calculated paretic/non-paretic or left/right step times and step 573 

lengths, respectively. Paretic/left step time is the duration from non-paretic/right heel-strike until 574 

paretic/left heel-strike; vice versa for non-paretic/right step times. Paretic/left step length, 575 

calculated as the distance between the ankles, is the distance at paretic/left heel-strike; vice 576 

versa for non-paretic/right step lengths. Paretic/left step length, calculated as the distance 577 
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travelled by the torso, is the distance travelled from non-paretic/right heel-strike to paretic/left 578 

heel-strike; vice versa for non-paretic/right step lengths. 579 

We calculated the changes in spatiotemporal gait parameters that accompany speed-580 

changes (i.e., shorter step times, longer step lengths, and faster gait speeds) from the preferred 581 

and fast speed trials in the stroke and PD data. This allowed us to test how well gait changes 582 

can be tracked using video recordings. 583 

There are several commonly observed, clinically relevant gait impairments in stroke 584 

(e.g., gait asymmetry41) and PD (e.g., stooped posture42) – thus, for each population we 585 

calculated condition-specific gait parameters. We calculated step time asymmetry and step 586 

length asymmetry (difference between steps divided by sum of steps) in stroke gait and trunk 587 

inclination in PD gait. Trunk inclination was calculated as the angle relative to vertical between 588 

the mid-hip and neck keypoints at heel-strikes in the sagittal plane videos and the angle 589 

between the C7 and right PSIS markers at heel-strikes in the motion capture data. During initial 590 

comparisons we found an offset between motion capture and sagittal plane video data; we 591 

subtracted a fixed offset of 12° from trunk inclination in the sagittal plane video data in order to 592 

create a better numeric comparison with the motion capture data. 593 

We calculated sagittal plane lower limb joint kinematics at the hip, knee, and ankle using 594 

two-dimensional coordinates from the motion capture data and the sagittal plane video data. We 595 

used markers at the greater trochanter and lateral femoral epicondyles and keypoints at the hip 596 

and knee to calculate hip angles; markers at the greater trochanter, lateral femoral epicondyles 597 

and lateral malleoli and keypoints at the hip, knee, and ankle to calculate knee angles; markers 598 

at the lateral femoral epicondyles, lateral malleoli, and 5th metatarsal and keypoints at the knee, 599 

ankle, and hallux to calculate ankle angles. 600 
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From our stroke and PD datasets, we compared gait parameters at three levels of 601 

comparisons: at the step level calculating parameters for individual steps, as averages across 602 

single gait trials, and at the session level calculated as averages across several gait trials. In 603 

total there were 2,684 individual gait cycles (1,790 for stroke, 709 for PD and 185 for 604 

unimpaired), 527 gait trials (352 for stroke, 144 for PD and 31 for unimpaired) and 124 session 605 

level averages (88 for stroke and 36 for PD). We present session level gait parameters for 606 

stroke and PD and trial level for unimpaired data in the main text of the manuscript; we show 607 

results at the trial and step level in the Tables S3 and S4.  608 

In the stroke and PD datasets, we compared gait parameters obtained during trials that 609 

were simultaneously recorded by motion capture, sagittal plane videos, and frontal plane videos 610 

(see Fig. 1 for overview). Note that some parameters (joint kinematics and trunk inclination) can 611 

only be obtained with motion capture data and sagittal plane videos.  612 

In the dataset with unimpaired participants, we compared spatiotemporal gait 613 

parameters obtained during trials that were simultaneously captured with motion capture data 614 

and with two frontal cameras positioned to capture the participant walking away from one 615 

camera and toward the other camera (see Fig. 3A for overview).  616 

Statistical analyses 617 

We compared gait parameters obtained with motion capture and video by calculating 618 

differences, errors (absolute differences) and 95% limits of agreement (mean 619 

differences ± 1.96 × SD). We assessed correlations by calculating Pearson correlation 620 

coefficients.  621 

Data availability 622 
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 The dataset of unimpaired gait is available from http://bytom.pja.edu.pl/projekty/hm-623 

gpjatk. The stroke and PD datasets contain videos with identifiable information and are 624 

therefore not available. 625 

Code availability 626 

 Code for our workflow is available at https://github.com/janstenum/GaitAnalysis-627 

PoseEstimation/tree/Multiple-Perspectives. 628 
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Figure captions 746 

Fig. 1. Conceptual overview. We recorded three-dimensional (3D) motion capture and digital 747 

videos of gait trials performed by persons post-stroke and persons with Parkinson’s disease (A). 748 

We analyzed digital videos of the frontal (CFront) and sagittal plane (CSag) with OpenPose to track 749 

anatomical keypoints (B). We developed workflows to perform a gait analysis, independently, for 750 

videos of the frontal and sagittal plane (C). We compared spatiotemporal gait parameters and 751 

joint kinematics from our workflows to parameters obtained with 3D motion capture (D). Note 752 

that photographs in panel B have been replaced with silhouettes to conform to medRxiv policy.  753 

Fig. 2. Diagram of frontal plane analysis to obtain spatiotemporal gait parameters. A person of 754 

size (height) s stands at two distances from a frontal plane camera (CFront; panel A): an initial 755 

reference depth (dRef) and at a depth-change (Δdi). The size in pixels of the person at each 756 

depth are denoted by sRef and si. From trigonometric relationships we derive a relationship 757 

between pixel size and depth-change (B, see Methods for detailed explanation; f, focal length of 758 

camera; xIP, position of image plane of camera; xCam, position of camera lens; xRef, initial position 759 

of person; xi, position of person following depth-change). The predicted pixel sizes of a person 760 

standing at increasing depths closely tracks manually annotated pixel sizes, which shows that 761 

we can use pixel size to estimate depth-changes (C). Summary of our frontal plane workflow 762 

(D): OpenPose tracks anatomical keypoints, we find gait cycle events, calculate a time-series of 763 

pixel size, and calculate depth-change at which point step lengths and step times can be 764 

derived. Note that photographs in panels A, C and D have been replaced with silhouettes to 765 

conform to medRxiv policy. 766 

Fig. 3. Testing of a novel approach for spatiotemporal gait analysis from videos of unimpaired 767 

adults recorded in the frontal plane. We recorded digital videos of the frontal plane where the 768 

person walked toward one camera and away from the other camera (A). We compared 769 

spatiotemporal gait parameters (B, step time; C, step length; D, gait speed) between the two 770 
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digital videos and 3D motion capture (see Table S1). Note that photographs in panel A have 771 

been replaced with silhouettes to conform to medRxiv policy. 772 

Fig. 4. Video-based gait analysis from frontal and sagittal views in persons post-stroke. We 773 

recorded digital videos of the frontal and sagittal plane during gait trials (A). We compared 774 

spatiotemporal gait parameters (B, step time; C, step length; D, gait speed) and gait asymmetry 775 

(E, step time asymmetry; F, step length asymmetry) between the two digital videos and 3D 776 

motion capture. We also compared lower-limb joint kinematics at the hip, knee and ankle 777 

obtained with sagittal videos and motion capture for the paretic (G) and non-paretic (H) limbs 778 

(MAE, mean absolute error). Gait parameters are calculated as session-level averages of four 779 

gait trials at either preferred or fast speeds (see Table 1). Note that photographs in panel A 780 

have been replaced with silhouettes to conform to medRxiv policy. 781 

Fig. 5. Video-based gait analysis from frontal and sagittal views in persons with Parkinson’s 782 

disease. We recorded digital videos of the frontal and sagittal plane during gait trials (A). We 783 

compared spatiotemporal gait parameters (B, step time; C, step length; D, gait speed) between 784 

the two digital videos and 3D motion capture. We compared trunk inclination between sagittal 785 

plane videos and motion capture (E). We also compared lower-limb joint kinematics at the hip, 786 

knee and ankle obtained with sagittal videos and motion capture for the right (F) and non-paretic 787 

(G) limbs (MAE, mean absolute error). Gait parameters are calculated as session-level 788 

averages of four gait trials at either preferred or fast speeds (see Table 1). Note that 789 

photographs in panel A have been replaced with silhouettes to conform to medRxiv policy. 790 

Fig. 6. Measuring changes in gait that occur due to changes in gait speed in persons post-791 

stroke and persons with Parkinson’s disease. We recorded digital videos of the frontal and 792 

sagittal plane during gait trials at preferred and fast speeds (A). We compared spatiotemporal 793 

gait parameters (B, step time; C, step length; D, gait speed) between the two digital videos and 794 

3D motion capture. Subscripts Δv of gait parameters denote changes in the gait parameter due 795 
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to speed-increases from preferred to fast speed walking trials. We calculated gait parameters as 796 

the difference between the session-level averages of preferred and fast speed trials (see 797 

Table 2). Note that photographs in panel A have been replaced with silhouettes to conform to 798 

medRxiv policy.  799 
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Table 1 Comparison of video-based and motion capture measurements of spatiotemporal gait parameters in the stroke and Parkinson’s disease groups a 

 Difference (Mean±SD)  Error (Mean±SD)  95% Limits of Agreement 
Gait Parameter MC−CS MC−CF CF−CS  |MC−CS| |MC−CF| |CS−CF|  MC−CS MC−CF CF−CS 

 
Stroke 

Step time (s) 0.00±0.02 0.01±0.05 0.01±0.04  0.02±0.01 0.05±0.04 0.05±0.04  −0.04; 0.04 −0.09; 0.10 −0.08; 0.09 
Step length (m) b 0.010±0.035 −0.033±0.061 −0.050±0.063  0.028±0.024 0.072±0.037 0.079±0.044  −0.058; 0.079 −0.154; 0.087 −0.173; 0.073 
Gait speed (m s−1) b 0.02±0.06 −0.07±0.07 −0.09±0.07  0.04±0.05 0.10±0.06 0.12±0.06  −0.11; 0.14 −0.20; 0.06 −0.22; 0.04 
Step time asym. 0.01±0.03 0.02±0.06 0.01±0.06  0.03±0.02 0.07±0.05 0.07±0.04  −0.04; 0.07 −0.10; 0.14 −0.10; 0.12 
Step length asym. b −0.002±0.072 −0.042±0.127 −0.025±0.107  0.050±0.053 0.106±0.097 0.100±0.073  −0.142; 0.138 −0.291; 0.208 −0.235; 0.186 

 
Parkinson’s disease 

Step time (s) −0.00±0.01 0.01±0.02 0.01±0.02  0.01±0.00 0.03±0.01 0.03±0.01  −0.02; 0.02 −0.03; 0.05 −0.03; 0.05 
Step length (m) b −0.010±0.017 −0.051±0.050 −0.041±0.055  0.021±0.009 0.074±0.042 0.075±0.040  −0.044; 0.023 −0.150; 0.048 −0.149; 0.068 
Gait speed (m s−1) b −0.02±0.02 −0.12±0.08 −0.10±0.09  0.03±0.02 0.15±0.07 0.15±0.06  −0.07; 0.03 −0.28; 0.04 −0.27; 0.07 
Trunk incl. (°) c −0.0±1.5 … …  1.5±0.7 … …  −3.0; 2.9 … … 

MC, motion capture; CS, sagittal plane camera; CF, frontal plane camera 
a Values of spatiotemporal gait parameters are calculated as session-level averages. 
b Parameter depending on step length: comparisons of MC and CS, step length calculated as distance between ankles at heel-strike; comparisons of MC and CF and of CS and CF, step 

length calculated as distance travelled by torso between consecutive heel-strikes. 
c Missing values because trunk inclination cannot be calculated from CF. 
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Table 2 Comparison of video-based and motion capture measurements of speed-related changes of spatiotemporal gait parameters of stroke and PD groups a 

 Difference (Mean±SD)  Error (Mean±SD)  95% Limits of Agreement 
Gait Parameter MC−CS MC−CF CF−CS  |MC−CS| |MC−CF| |CS−CF|  MC−CS MC−CF CF−CS 

 
Stroke 

Step time (s) −0.00±0.01 −0.00±0.04 −0.00±0.04  0.02±0.01 0.04±0.03 0.05±0.03  −0.03; 0.03 −0.08; 0.07 −0.07; 0.07 
Step length (m) b 0.003±0.017 −0.007±0.042 −0.001±0.044  0.021±0.012 0.054±0.027 0.058±0.029  −0.031; 0.037 −0.088; 0.075 −0.087; 0.085 
Gait speed (m s−1) b 0.01±0.05 −0.02±0.06 −0.02±0.05  0.04±0.04 0.06±0.05 0.06±0.04  −0.09; 0.11 −0.14; 0.11 −0.12; 0.08 

 
Parkinson’s disease 

Step time (s) −0.00±0.01 −0.00±0.02 −0.00±0.02  0.02±0.01 0.03±0.02 0.04±0.02  −0.02; 0.02 −0.05; 0.04 −0.05; 0.04 
Step length (m) b 0.003±0.013 −0.026±0.049 −0.015±0.056  0.019±0.007 0.067±0.035 0.073±0.039  −0.022; 0.028 −0.122; 0.070 −0.125; 0.094 
Gait speed (m s−1) b 0.00±0.02 −0.07±0.06 −0.04±0.06  0.03±0.01 0.11±0.06 0.10±0.05  −0.04; 0.04 −0.19; 0.06 −0.16; 0.08 

MC, motion capture; CS, sagittal plane camera; CF, frontal plane camera 
a Speed-changes are differences between preferred and fast speed walking trials; gait parameters are calculated as session-level averages. 
b Parameter depending on step length: comparisons of MC and CS, step length calculated as distance between ankles at heel-strike; comparisons of MC and CF and of CS and CF, step 

length calculated as distance travelled by torso between consecutive heel-strikes. 
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