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ABSTRACT

Background

Fixed-effect meta-analysis has been used to summarize genetic effects on a phenotype across
multiple Genome-Wide Association Studies (GWAS) assuming a common underlying genetic effect.
Genetic effects may vary with age, therefore meta-analysing GWAS of age-diverse samples could be
misleading. Meta-regression allows adjustment for study specific characteristics and models
heterogeneity between studies. The aim of this study was to explore the use of meta-analysis and meta-

regression for estimating age-varying genetic effects on phenotypes.

Methods

With simulations we compared the performance of meta-regression to fixed-effect and random
-effects meta-analyses in estimating (i) main genetic effects and (ii) age-varying genetic effects (SNP
by age interactions) from multiple GWAS studies under a range of scenarios. We applied meta-
regression on publicly available summary data to estimate the main and age-varying genetic effects of

the FTO SNP rs9939609 on Body Mass Index (BMI).

Results

Fixed-effect and random-effects meta-analyses accurately estimated genetic effects when these
did not change with age. Meta-regression accurately estimated both the main genetic effects and the
age-varying genetic effects. When the number of studies or the age-diversity between studies was low,
meta-regression had limited power. In the applied example, each additional minor allele (A) of
rs9939609 was inversely associated with BMI at ages 0 to 3, and positively associated at ages 5.5 to 13.
This is similar to the association that has been previously reported by a study that used individual

participant data.

Conclusions

GWAS using summary statistics from age-diverse samples should consider using meta-

regression to explore age-varying genetic effects.


https://doi.org/10.1101/2023.01.25.23284845
http://creativecommons.org/licenses/by/4.0/

medRxiv preprint doi: https://doi.org/10.1101/2023.01.25.23284845; this version posted January 28, 2023. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in
perpetuity.
It is made available under a CC-BY 4.0 International license .

Keywords: Genome-wide association studies, meta-analysis, meta-regression, age-varying genetic

effects


https://doi.org/10.1101/2023.01.25.23284845
http://creativecommons.org/licenses/by/4.0/

medRxiv preprint doi: https://doi.org/10.1101/2023.01.25.23284845; this version posted January 28, 2023. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in
perpetuity.
It is made available under a CC-BY 4.0 International license .

KEY MESSAGES

o Meta-analysis has been used to summarize genetic effects on a phenotype across multiple
Genome-Wide Association Studies (GWAS) assuming a common underlying genetic effect for
all studies. However, genetic effects may vary with age, therefore meta-analysing GWAS of
age-diverse samples could produce misleading results.

o Meta-regression could be used to relate observed between-study heterogeneity to study
characteristics such as age. Therefore, meta-regression could be used to combine summary level
GWAS data to provide evidence for any age-varying genetic effects.

e This simulation study shows that when genetic effects vary with age, meta-regression provides
unbiased estimates of main and age-varying genetic effects. The precision of the estimates
depends on the number of studies included, and the diversity in age between them.

e The applied example using publicly available summary data, supported the simulation study.
By applying meta-regression, we observed a previously reported age-varying association
between each additional minor allele (A) of rs9939609 and BMI; an inverse at ages 0 to 3 and
a positive association at ages 5.5 to 13.Similar association has been previously reported by a

study that used individual participant data.
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INTRODUCTION

Genome-wide association studies (GWAS) test associations of millions of single nucleotide
polymorphisms (SNPs) across the genome with a phenotype. As SNP effects are generally small, large
sample sizes are required for adequate statistical power. This is commonly achieved through fixed effect
meta-analysis of summary genetic effects across several GWAS, which increases sample size and

statistical power without sharing individual participant data.

Fixed-effect meta-analysis, which assumes a common true underlying genetic effect for all
studies (1), has been favored over random-effects meta-analysis, mostly due to its increased statistical
power (2). Fixed-effect meta-analysis ignores heterogeneity of genetic effects between studies, and it
has been suggested that this could introduce high rates of false positive and/or false negative findings
(2 ,3). For example, genetic effects may vary with age (4 ,5). Therefore, meta-analysing GWAS studies
of age-diverse samples with a fixed-effect model, without considering potential heterogeneity of genetic
effects due to age, could fail to identify clinically important changes of genetic risk with age. Moreover,
ignoring age-varying genetic effects in GWAS may lead in spurious results in other methods that use
GWAS summary data as input to estimate: genetic correlation between traits (LD score regression) (6),
genetic predisposition to a trait (Polygenic Risk Scores) (7) and the causal effect of an exposure on an

outcome (Two-sample Mendelian randomization) (8).

An approach recommended in meta-analysis of Randomized Controlled Trials (RCTs) to
estimate treatment-covariate interactions (e.g., treatment-age interactions) is a two-stage approach,
where the interaction is estimated within each study, and these interactions are then meta-analysed (9).
This approach would have limited application in GWAS as most studies do not perform or report an

interaction analysis (e.g., SNP-age interaction effects).

An alternative method that could be used is meta-regression, which uses summary data and
relates observed between-study heterogeneity to study characteristics and investigates the impact of
moderator variables on estimated genetic effect sizes (10 ,11). Meta-regression has not been widely

applied in RCTs due to limited statistical power, related to both the size of the individual studies and
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the number of studies included (12). A search of the literature and GWAS data bases in July 2022,
suggests that meta-regression has been applied in only two GWASs to explore age related differences
between included studies. In both cases, genetic variants with age-varying genetic effects were
identified (13 ,14). We have not identified published research exploring the conditions under which

meta-regression outperforms meta-analysis when age-varying genetic effects exist.

The aim of this study was to explore the use of meta-analysis and meta-regression to examine
age-varying genetic effects on phenotypes, using summary GWAS data. We compared the performance
of meta-regression and fixed-effect and random-effects meta-analysis in estimating (i) main genetic
effects (i.e., the effect at age 0) and (ii) age- varying genetic effects (SNP by age interactions) using
multiple simulated cross-sectional GWAS studies. We simulated phenotype-genotype associations
under a range of data generating processes, varying the number of studies and sample sizes, the overlap
in the age range of study participants (i.e., age-diversity), and the sampling variability within and
between studies. Subsequently, we applied meta-analysis and meta-regression to estimate the age-
varying genetic associations between the rs9939609 SNP at the FTO locus and body mass index (BMI)
across early life-course, using publicly available summary data, and compare these to estimates from

previous individual-participant analyses.
METHODS
Data generating mechanisms for simulations

Participant age (age;; for participant i in study j), drawn from a uniform distribution, was set

between 10 and 59 years. A single SNP with a large effect size, SNP;;, was simulated with a minor
allele frequency (MAF) of 0.2 and the number of risk alleles (0,1,2) was drawn from a binomial

distribution. We generated the outcome phenotype (Y;;) to be dependent on: Scenario 1. age and
genotype; Scenario 2. age and genotype, with an interaction between age and genotype (linear
interaction term); Scenario 3. age, genotype and a quadratic term of age; Scenario 4. genotype, age and
a quadratic term of age, with an interaction between age and genotype; Scenario 5. genotype, age and

a quadratic term of age, where genotype interacts with age and quadratic age (non-linear interaction
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term). Equations for the phenotype generating scenarios and the parameter values are presented in Table

1. We assumed that the effect of age on phenotype (8,4.) Was identical for each study but that the effect
of genotype varied randomly across studies (Bsyp + u;), corresponding to a random-effects meta-

analysis model for the genotype-phenotype association. As a “base case” scenario, we used 1SD within

and between study variability ( ;;~N(0,1) and u;~N(0,1)) in the data generating mechanisms, with

40 cross-sectional studies each with sample size N; = 1,000.

(Table 1 here)
Estimating study-specific genotype-phenotype associations

Within each cross-sectional study, we used linear regression to estimate the genotype-
phenotype association. As is usual in GWAS studies, models were adjusted only for age, and no further
adjustments were made to account for non-linearity and SNP-age interactions. Equation (1) describes

the regression models:
Yij = Boj + B1j X SNP;j + By X age;j + &; (1)
We collected the estimated genotype-phenotype effect estimate (3; ;) and its standard error (SE(B, D))
from each study, in addition to the mean age ( age;) of participants in each study.
Description of compared methods
Meta-analysis

Fixed-effect meta-analysis assumes that all studies draw a (random) sample from the same
underlying population and hence share a common true effect size for each SNP. The pooled meta-
analysis estimates the population average effect (15). The estimated effect for a given SNP in each study

is:

Blj =Bsnp+ Nj M~ N(O»sz) 2)
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where, f;; the genotype-phenotype effect in the jth study, Ssyp is the common genetic effect, and n;

is random error describing the sampling variability within each study (with variance sj2 in study j, i.e.,

the variance of f3; ;).

Random-effects meta-analysis allows the true genetic effect size to differ across studies. Here,
Bsnp reflects an estimate of the average effect across study populations. The estimated effect for a given

SNP in each study is:

B1j = Bsnp + & + 1), 77j~N(0,S]-2) (3)

6} NN(O' TZ)

where, Bsyp is the mean genetic effect, &; represents heterogeneity, i.e. the study-specific deviation
from the mean genetic effect (with variance 72 across studies, i.e. the between study variability), and
n; is random error describing the sampling variability within each study (with variance sj2 in study j,
i.e. the variance of [?1\]). Further information about the estimation of combined genetic effects in fixed-

effect and random-effects meta-analysis can be found in Supplementary Note S1. To estimate the

between-study variance 72, we used restricted maximum likelihood (REML) method (16).

Meta-regression

Random-effects meta-regression extends the random-effects meta-analysis model as follows:

~

B1j = Bsnp + Bsnpxage@9€ + & +m;,  n;~N(0, sz) @)

fj ~N(O' T%es )

and could also be further extended to include non-linear terms such as:

[?1]' = Bsnp + Bsnpxage@9€ + ﬁSNangeZsz + & +n;,  n~N(0, sz) ()

fj ~N(0, Tzes )
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where, Bsypxage 1S the difference in the mean effect of a given SNP for each one year increase in age,
Bsnpxage? 1S the difference in the mean effect of a given SNP for each one year difference in the square
of age and 72, is the residual heterogeneity after accounting for the age effect(s). Meta-regression

estimates these two parameters ([?Sprage , BSNangez) and an intercept term (Bgyp) representing the

effect of genotype on phenotype for age = 0 (referred to as the main genetic effect). To estimate the

between-study variance t2,; we used REML (16).
Implementation

For each scenario, we ran 1,000 iterations. We varied i) study sample sizes from 1,000 to
10,000, ii) the number of studies from 10 to 80 and iii) the overlap of age distributions across studies
(i.e., age-diversity) from no overlap (0%) to complete overlap (100%) in 25% increments. Figure 1
depicts the overlap of age distributions between studies and further information about the age ranges of
each study can be found in the Table S1. Lastly, iv) we varied the within and between study variability

from 1 (g;;~N(0,1) and u;~N(0,1)) to 3 (¢;;~N(0,3%) and u;~N(0,3%)).
(Figure 1 here)
Estimands and performance measures

The estimands of interest were the main genetic effect (Bsnyp) (the effect if the population had
mean age=0), the linear age-varying genetic effect (Bsnpxage), the non-linear age-varying effect

(Bsnpxage?), and the standard errors (SE) of these parameters across simulations.

We present five performance measures: the mean estimate, the bias (the deviation of the
estimated parameter from the simulated value), the coverage of the 95% confidence interval (CI) (the
proportion of simulated datasets for which the 95% confidence interval included the simulated value),

the empirical standard error (Emp SE), and the mean standard error (Mean SE).
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Estimating the age-varying genetic association between the rs9939609 SNP at the FTO locus and

body mass index (BMI)

We used a real data example to illustrate the application of meta-analysis and meta-regression
in estimating age-varying genetic effects using summary level association statistics. An age-varying
association between the rs9939609 SNP at the FTO locus and body mass index (BMI) has been
previously demonstrated (4 ,5,17 ,18). We extracted summary level data for the association between
rs9939609 and BMI from a study investigating the effect of this genetic variant on BMI from infancy
to late childhood (5). The effect of rs9939609 on BMI was estimated in 8 cohorts (N=569 to 7,482) at
up to 10 ages within each cohort from 0 to 13 years. Detailed information about effect sizes within each

cohort at each time point can be found in Supplementary Table S2.

We estimated the association between rs9939609 SNP and BMI using fixed-effect meta-

analysis and meta-regression adjusting for a cubic term of age, which can be written as follows:

6(31) = Bsnp + Bsnpxage@9€ + ﬂSNangeZsz + ﬁSNange3Wj3 +&i+n, ni~ N(O' sz) (6)
fj ~N(O, Trges )
The choice to adjust for a cubic term of age was made based on evidence suggesting that each
additional minor allele (A) of this variant is inversely associated with BMI from ages 0 to 3 and

positively associated from ages 5.5 to 13 (5). Effect sizes were estimated at multiple time points within

the same cohorts, so we used generalized weights to adjust standard errors for the sample overlap (19).
RESULTS
Scenarios 1 & 3: Data generated with no age-varying genetic effect

i) Estimation of main genetic effect (Bsyp) (i.€., the effect in a population with mean

age=0)

As expected, as there was no age-varying genetic effect, both the fixed-effect and the random
effects meta-analyses yielded unbiased estimates of the main genetic effect (Bsnp) across all proportions

of overlapping ages between simulated studies (Figure 2 A & B), although CI coverage was below the
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nominal 95% level for the fixed-effect meta-analysis. Similarly, meta-regression models including
either a linear or a quadratic term of age demonstrated negligible bias for the main genetic effect (Figure
2 C & D), but CI coverage was slightly below the nominal level for models including a quadratic term

of age (Table S3).

i) Estimation of age-varying genetic effects (Bsypxage: Bsnpxage?)

Both meta-regression models (including a linear or quadratic term of age) yielded unbiased

(i.e., mean of zero) estimates of the linear age-varying genetic effect (Bsnpxage) (Figure 3A & B) and
the non-linear age-varying genetic effect (Bsnpxagez) (Figure 3C). However, for both estimands
(Bsnpxage » Bsnpxage?), the values estimated by the meta-regression models (erroneously including a

linear or a quadratic term of age) were highly variable as seen by the large Monte Carlo SEs of bias in
(Figure 3A-C). As the proportion of overlapping ages between simulated studies was increased, the

variability of estimated values increased.

Cl coverage for the linear age-varying genetic effect (Bsnpxage = 0) was consistent with the
nominal 95% level for meta-regression models including a linear term of age , Cl coverage was below

the nominal 95% level for the linear and non-linear age-varying genetic effect (Bsnpxages Bsnpxage?)

in meta-regression models including a quadratic term of age (Table S4 & S5).
Scenarios 2 & 4: Data generated with a linear age-varying genetic effect

i) Estimation of main genetic effect (Bsyp) (i.€., the effect in a population with mean

age=0)

When there were linear age-varying genetic effects, both fixed and random-effects meta-analyses
gave biased estimates of the main genetic effect, across all proportions of overlapping ages between
simulated studies (Figure 2 A & B). Meta-regression models including a linear or quadratic term of age
produced unbiased estimates of the main genetic effect (Figure 2 C & D). As the age overlap between
studies increased, the meta-regression estimates were more variable, as seen by the large Monte Carlo

SEs.

11
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In both scenarios, Cl coverage for the main genetic effect (i.e., the effect if the population had a
mean age of 0) was consistently below the nominal 95% level for fixed-effect and random-effects meta-
analyses, across all proportions of overlapping ages between simulated studies. Meta-regression
including a linear term of age yielded coverage of Cls consistent with the nominal 95% level. When the
meta-regression included a quadratic term of age, coverage of Cls was consistently below the nominal

95% level (Table S3).

i) Estimation of age-varying genetic effect (Bsnpxage: Bsnpxage?)

Meta-regression estimates of the linear age-varying genetic effect (Bsnpxage) Were unbiased in
both meta-regression models (Figure 3A & B). Similarly, estimates of the non-linear age-varying
genetic effect (Bsnpxagez = 0) Was unbiased in the meta-regression model including a quadratic term
of age (Figure 3C). The variance of the estimated values increased as the proportion of overlapping

ages between simulated studies increased.

In both scenarios, Cl coverage for the linear and non-linear age-varying genetic effects
(Bsnpxage: Bsnpxagez) Were consistent with the nominal 95% level for meta-regression models
including a linear term of age but not for meta-regression including a quadratic term of age (Table S4

& S5).
Scenario 5: Data generated with a quadratic age-varying genetic effect

i) Estimation of main genetic effect (Bsyp) (i.€., the effect in a population with mean

age=0)

Both fixed and random meta-analyses gave biased estimates of the main genetic (Figure 2 A & B).
Meta-regression with only a linear age term also gave biased estimates of the main genetic effect (Figure
2C). Meta-regression including a quadratic term of age yielded unbiased estimates, but variability of

bias increased as age overlaps between studies increased (Figure 2D).

Cl coverage for the main genetic effect (i.e., the effect in a population of mean age=0) was

consistently below the nominal 95% level for all compared methods, across all proportions of
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overlapping ages between simulated studies. Meta-regression models including a quadratic term of age

demonstrated the highest Cl coverage (Table S3).

i) Estimation of age-varying genetic effect (Bsnpxage: Bsnpxage?)

Meta-regression models including only a linear term of age gave biased estimates of the linear
age-varying genetic effect (Bsnpxage), across all proportions of overlapping ages between simulated
studies. In contrast, the meta-regression model also including a quadratic term of age yielded unbiased
estimates of both the linear and non-linear age-varying genetic effects (Bsypxage) (Bsnpxage?), but
variance of estimates increased as proportions of overlapping ages between studies increased (Figure

3A-C).

Cl coverage for the linear and non-linear age-varying genetic effect (Bsnpxage: Bsnpxagez) Was

consistently slightly below the nominal 95% level in both meta-regression models (Table S4 & S5).
(Figure 2 & 3 here)
Comparison of Empirical SE and Mean SE

Across all scenarios and proportions of overlapping ages between studies and for all estimands
of interest, the random-effects meta-analysis and meta-regression including both a linear term and
guadratic term of age yielded comparable empirical and mean SEs (Table S3-S5). In contrast, the fixed-
effect meta-analysis produced mean SEs that were smaller than the empirical SEs, highlighting the

incompatibility of fixed-effect meta-analysis to our data-generating mechanisms.

The random-effects meta-analysis and meta-regression (both including a linear and quadratic
term of age) produced large mean SEs of the main genetic effect (Bsyp). Additionally, including high
age-diverse (no (0%) age overlaps in age ranges) studies in the meta-regression models produced more
precise estimates of the main genetic effect compared to inclusion of low age-diverse (100% overlap in

age ranges) studies (Figure 4).

( Figure 4 here)
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The meta-regression models including a linear term of age produced smaller mean SEs for both

the linear and non-linear age-varying effects (Bsnpxage: Bsnpxage2) compared with meta-regression

models including a quadratic term of age, as expected due to having fewer number of parameters
estimated (Figure 5). Moreover, including high age-diverse (no (0%) age overlaps in age ranges) studies
in the meta-regression models produced more precise estimates of the linear and non-linear age-varying

effects compared to inclusion of low age-diverse (100% overlap in age ranges) studies.
( Figure 5 here)
Influence of study characteristics

The Supplementary Material (Table S6 — S26) shows results from simulations varying the
number of studies included in the analysis (from 10 to 80), sample sizes of each cohort (from 1,000 to

10,000), study level error (u;) and individual level error (&;;). A small number of studies included in

the meta-regression models (including a linear or quadratic term of age) resulted in CI coverage below

the nominal 95% level for all estimands of interest (Bsyp,Bsnpxages Bsnpxage?): €veN when the meta-

regression models correctly reflected the data generating mechanisms. Increasing the number of
participants within each cohort resulted in decreased mean SEs in fixed effect meta-analysis, while the
results remained similar in random-effects methods. As expected, increasing study-level variability
resulted in increased mean SEs in all random-random effects methods, while mean SEs in fixed-effect
meta-analysis remained unchanged. Conversely, increasing individual-level variability resulted in
increased mean SEs in fixed effect meta-analysis and SEs remained unaffected in random-effects

methods.

Estimating the age-varying genetic association between the rs9939609 SNP at the FTO locus and

body mass index (BMI)

Detailed information about the effect sizes used in the meta-analysis and meta-regression can
be found in Supplementary Table S2. When we applied fixed-effect meta-analysis, a constant negative
association (B=-0.05, 95%CIl: -0.06 to -0.03) between each additional minor allele (A) of rs9939609

and BMI was estimated. As fixed-effect meta-analysis is a weighted average of all studies, the estimated
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genetic effect is highly influenced by the fact that most of the largest studies are in early ages, therefore
if a different selection of studies was used a different effect may have been estimated. In contrast, when
we applied meta-regression, we observed an age-varying association: each additional minor allele (A)
of rs9939609 was inversely associated with BMI at ages 0 to 3, and positively associated with BMI at
ages 5.5 to 13 (Figure 6). The percentage of variation between studies that can be attributed to
heterogeneity rather than chance in fixed-effect meta-analysis was substantial (1> = 76.9%), while
adjusting for cubic age using meta-regression reduced the between study heterogeneity (12 = 28.3%)
(Table S27). Lastly, the association estimated using meta-regression was similar to the association
described in the study we extracted summary data from (5). In that study, individual participant data
were utilised to model the median BMI curves of each genotype using the LMS method, and it was

observed that carriers of minor alleles (A) showed lower BMI in infancy and higher in childhood.
(Figure 6 here)
DISCUSSION

In this study, we compared the performance of meta-regression and meta-analysis in accurately
estimating main and age-varying genetic effects (i.e., SNP-age interactions) from simulated and real
cross-sectional GWAS studies. Our results demonstrated that fixed-effect and random-effects meta-
analyses accurately estimate genetic effects when these are not moderated by age but not when age-
varying genetic effects exist. This is because when there is age-moderation of genetic effects, the fixed
or random-effects meta-analyses estimate the average effect across the (weighted) age distribution of
the studies included, and these estimates are heavily influenced by the amount of data included at each
age. In contrast, meta-regression produces unbiased estimates of both the main genetic effects and the
age-varying genetic effects, regardless of whether age is a moderator or not. For example, in our real
data analysis meta-analysis suggested an inverse association in children aged 0 to 13 years, whereas
meta-regression correctly revealed an inverse association in early childhood (0 to 3 years),with this
changing to a positive association between age 5.5 and 13 years. However, applying meta-regression
when there are no age-varying genetic effects will produce less precise estimates, as more parameters
will be estimated.
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Exploring age-varying genetic effects in GWAS is important for various reasons. Firstly, it
could help to better characterise the extent to which genetic variants which have already been associated
with traits in a cross-sectional GWAS also influence change in that phenotype over time. For example,
the FTO gene has been consistently reported to be associated with BMI and adiposity related traits, and
there is evidence to suggest that this association may be time dependent (17 ,18). More specifically, a
longitudinal cohort study reports association of the FTO gene with BMI during childhood and up to 20
years of age, when this association starts to get weaker with increasing age (4). Secondly, it could
contribute to identifying novel genetic variants, which may be associated with traits only in specific
time periods during the life course. For instance, the LEPR locus has been associated with BMI in
infancy and it is not linked with adult BMI, suggesting that its effect is no longer present in adulthood
(20 ,21). Therefore, exploring age-varying genetic effects could contribute to identifying novel genetic
variants associated with age of onset, development of traits over time, and disease progression. Thirdly,
the increased number of GWAS and the public availability of their results, has increased the popularity
of two-sample MR studies, where the effect estimates of the genetic variants of exposure and outcome
are extracted from different GWAS (8), allowing estimation of causal effects without requiring the
exposure and outcome to be measured in the same participants. The causal effects estimated by MR are
often interpreted as “lifetime causal effects of exposures on outcomes”. This interpretation has recently
been challenged. More specifically, when the association between genetic variants and exposure is time-
varying, then the estimated causal effect might not reflect the lifetime causal effect (22). Therefore,
exploring and accurately estimating age-varying genetic effects could help in better characterising

causal relationships when the exposure of interest is time-varying.

Even though GWAS commonly include age-diverse samples, meta-regression is rarely used to
explore the differences in SNP-phenotype associations due to age. We have identified only two studies
that applied meta-regression to account for heterogeneity introduced due to age. A GWAS of bone
mineral density (N=30 studies with a total 66,628 participants) applied meta-regression by stratifying
the participants in each study into subgroups based on age and adjusting for the median age of each

subgroup (13). Two loci (in ESR1 and RANKL) demonstrated age-varying genetic effects, with stronger
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associations in older age groups. A GWAS of blood pressure traits (N=9 studies and 55,796
participants) applied meta-regression and adjusted for median age of each contributing study; it
identified 9 genetic variants with age-varying effects. SNPs located in CASZ1, EHBP1L1, and GOSR2,
demonstrated the largest age-dependent effects, with the effect alleles increasing blood pressure traits

in the younger ages and decreasing them in the older (14).

Meta-regression offers a feasible analytic tool to estimate age-varying genetic effects in the
framework of GWAS. Similar to many statistical methods, clear research question and justification for
applying meta-regression is necessary a priori and careful consideration must be given regarding the
data needed. Meta-regression requires only summary level data for the effect of each SNP on the
outcome within each study and the median/mean age of participants in each study. As many GWAS on
various traits and diseases have already been published and their summary level data are often publicly
available, meta-regression maximizes the value of already existing studies to explore age-varying
genetic effects. However, it is very often the case that most GWAS consortia provide summary level
data of each SNP across studies, but often not by study. For example, in our applied example we
originally planned to use publicly available summary data from GWAS consortia but were unable to
find any that provided summary data by study. Future GWAS should therefore aim to publish study
specific summary results and information about the median/mean age as well as the age range of
participants to enable meta-regression. Moreover, our simulation study suggests that consideration
should be given to the number of studies and the age-diversity between the studies included in the meta-
regression. In Figure 7, we provide guidance regarding these two parameters. When the number of
studies included in the meta-regression is low and the age-diversity between samples low, meta-
regression has limited power to estimate age-varying genetic effects. Therefore, researchers will need
to either include more studies of age-diverse samples or estimate age-varying genetic effects using
longitudinal studies. However, when the number of studies included in the meta-regression is high and
the age-diversity moderate to high, then meta-regression should be considered as the main analytical
approach in GWAS. Lastly, it is important to carefully select whether the application of a linear or non-

linear meta-regression is appropriate, as over-misspecification of the model could lead to below nominal
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ClI coverage and under-specification could lead to biased estimates. Information about the effect of a
SNP on a phenotype, in relation to age, can be obtained by smaller longitudinal studies, where this

relationship can be investigated.

(Figure 7 here)

Our study has limitations that should be considered. Even though we explored a wide range of
plausible scenarios in our simulations, we have inevitably not explored all possible real-world scenarios.
For example, further work would be needed to investigate the applicability of our results in cases where
the trait of interest is binary/categorical or in cases where the sample size of studies differs and this
differentiation is age related (e.g., smaller sample sizes in studies with older participants compared to
studies with younger participants). Additionally, we have only investigated the applicability of meta-
regression in estimating the association between the genetic effects and quadratic function of age (non-
linear age-varying genetic effects). Meta-regression could be easily extended to accommodate higher

degree polynomials and splines.

CONCLUSIONS

Fixed-effect and random-effects meta-analysis that are typically used to synthesize genetic
effects from multiple GWAS produce biased estimates of the main genetic effect (i.e., the genetic effect
in a population of mean age=0) genetic effects change with age. Correctly specified meta-regression
can provide unbiased estimates of the main and age-varying genetic effects using summary level data,

with a large number of studies covering a range of ages.
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TABLES

Table 1. Equations underlying the phenotype generating mechanism for each simulated scenario and parameter values for ‘Base case scenario’.

Simulated scenarios

Scenario 1 Yij = Bo + Bage X ageij + (Bsyp + ;) X SNP;j + €5

Scenario 2 Yij = Bo + Bage X ageij + (Bsnp + u;) X SNP;j + Bsypxage X ageij X SNP;j + &;;

Scenario 3 Yij = Bo + Bage X ageij + Pagez X agel; + (Bsp + 1)) X SNP;j + &

Scenario 4 Yij = Bo + Bage X age;j + Bagez X ageizj + (Bsnp + 1) X SNP;j + Bsnpxage X ageij X SNP;j; + &5
Scenario 5 Y;j = Bo + Bage X ageij + Bygez X agefi + (Bsyp + u;) X SNP;j +

+Bsnpxage X ageij X SNP;j + Bsypxage? X agef; X SNP;j + &

Parameter Value Interpretation

Bo 25 Baseline mean value of phenotype when age;; = 0 and SNP;; = 0
Bage 0.010 Effect of age on phenotype

age;j ~U (min age, max age)  Age of participant i in study j

Bsnp 15 Effect of genetic variant on phenotype (main genetic effect)

SNP;; 0,1,2 Number of alleles of a genetic variant for participant iin study j
Bsnpxage 0.020 Age varying-genetic effect on phenotype (linear interaction term)
Bsnpxage? 0.001 Non-linear age-varying genetic effect on phenotype (non-linear interaction term)
Bage? 0.001 Non-linear effect of age on phenotype

E;j ~N(0,1) Within study sampling error

Uj ~N(0,1) Between study sampling error

jth study j=(1, 2, ... ,40), ith participant i = (1, 2, ..., 1000)
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Figure 1. Scatter plot of age of each participant within each study to show age overlap.

24


https://doi.org/10.1101/2023.01.25.23284845
http://creativecommons.org/licenses/by/4.0/

A Fixed-effect MA

B Random-effects MA

P 0.01 047 0.01 047 Bias A 0.01 047 0.01 0.47 Bias
( 0.005) ( 0.005) ( 0.005) ( 0.005) 25 ( 0.005) ( 0.005) (0.005) ( 0.005) 25
75% | 001 06 001 06 f: . 0.01 06 001 06 f:
( 0.005) ( 0.005) ( 0.005) ( 0.005) '|’o ( 0.005) ( 0.005) ( 0.005) ( 0.005) ‘1'0
g - 0.01 085 0.01 0.65 05 g . 0.01 085 0.01 0.65 05
s ( 0.005) ( 0.005) ( 0.005) ( 0.005) 4 s ( 0.005) ( 0.005) (0.005) ( 0.005) 00
< T - 05 < < 05
2858 0.01 3 m ; 0.01 o’“ o . 10 268 | 0.01 0.3‘ - 0.01 0.69 I - 10
(0.005) (0.005) (0.005) (0.005) 05 ( 0.005) ( 0.005) ( 0.005) ( 0.005) P
o] 0.01 07 0.01 07 z8 o] 0.01 07 0.01 07 A
‘ ( 0.005) (0.005) ( 0.005) ( 0.005) 25 ( 0.005) ( 0.005) ( 0.005) ( 0.005) 25
1 2 3 4 5 1 2 3 4 5
Scenario Scenario
c Meta regression (linear term of age) D Meta regression (non - linear term of age)
ik 0 0 0 0 062 oA 003 -0.03 -0.03 -0.03 0 Bias
( 0016) ( 0.016) ( 0.016) ( 0016) (0016) ( 0.057) ( 0.057) ( 0.057) ( 0.057) ( 0.057) 25
- 0 0 0 0 7551 0.02 -0.02 -0.02 0.02 003 f:
( 0013) ( 0.013) ( 0.013) ( 0013) (0.035) ( 0.035) (0.035) ( 0.035) { 0.035) '1'0
g _— 0 0 0 0 g 001 -0.01 -0.01 001 0.02 05
H ( 0012) ( 0.012) ( 0012) ( 0.012) (0031) (0.031) (0.031) ( 0.031) (0.031) 00
< 05
0 0 0 0 001 -0.01 -0.01 -0.01 001
| 10
o (0012)  (0012)  (0012)  (0012) o (0.03) (003) (0.03) (0.03) (0.03) = bes
ox 0 0 0 0 o] 001 -0.01 0.01 001 001 I i
| ( 0.013) ( 0.013) ( 0.013) ( 0013) (003) (0.03) ( 0.03) ( 003) (003) 25
: 2 3 p 5 | : 2 3 p 5
Scenario Scenario

Figure 2. Heat maps displaying the absolute bias (Monte Carlo standard error) for each method, scenario and age overlap for the main genetic effect

(i.e., the genetic effect in a population of mean age=0) ( Bsyp) ( N =1,000). MA: Meta-analysis

25


https://doi.org/10.1101/2023.01.25.23284845
http://creativecommons.org/licenses/by/4.0/

A Meta regression (linear term of age) g Meta regression (non - linear term of age)
P 02x107% | 02x107% | 019%x107%)|0.18x 1072 160% - 3.09x 1072 | 3.08x 103 B.11x107® [3.11Xx 107 3.12x1073
{0.68 x 1073) [(0.68 x 1073) [(0.68 x 10~3)(0.68 x 10~3) (5.30 X 107%)| (5.30 x 10~2) {5.30 x 107%)|(5.30 x 1023) (5.29 X 1073)
Bias Bias
=5 012x107% | 0.12x10-2 | 0.12x107?|0.12x 10-2 010 e 1.69%x10-3| 1.68x10~3 [1.69%x 1073 | 1.68x10% 3.12x 1073 010
(0.41x107%) | (0.41 X 107%) | (0.41 X 103)0.41 X 1073) .0.08 (2,56 x 1073) [ (2.56 x 107%) [2.56 x 107%)[(2.56 X 107%) (2.55 x 1073) 0.08
-0.06 -0.06
g 004 & -0.04
§ 50% 0.11x10~2 | 0.11x 1072 0.11x10720.11 x 10~2 -0.02 E 50% 1.37%x10°3 | 1.36 x10~? h.37x10-2 | 1.36 x10-2 2.08 X 10-2 -0.02
; (0.36 x 107%) | (0.36 x 1072) [ (0.36 x 1072{(0.34 x 10-3) 0.00 ; (216 x 107%) [ (2.16 X 1072) [2.16 X 107%)| (2.16 X 1073)(2.16 x 1073) 0.00
< 0.02 < 0.02
0.04 ~ 004
0.11x107® | 011x107* | 011X 107%0.11x107® ol 124x1073 | 1.23x107% fl.24x 1073 | 123x107% 137x 1072 -
5% ! 0.08 25% S sat 0.08
(0.34 x 107%) | (0.34 x 1073) | (0.34 x 10-3¥0.34 x 107%) ’ (2.0.3x 107%) (2.03 x 103) [2.03 x 1073 (2.03 x 1073)(2.03 X 10~3) :
0.10 0.10
- 011x107% | 011x 107 |0.11x1072 |0.11x 1072 - 116 x1073 | 116 x 103 [L.16 X 1073 | 116 x 1072 1.16 x 103
(0,34 x 1072) | (0.34 x 107%) [(0.34 x 107%)[(0.34 x 107%) (1.99x 1073) [(1.99 X 1073) [1.99 x 1073)| (1.99 x 1072)(1.99 x 10-3)
1 2 3 4 1 2 3 4 5
Scenario Scenario

Figure 3A-B. Heat maps displaying the absolute bias (Monte Carlo standard error) for each method, scenario and age overlap for the linear and non-

linear age-varying genetic effect (Bsnpxage » Bsnpxage2) ( N =1,000). Squares represent scenarios where Bsypxage = 0.02and Bgypxagez = 0.001.

In other scenarios Bsnpxage = 0 and Bsnpxagez = 0.

26


https://doi.org/10.1101/2023.01.25.23284845
http://creativecommons.org/licenses/by/4.0/

— -0.06%10"% —0.06 %10~ —0.06x 10°2 —0.06 x 10-%| 0.26 % 1072
(011x107%) (011x107%)  (011x107%)  (011x107%) | (0.11x107%)
—0.03% 107 -0.03x107% —0.03x107° —0.03 % 107%| -0.03 x 1072
75%
(0.04 x 1073y (0.04x107%) (004 x 1075 (0.04 x 1073y | (0.04 x 1077)
Bias
5 Moo
e
g 500 —002x10°% -002x10~? —po2x107° —0.02 x 10~? | —0.02 x 1072 —5.0x 1074
o 2U%
@ (0,03 107%) (003 %107 (0.03 % 107H {003 x 107%)| (0.03 % 1075 0
[=:]
q: 101073

- 5.0x 1074

6% —002x 1073 —0.02x107% —0.02x1073 —0.02 % 1073 —0.02 x 102
bl ]
(0.03x107%) (0.03x107%)  (0.03x107%) (0.03 % 107 (0.03 x107%)
0% —002x 107 —002x107% -0.02x 107  —002x107%| —0.02x107F
#0

(003x107%) [003x107%) (0.03x 1073 (0.03x 107%)| (0.03 x 107%)

1 2 3 4 5
Scenario

Figure 3C. Heat maps displaying the absolute bias (Monte Carlo standard error) for each method, scenario and age overlap for the linear and non-linear

age-varying genetic effect (Bsnpxage » Bsnpxagez) (N =1,000). Squares represent scenarios where Bsypxage = 0.02and Bgnypxagez = 0.001. In other

scenarios Bsnpxage = 0 and Bsypxagez = 0.
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Figure 4. Estimated main genetic effect (i.e., the genetic effect in a population of mean age=0) (Bsyp) and 95% confidence intervals. (A)

Fixed-effect meta-analysis (B) random-effects meta-analysis, (C) Random-effects meta-regression including a linear term of age (C)
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D) Random effects meta - regression (quadratic term of age)
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Random-effects meta-regression including a quadratic term of age.
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Figure 5. (A) and (B) show the estimated linear age-varying genetic effects (Bsnpxage ) and their 95% confidence intervals using meta-regression including
a linear and a quadratic term by age overlap between studies, respectively. (C) shows the estimated non-linear age-varying genetic effects (Bsypxage2) and

their 95% confidence intervals using meta-regression including a quadratic term by age overlap between studies.
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Figure 6. Estimated genetic association between rs9939609 SNP at the FTO locus and BMI, as estimated using fixed-effect meta-analysis and meta-regression

adjusting for cubic term of age. Number of studies=8, N=19,725
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* Meta-regression could be used as a

sensitivity analysis.
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Figure 7. Recommendations for the application of meta-regression in estimating age-varying genetic effects in GWAS,

based on the number of studies included and the age-diversity between studies.
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