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ABSTRACT 

Background 

Fixed-effect meta-analysis has been used to summarize genetic effects on a phenotype across 

multiple Genome-Wide Association Studies (GWAS) assuming a common underlying genetic effect. 

Genetic effects may vary with age, therefore meta-analysing GWAS of age-diverse samples could be 

misleading. Meta-regression allows adjustment for study specific characteristics and models 

heterogeneity between studies. The aim of this study was to explore the use of meta-analysis and meta-

regression for estimating age-varying genetic effects on phenotypes. 

Methods 

With simulations we compared the performance of meta-regression to fixed-effect and random 

-effects meta-analyses in estimating (i) main genetic effects and (ii) age-varying genetic effects (SNP 

by age interactions) from multiple GWAS studies under a range of scenarios. We applied meta-

regression on publicly available summary data to estimate the main and age-varying genetic effects of 

the FTO SNP rs9939609 on Body Mass Index (BMI). 

Results 

Fixed-effect and random-effects meta-analyses accurately estimated genetic effects when these 

did not change with age. Meta-regression accurately estimated both the main genetic effects and the 

age-varying genetic effects. When the number of studies or the age-diversity between studies was low, 

meta-regression had limited power. In the applied example, each additional minor allele (A) of 

rs9939609 was inversely associated with BMI at ages 0 to 3, and positively associated at ages 5.5 to 13. 

This is similar to the association that has been previously  reported by a study that used individual 

participant data. 

Conclusions 

  GWAS using summary statistics from age-diverse samples should consider using meta-

regression to explore age-varying genetic effects.  
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KEY MESSAGES 

• Meta-analysis has been used to summarize genetic effects on a phenotype across multiple 

Genome-Wide Association Studies (GWAS) assuming a common underlying genetic effect for 

all studies. However, genetic effects may vary with age, therefore meta-analysing GWAS of 

age-diverse samples could produce misleading results. 

• Meta-regression could be used to relate observed between-study heterogeneity to study 

characteristics such as age. Therefore, meta-regression could be used to combine summary level 

GWAS data to provide evidence for any age-varying genetic effects. 

• This simulation study shows that when genetic effects vary with age, meta-regression provides 

unbiased estimates of main and age-varying genetic effects. The precision of the estimates 

depends on the number of studies included, and the diversity in age between them. 

• The applied example using publicly available summary data, supported the simulation study. 

By applying meta-regression, we observed a previously reported age-varying association 

between each additional minor allele (A) of rs9939609 and BMI; an inverse at ages 0 to 3 and 

a positive association at ages 5.5 to 13.Similar association has been previously  reported by   a 

study that used individual participant data. 
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INTRODUCTION 

 Genome–wide association studies (GWAS) test associations of millions of single nucleotide 

polymorphisms (SNPs) across the genome with a phenotype. As SNP effects are generally small, large 

sample sizes are required for adequate statistical power. This is commonly achieved through fixed effect 

meta-analysis of summary genetic effects across several GWAS, which increases sample size and 

statistical power without sharing individual participant data.  

Fixed-effect meta-analysis, which assumes a common true underlying genetic effect for all 

studies (1), has been favored over random-effects meta-analysis, mostly due to its increased statistical 

power (2). Fixed-effect meta-analysis ignores heterogeneity of genetic effects between studies, and it 

has been suggested that this could introduce high rates of false positive and/or false negative findings 

(2 ,3). For example, genetic effects may vary with age (4 ,5). Therefore, meta-analysing GWAS studies 

of age-diverse samples with a fixed-effect model, without considering potential heterogeneity of genetic 

effects due to age, could fail to identify clinically important changes of genetic risk with age. Moreover, 

ignoring age-varying genetic effects in GWAS may lead in spurious results in other methods that use 

GWAS summary data as input to estimate: genetic correlation between traits (LD score regression) (6), 

genetic predisposition to a trait (Polygenic Risk Scores) (7) and the causal effect of an exposure on an 

outcome (Two-sample Mendelian randomization) (8). 

An approach recommended in meta-analysis of Randomized Controlled Trials (RCTs)  to 

estimate treatment-covariate interactions (e.g., treatment-age interactions) is a two-stage approach, 

where the interaction is estimated within each study, and these interactions are then meta-analysed (9). 

This approach would have limited application in GWAS as most studies do not perform or report an 

interaction analysis (e.g., SNP-age interaction effects). 

An alternative method that could be used is meta-regression, which uses summary data and  

relates observed between-study heterogeneity to study characteristics and investigates the impact of 

moderator variables on estimated genetic effect sizes (10 ,11). Meta-regression has not been widely 

applied in RCTs due to limited statistical power, related to both the size of the individual studies and 
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the number of studies included (12).  A search of the literature and GWAS data bases in July 2022, 

suggests that meta-regression has been applied in only two GWASs to explore age related differences 

between included studies. In both cases, genetic variants with age-varying genetic effects were 

identified (13 ,14). We have not identified published research exploring the conditions under which 

meta-regression outperforms meta-analysis when age-varying genetic effects exist.  

The aim of this study was to explore the use of meta-analysis and meta-regression to examine 

age-varying genetic effects on phenotypes, using summary GWAS data. We compared the performance 

of meta-regression and fixed-effect and random-effects meta-analysis in estimating (i) main genetic 

effects (i.e., the effect at age 0) and (ii) age- varying genetic effects (SNP by age interactions) using 

multiple simulated cross-sectional GWAS studies. We simulated phenotype-genotype associations 

under a range of data generating processes, varying the number of  studies and sample sizes, the overlap 

in the age range of study participants (i.e., age-diversity), and the sampling variability within and 

between studies. Subsequently, we applied meta-analysis and meta-regression to estimate the age-

varying genetic associations between the rs9939609 SNP at the FTO locus and body mass index (BMI) 

across early life-course, using publicly available summary data, and compare these to estimates from 

previous individual-participant analyses. 

METHODS 

Data generating mechanisms for simulations 

 Participant age (𝑎𝑔𝑒𝑖𝑗 for participant 𝑖 in study 𝑗), drawn from a uniform distribution, was set 

between 10 and 59 years. A single SNP with a large effect size, 𝑆𝑁𝑃𝑖𝑗, was simulated with a minor 

allele frequency (MAF) of 0.2 and the number of risk alleles (0,1,2) was drawn from a binomial 

distribution. We generated the outcome phenotype (𝑌𝑖𝑗) to be dependent on: Scenario 1.  age and 

genotype; Scenario 2. age and genotype, with an interaction between age and genotype (linear 

interaction term); Scenario 3. age, genotype and a quadratic term of age; Scenario 4. genotype, age and 

a quadratic term of age, with an interaction between age and genotype; Scenario 5. genotype, age and 

a quadratic term of age, where genotype interacts with age and quadratic age (non-linear interaction 
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term). Equations for the phenotype generating scenarios and the parameter values are presented in Table 

1. We assumed that the effect of age on phenotype (𝛽𝑎𝑔𝑒) was identical for each study but that the effect 

of genotype varied randomly across studies (𝛽𝑆𝑁𝑃 + 𝑢𝑗), corresponding to a random-effects meta-

analysis model for the genotype-phenotype association. As a “base case” scenario, we used 1SD within 

and between study variability ( 𝜀𝑖𝑗~𝑁(0,1) and 𝑢𝑗~𝑁(0,1)) in the data generating mechanisms, with 

40 cross-sectional studies each with sample size 𝑁𝑗 = 1,000. 

(Table 1 here) 

Estimating study-specific genotype-phenotype associations 

Within each cross-sectional study, we used linear regression  to estimate the genotype-

phenotype association. As is usual in GWAS studies, models were adjusted only for age, and no further 

adjustments were made to account for non-linearity and SNP-age interactions. Equation (1) describes 

the regression models: 

𝑌𝑖𝑗 = 𝛽0𝑗 + 𝛽1𝑗 × 𝑆𝑁𝑃𝑖𝑗 + 𝛽2𝑗 × 𝑎𝑔𝑒𝑖𝑗 + 𝜀𝑖𝑗        (1) 

We collected the estimated genotype-phenotype effect estimate (�̂�1𝑗) and its standard error (𝑆𝐸(𝛽1𝑗)̂ ) 

from each study, in addition to the mean age ( 𝑎𝑔𝑒̅̅ ̅̅ ̅j) of participants in each study. 

Description of compared methods 

Meta-analysis 

 Fixed-effect meta-analysis assumes that all studies draw a (random) sample from the same 

underlying population and hence share a common true effect size for each SNP. The pooled meta-

analysis estimates the population average effect (15). The estimated effect for a given SNP in each study 

is:  

�̂�1𝑗 = 𝛽𝑆𝑁𝑃 +  𝜂𝑗, 𝜂𝑖  ~ 𝑁(0, 𝑠𝑗
2)  (2) 

 

 . CC-BY 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted January 28, 2023. ; https://doi.org/10.1101/2023.01.25.23284845doi: medRxiv preprint 

https://doi.org/10.1101/2023.01.25.23284845
http://creativecommons.org/licenses/by/4.0/


 

8 
 

where,  �̂�1𝑗 the genotype-phenotype effect in the jth study, 𝛽𝑆𝑁𝑃 is the common genetic effect, and 𝜂𝑗 

is random error describing the sampling variability within each study (with variance 𝑠𝑗
2 in study j, i.e., 

the variance of �̂�1𝑗). 

Random-effects meta-analysis allows the true genetic effect size to differ across studies. Here, 

𝛽𝑆𝑁𝑃 reflects an estimate of the average effect across study populations. The estimated effect for a given 

SNP in each study is: 

�̂�1𝑗 = 𝛽𝑆𝑁𝑃 + 𝜉𝑗 + 𝜂𝑗 , 𝜂𝑗  ~ 𝑁(0, 𝑠𝑗
2) (3) 

 𝜉𝑗 ~𝑁(0, 𝜏2)  

                     

where, 𝛽𝑆𝑁𝑃 is the mean genetic effect, 𝜉𝑗 represents heterogeneity, i.e. the study-specific deviation 

from the mean genetic effect (with variance 𝜏2 across studies, i.e. the between study variability), and 

𝜂𝑗 is random error describing the sampling variability within each study (with variance 𝑠𝑗
2 in study j, 

i.e. the variance of 𝛽1�̂�). Further information about the estimation of combined genetic effects in fixed-

effect and random-effects meta-analysis can be found in Supplementary Note S1. To estimate the 

between-study variance 𝜏2, we used restricted maximum likelihood (REML) method (16). 

Meta-regression 

Random-effects meta-regression extends the random-effects meta-analysis model as follows: 

�̂�1𝑗 = 𝛽𝑆𝑁𝑃 +  𝛽𝑆𝑁𝑃×𝑎𝑔𝑒𝑎𝑔𝑒̅̅ ̅̅ ̅j +  𝜉𝑗 + 𝜂𝑗,   𝜂𝑗 ~ 𝑁(0, 𝑠𝑗
2)                      (4) 

 𝜉𝑗  ~𝑁(0, 𝜏𝑟𝑒𝑠
2  )  

and could also be further extended to include non-linear terms such as:  

�̂�1𝑗 = 𝛽𝑆𝑁𝑃 +  𝛽𝑆𝑁𝑃×𝑎𝑔𝑒𝑎𝑔𝑒̅̅ ̅̅ ̅j + 𝛽𝑆𝑁𝑃×𝑎𝑔𝑒2𝑎𝑔𝑒̅̅ ̅̅ ̅j
2 +  𝜉𝑗 + 𝜂𝑗,       𝜂𝑗  ~ 𝑁(0, 𝑠𝑗

2) (5) 

 𝜉𝑗  ~𝑁(0, 𝜏𝑟𝑒𝑠
2  )  
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where, 𝛽𝑆𝑁𝑃×𝑎𝑔𝑒 is the difference in the mean effect of a given SNP for each one year increase in age, 

𝛽𝑆𝑁𝑃×𝑎𝑔𝑒2 is the difference in the mean effect of a given SNP for each one year difference in the square 

of age and 𝜏𝑟𝑒𝑠
2  is the residual heterogeneity after accounting for the age effect(s). Meta-regression 

estimates these two parameters (�̂�𝑆𝑁𝑃×𝑎𝑔𝑒 , �̂�𝑆𝑁𝑃×𝑎𝑔𝑒2) and an intercept term (�̂�𝑆𝑁𝑃) representing the 

effect of genotype on phenotype for age = 0 (referred to as the main genetic effect). To estimate the 

between-study variance 𝜏𝑟𝑒𝑠
2  we used REML (16). 

Implementation 

 For each scenario, we ran 1,000 iterations. We varied i) study sample sizes from 1,000 to 

10,000, ii) the number of studies from 10 to 80 and iii) the overlap of age distributions across studies 

(i.e., age-diversity) from no overlap (0%) to complete overlap (100%) in 25% increments. Figure 1 

depicts the overlap of age distributions between studies and further information about the age ranges of 

each study can be found in the Table S1. Lastly, iv) we varied the within and between study variability 

from 1 (𝜀𝑖𝑗~𝑁(0,1) and  𝑢𝑗~𝑁(0,1)) to 3 (𝜀𝑖𝑗~𝑁(0,32) and  𝑢𝑗~𝑁(0,32)).   

(Figure 1 here) 

Estimands and performance measures 

 The estimands of interest were the main genetic effect (βSNP) (the effect if the population had 

mean age=0), the linear age-varying genetic effect (βSNP×Age), the non-linear age-varying effect 

(βSNP×𝐴𝑔𝑒2), and the standard errors (SE) of these parameters across simulations. 

  We present five performance measures: the mean estimate, the bias (the deviation of the 

estimated parameter from the simulated value), the coverage of the 95% confidence interval (CI) (the 

proportion of simulated datasets for which the 95% confidence interval included the simulated value), 

the empirical standard error (Emp SE), and the mean standard error (Mean SE).  
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Estimating the age-varying genetic association between the rs9939609 SNP at the FTO locus and 

body mass index (BMI) 

We used a real data example to illustrate the application of meta-analysis and meta-regression 

in estimating age-varying genetic effects using summary level association statistics. An age-varying 

association between the rs9939609 SNP at the FTO locus and body mass index (BMI) has been 

previously demonstrated (4 ,5 ,17 ,18). We extracted summary level data for the association between 

rs9939609 and BMI from a study investigating the effect of this genetic variant on BMI from infancy 

to late childhood (5). The effect of rs9939609 on BMI was estimated in 8 cohorts (N=569 to 7,482) at 

up to 10 ages within each cohort from 0 to 13 years. Detailed information about effect sizes within each 

cohort at each time point can be found in Supplementary Table S2.   

We estimated the association between rs9939609 SNP and BMI using fixed-effect meta-

analysis and meta-regression adjusting for a cubic term of age, which can be written as follows: 

β̂(β𝑗) = 𝛽𝑆𝑁𝑃 +  𝛽𝑆𝑁𝑃×𝑎𝑔𝑒𝑎𝑔𝑒̅̅ ̅̅ ̅j + 𝛽𝑆𝑁𝑃×𝑎𝑔𝑒2𝑎𝑔𝑒̅̅ ̅̅ ̅j
2 + 𝛽𝑆𝑁𝑃×𝑎𝑔𝑒3𝑎𝑔𝑒̅̅ ̅̅ ̅j

3  + 𝜉𝑗 + 𝜂𝑗,  𝜂𝑗  ~ 𝑁(0, 𝑠𝑗
2) (6) 

 𝜉𝑗 ~𝑁(0, 𝜏𝑟𝑒𝑠
2  )  

 The choice to adjust for a cubic term of age was made based on evidence suggesting that each 

additional minor allele (A) of this variant is inversely associated with BMI from ages 0 to 3 and 

positively associated from ages 5.5 to 13 (5). Effect sizes were estimated at multiple time points within 

the same cohorts, so we used generalized weights to adjust standard errors for the sample overlap (19). 

RESULTS 

Scenarios 1 & 3: Data generated with no age-varying genetic effect 

i)  Estimation of main genetic effect (𝜷𝑺𝑵𝑷) (i.e., the effect in a population with mean 

age=0) 

As expected, as there was no age-varying genetic effect, both the fixed-effect and the random 

effects meta-analyses yielded unbiased estimates of the main genetic effect (βSNP) across all proportions 

of overlapping ages between simulated studies (Figure 2 A & B), although CI coverage was below the 
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nominal 95% level for the fixed-effect meta-analysis. Similarly, meta-regression models including 

either a linear or a quadratic term of age demonstrated negligible bias for the main genetic effect (Figure 

2 C & D), but CI coverage was slightly below the nominal level for models including a quadratic term 

of age (Table S3). 

ii) Estimation of  age-varying genetic effects (𝜷𝑺𝑵𝑷×𝑨𝒈𝒆, 𝜷𝑺𝑵𝑷×𝑨𝒈𝒆𝟐) 

Both meta-regression models (including a linear or quadratic term of age) yielded unbiased 

(i.e., mean of zero) estimates of the linear age-varying genetic effect (βSNP×Age) (Figure 3A & B) and 

the non-linear age-varying genetic effect (βSNP×Age2) (Figure 3C). However, for both estimands 

(βSNP×Age , βSNP×Age2), the values estimated by the meta-regression models (erroneously including a 

linear or a quadratic term of age) were highly variable as seen by the large Monte Carlo SEs of bias in 

(Figure 3A-C). As the proportion of overlapping ages between simulated studies was increased, the 

variability of estimated values increased.  

CI coverage for the linear age-varying genetic effect (βSNP×Age = 0) was consistent with the 

nominal 95% level for meta-regression models including a linear term of age , CI coverage was below 

the nominal 95% level for the linear and non-linear age-varying genetic effect (βSNP×Age, βSNP×Age2) 

in meta-regression models including a quadratic term of age  (Table S4 & S5). 

Scenarios 2 & 4: Data generated with a linear age-varying genetic effect 

i) Estimation of main genetic effect (𝜷𝑺𝑵𝑷) (i.e., the effect in a population with mean 

age=0) 

When there were linear age-varying genetic effects, both fixed and random-effects meta-analyses 

gave biased estimates of the main genetic effect, across all proportions of overlapping ages between 

simulated studies (Figure 2 A & B). Meta-regression models including a linear or quadratic term of age 

produced unbiased estimates of the main genetic effect (Figure 2 C & D). As the age overlap between 

studies increased, the meta-regression estimates were more variable, as seen by the large Monte Carlo 

SEs.  
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In both scenarios, CI coverage for the main genetic effect (i.e., the effect if the population had a 

mean age of 0) was consistently below the nominal 95% level for fixed-effect and random-effects meta-

analyses, across all proportions of overlapping ages between simulated studies. Meta-regression 

including a linear term of age yielded coverage of CIs consistent with the nominal 95% level. When the 

meta-regression included a quadratic term of age, coverage of CIs was consistently below the nominal 

95% level (Table S3). 

ii) Estimation of age-varying genetic effect (𝜷𝑺𝑵𝑷×𝑨𝒈𝒆, 𝜷𝑺𝑵𝑷×𝑨𝒈𝒆𝟐) 

Meta-regression estimates of the linear age-varying genetic effect (βSNP×Age) were unbiased in 

both meta-regression models (Figure 3A & B). Similarly, estimates of the non-linear age-varying 

genetic effect (βSNP×Age2 = 0) was unbiased in the meta-regression model including a quadratic term 

of age (Figure 3C). The variance of the estimated values increased as the proportion of overlapping 

ages between simulated studies increased. 

In both scenarios, CI coverage for the linear and non-linear age-varying genetic effects 

(βSNP×Age, βSNP×Age2)  were consistent with the nominal 95% level for meta-regression models 

including a linear term of age but not for meta-regression including a quadratic term of age (Table S4 

& S5).  

Scenario 5: Data generated with a quadratic age-varying genetic effect 

i) Estimation of main genetic effect (𝜷𝑺𝑵𝑷) (i.e., the effect in a population with mean 

age=0) 

Both fixed and random meta-analyses gave biased estimates of the main genetic (Figure 2 A & B). 

Meta-regression with only a linear age term also gave biased estimates of the main genetic effect (Figure 

2C). Meta-regression including a quadratic term of age yielded unbiased estimates, but variability of 

bias increased as age overlaps between studies increased (Figure 2D). 

CI coverage for the main genetic effect (i.e., the effect in a population of mean age=0) was 

consistently below the nominal 95% level for all compared methods, across all proportions of 
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overlapping ages between simulated studies. Meta-regression models including a quadratic term of age 

demonstrated the highest CI coverage  (Table S3). 

ii) Estimation of age-varying genetic effect (𝜷𝑺𝑵𝑷×𝑨𝒈𝒆, 𝜷𝑺𝑵𝑷×𝑨𝒈𝒆𝟐) 

Meta-regression models including only a linear term of age gave biased estimates of the linear 

age-varying genetic effect (βSNP×Age), across all proportions of overlapping ages between simulated 

studies. In contrast, the meta-regression model also including a quadratic term of age yielded unbiased 

estimates of both the linear and non-linear age-varying genetic effects (𝛽𝑆𝑁𝑃×𝐴𝑔𝑒), (βSNP×Age2), but 

variance of estimates increased as proportions of overlapping ages between studies increased  (Figure 

3A-C). 

CI coverage for the linear and non-linear age-varying genetic effect (βSNP×Age, βSNP×Age2) was 

consistently slightly below the nominal 95% level in both meta-regression models (Table S4 & S5).  

( Figure 2 & 3 here ) 

Comparison of Empirical SE and Mean SE 

Across all scenarios and proportions of overlapping ages between studies and for all estimands 

of interest, the random-effects meta-analysis and meta-regression including both a linear term and 

quadratic term of age yielded comparable empirical and mean SEs (Table S3-S5). In contrast, the fixed-

effect meta-analysis produced mean SEs that were smaller than the empirical SEs, highlighting the 

incompatibility of fixed-effect meta-analysis to our data-generating mechanisms. 

 The random-effects meta-analysis and meta-regression (both including a linear and quadratic 

term of age) produced large mean SEs of the main genetic effect (𝛽𝑆𝑁𝑃). Additionally, including high 

age-diverse (no (0%)  age overlaps in age ranges) studies in the meta-regression models produced more 

precise estimates of the main genetic effect compared to inclusion of low age-diverse (100% overlap in 

age ranges) studies (Figure 4). 

( Figure 4 here ) 

 . CC-BY 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted January 28, 2023. ; https://doi.org/10.1101/2023.01.25.23284845doi: medRxiv preprint 

https://doi.org/10.1101/2023.01.25.23284845
http://creativecommons.org/licenses/by/4.0/


 

14 
 

 The meta-regression models including a linear term of age produced smaller mean SEs for both 

the linear and non-linear age-varying effects (βSNP×Age, βSNP×Age2) compared with meta-regression 

models including a quadratic term of age, as expected due to having fewer number of parameters 

estimated (Figure 5). Moreover, including high age-diverse (no (0%)  age overlaps in age ranges) studies 

in the meta-regression models produced more precise estimates of the linear and non-linear age-varying 

effects compared to inclusion of low age-diverse (100% overlap in age ranges) studies. 

( Figure 5 here ) 

Influence of study characteristics 

 The Supplementary Material (Table S6 – S26) shows results from simulations varying the 

number of studies included in the analysis (from 10 to 80), sample sizes of each cohort (from 1,000 to 

10,000), study level error (𝑢𝑗) and individual level error (𝜀𝑖𝑗). A small number of studies included in 

the meta-regression models (including a linear or quadratic term of age) resulted in CI coverage below 

the nominal 95% level for all estimands of interest (𝛽𝑆𝑁𝑃,βSNP×Age, βSNP×Age2), even when the meta-

regression models correctly reflected the data generating mechanisms. Increasing the number of 

participants within each cohort resulted in decreased mean SEs in fixed effect meta-analysis, while the 

results remained similar in random-effects methods. As expected, increasing study-level variability 

resulted in increased mean SEs in all random-random effects methods, while mean SEs in fixed-effect 

meta-analysis remained unchanged. Conversely, increasing individual-level variability resulted in 

increased mean SEs in fixed effect meta-analysis and SEs remained unaffected in random-effects 

methods.  

Estimating the age-varying genetic association between the rs9939609 SNP at the FTO locus and 

body mass index (BMI) 

 Detailed information about the effect sizes used in the meta-analysis and meta-regression can 

be found in Supplementary Table S2. When we applied fixed-effect meta-analysis, a constant negative 

association (β= -0.05, 95%CI: -0.06 to -0.03) between each additional minor allele (A) of rs9939609 

and BMI was estimated. As fixed-effect meta-analysis is a weighted average of all studies, the estimated 
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genetic effect is highly influenced by the fact that most of the largest studies are in early ages, therefore 

if a different selection of studies was used a different effect may have been estimated. In contrast, when 

we applied meta-regression, we observed an age-varying association: each additional minor allele (A) 

of rs9939609 was inversely associated with BMI at ages 0 to 3, and positively associated with BMI at 

ages 5.5 to 13 (Figure 6). The percentage of variation between studies that can be attributed to 

heterogeneity rather than chance in fixed-effect meta-analysis was substantial (I2 = 76.9%), while 

adjusting for cubic age using meta-regression reduced the between study heterogeneity (I2 = 28.3%) 

(Table S27). Lastly, the association estimated using meta-regression was similar to the association 

described in the study we extracted summary data from (5). In that study, individual participant data 

were utilised to model the median BMI curves of each genotype using the LMS method, and it was 

observed that carriers of minor alleles (A) showed lower BMI in infancy and higher in childhood.  

(Figure 6 here) 

DISCUSSION 

In this study, we compared the performance of meta-regression and meta-analysis in accurately 

estimating main and age-varying genetic effects (i.e., SNP-age interactions) from simulated and real 

cross-sectional GWAS studies. Our results demonstrated that fixed-effect and random-effects meta-

analyses accurately estimate genetic effects when these are not moderated by age but not when age-

varying genetic effects exist. This is because when there is age-moderation of genetic effects, the fixed 

or random-effects meta-analyses estimate the average effect across the (weighted) age distribution of 

the studies included, and these estimates are heavily influenced by the amount of data included at each 

age. In contrast, meta-regression produces unbiased estimates of both the main genetic effects and the 

age-varying genetic effects, regardless of whether age is a moderator or not. For example, in our real 

data analysis meta-analysis suggested an inverse association in children aged 0 to 13 years, whereas 

meta-regression correctly revealed an inverse association in early childhood (0 to 3 years),with this 

changing to a positive association between age 5.5 and 13 years. However, applying meta-regression 

when there are no age-varying genetic effects will produce less precise estimates, as more parameters 

will be estimated. 
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 Exploring age-varying genetic effects in GWAS is important for various reasons. Firstly, it 

could help to better characterise the extent to which genetic variants which have already been associated 

with traits in a cross-sectional GWAS also influence change in that phenotype over time. For example, 

the FTO gene has been consistently reported to be associated with BMI and adiposity related traits, and 

there is evidence to suggest that this association may be time dependent (17 ,18). More specifically, a 

longitudinal cohort study reports association of the FTO gene with BMI during childhood and up to 20 

years of age, when this association starts to get weaker with increasing age (4). Secondly, it could 

contribute to identifying novel genetic variants, which may be associated with traits only in specific 

time periods during the life course. For instance, the LEPR locus has been associated with BMI in 

infancy and it is not linked with adult BMI, suggesting that its effect is no longer present in adulthood 

(20 ,21). Therefore, exploring age-varying genetic effects could contribute to identifying novel genetic 

variants associated with age of onset, development of traits over time, and disease progression. Thirdly, 

the increased number of GWAS and the public availability of their results, has increased the popularity 

of two-sample MR studies, where the effect estimates of the genetic variants of exposure and outcome 

are extracted from different GWAS (8), allowing estimation of causal effects without requiring the 

exposure and outcome to be measured in the same participants. The causal effects estimated by MR are 

often interpreted as “lifetime causal effects of exposures on outcomes”. This interpretation has recently 

been challenged. More specifically, when the association between genetic variants and exposure is time-

varying, then the estimated causal effect might not reflect the lifetime causal effect (22). Therefore, 

exploring and accurately estimating age-varying genetic effects could help in better characterising 

causal relationships when the exposure of interest is time-varying. 

Even though GWAS commonly include age-diverse samples, meta-regression is rarely used to 

explore the differences in SNP-phenotype associations due to age. We have identified only two studies 

that applied meta-regression to account for heterogeneity introduced due to age. A GWAS of bone 

mineral density (N=30 studies with a total 66,628 participants) applied meta-regression by stratifying 

the participants in each study into subgroups based on age and adjusting for the median age of each 

subgroup (13). Two loci (in ESR1 and RANKL) demonstrated age-varying genetic effects, with stronger 
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associations in older age groups. A GWAS of blood pressure traits (N=9 studies and 55,796 

participants) applied meta-regression and adjusted for median age of each contributing study; it 

identified 9 genetic variants with age-varying effects. SNPs located in CASZ1, EHBP1L1, and GOSR2, 

demonstrated the largest age-dependent effects, with the effect alleles increasing blood pressure traits 

in the younger ages and decreasing them in the older (14). 

Meta-regression offers a feasible analytic tool to estimate age-varying genetic effects in the 

framework of GWAS. Similar to many statistical methods, clear research question and justification for 

applying meta-regression is necessary a priori and careful consideration must be given regarding the 

data needed. Meta-regression requires only summary level data for the effect of each SNP on the 

outcome within each study and the median/mean age of participants in each study. As many GWAS on 

various traits and diseases have already been published and their summary level data are often publicly 

available, meta-regression maximizes the value of already existing studies to explore age-varying 

genetic effects. However, it is very often the case that most GWAS consortia provide summary level 

data of each SNP across studies, but often not by study. For example, in our applied example we 

originally planned to use publicly available summary data from GWAS consortia but were unable to 

find any that provided summary data by study. Future GWAS should therefore aim to publish study 

specific summary results and information about the median/mean age as well as the age range of 

participants to enable meta-regression. Moreover, our simulation study suggests that consideration 

should be given to the number of studies and the age-diversity between the studies included in the meta-

regression. In Figure 7, we provide guidance regarding these two parameters. When the number of 

studies included in the meta-regression is low and the age-diversity between samples low, meta-

regression has limited power to estimate age-varying genetic effects. Therefore, researchers will need 

to either include more studies of age-diverse samples or estimate age-varying genetic effects using 

longitudinal studies. However, when the number of studies included in the meta-regression is high and 

the age-diversity moderate to high, then meta-regression should be considered as the main analytical 

approach in GWAS. Lastly, it is important to carefully select whether the application of a linear or non-

linear meta-regression is appropriate, as over-misspecification of the model could lead to below nominal 
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CI coverage and under-specification could lead to biased estimates. Information about the effect of a 

SNP on a phenotype, in relation to age, can be obtained by smaller longitudinal studies, where this 

relationship can be investigated.  

(Figure 7 here) 

Our study has limitations that should be considered. Even though we explored a wide range of 

plausible scenarios in our simulations, we have inevitably not explored all possible real-world scenarios. 

For example, further work would be needed to investigate the applicability of our results in cases where 

the trait of interest is binary/categorical or in cases where the sample size of studies differs and this 

differentiation is age related (e.g., smaller sample sizes in studies with older participants compared to 

studies with younger participants). Additionally, we have only investigated the applicability of meta-

regression in estimating the association between the genetic effects and quadratic function of age (non-

linear age-varying genetic effects). Meta-regression could be easily extended to accommodate higher 

degree polynomials and splines. 

CONCLUSIONS 

Fixed-effect and random-effects meta-analysis that are typically used to synthesize genetic 

effects from multiple GWAS produce biased estimates of the main genetic effect (i.e., the genetic effect 

in a population of mean age=0) genetic effects change with age. Correctly specified meta-regression 

can provide unbiased estimates of the main and age-varying genetic effects using summary level data, 

with a large number of studies covering a range of ages.  
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TABLES 

Table 1. Equations underlying the phenotype generating mechanism for each simulated scenario and parameter values for ‘Base case scenario’. 

Simulated scenarios 

Scenario 1 𝑌𝑖𝑗 = 𝛽0 + 𝛽𝑎𝑔𝑒 × 𝑎𝑔𝑒𝑖𝑗 + (𝛽𝑆𝑁𝑃 + 𝑢𝑗) × 𝑆𝑁𝑃𝑖𝑗 + 𝜀𝑖𝑗 

Scenario 2 𝑌𝑖𝑗 = 𝛽0 + 𝛽𝑎𝑔𝑒 × 𝑎𝑔𝑒𝑖𝑗 + (𝛽𝑆𝑁𝑃 + 𝑢𝑗) × 𝑆𝑁𝑃𝑖𝑗 + 𝛽𝑆𝑁𝑃×𝑎𝑔𝑒 × 𝑎𝑔𝑒𝑖𝑗 × 𝑆𝑁𝑃𝑖𝑗 +  𝜀𝑖𝑗 

Scenario 3 𝑌𝑖𝑗 = 𝛽0 + 𝛽𝑎𝑔𝑒 × 𝑎𝑔𝑒𝑖𝑗 + 𝛽𝑎𝑔𝑒2 × 𝑎𝑔𝑒𝑖𝑗
2 + (𝛽𝑆𝑁𝑃 + 𝑢𝑗) × 𝑆𝑁𝑃𝑖𝑗 + 𝜀𝑖𝑗 

Scenario 4 𝑌𝑖𝑗 = 𝛽0 + 𝛽𝑎𝑔𝑒 × 𝑎𝑔𝑒𝑖𝑗 + 𝛽𝑎𝑔𝑒2 × 𝑎𝑔𝑒𝑖𝑗
2 + (𝛽𝑆𝑁𝑃 + 𝑢𝑗) × 𝑆𝑁𝑃𝑖𝑗 + 𝛽𝑆𝑁𝑃×𝑎𝑔𝑒 × 𝑎𝑔𝑒𝑖𝑗 × 𝑆𝑁𝑃𝑖𝑗 +  𝜀𝑖𝑗 

Scenario 5 𝑌𝑖𝑗 = 𝛽0 + 𝛽𝑎𝑔𝑒 × 𝑎𝑔𝑒𝑖𝑗 + 𝛽𝑎𝑔𝑒2 × 𝑎𝑔𝑒𝑖𝑗
2 + (𝛽𝑆𝑁𝑃 + 𝑢𝑗) × 𝑆𝑁𝑃𝑖𝑗 + 

       +𝛽𝑆𝑁𝑃×𝑎𝑔𝑒 × 𝑎𝑔𝑒𝑖𝑗 × 𝑆𝑁𝑃𝑖𝑗 + 𝛽𝑆𝑁𝑃×𝑎𝑔𝑒2 × 𝑎𝑔𝑒𝑖𝑗
2 × 𝑆𝑁𝑃𝑖𝑗 +  𝜀𝑖𝑗 

Parameter Value Interpretation 

𝛽0 25 Baseline mean value of phenotype when 𝑎𝑔𝑒𝑖𝑗 = 0 and 𝑆𝑁𝑃𝑖𝑗 = 0 

𝛽𝑎𝑔𝑒 0.010 Effect of age on phenotype 

𝑎𝑔𝑒𝑖𝑗 ~U (min age, max age) Age of participant 𝑖 in study 𝑗 

𝛽𝑆𝑁𝑃 1.5 Effect of genetic variant on phenotype (main genetic effect) 

 𝑆𝑁𝑃𝑖𝑗 0,1,2 Number of alleles of a genetic variant for participant 𝑖in study 𝑗 

𝛽𝑆𝑁𝑃×𝑎𝑔𝑒 0.020 Age varying-genetic effect on phenotype (linear interaction term) 

𝛽𝑆𝑁𝑃×𝑎𝑔𝑒2 0.001 Non-linear age-varying genetic effect on phenotype (non-linear interaction term) 

𝛽𝑎𝑔𝑒2 0.001 Non-linear effect of age on phenotype 

𝜀𝑖𝑗 ~𝑁(0,1) Within study sampling error 

𝑢𝑗 ~𝑁(0,1) Between study sampling error 

jth study j= (1, 2, … ,40), ith participant i = (1, 2, …, 1000) 
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FIGURES 

 

Figure 1. Scatter plot of age of each participant within each study to show age overlap. 
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Figure 2. Heat maps displaying the absolute bias (Monte Carlo standard error) for each method, scenario and age overlap for the main genetic effect 

(i.e., the genetic effect in a population of mean age=0) ( 𝛽𝑆𝑁𝑃) ( N =1,000). MA: Meta-analysis 
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Figure 3A-B. Heat maps displaying the absolute bias (Monte Carlo standard error) for each method, scenario and age overlap for the linear and non-

linear age-varying genetic effect (βSNP×Age , βSNP×𝐴𝑔𝑒2) ( N =1,000). Squares represent scenarios where βSNP×Age = 0.02 and  βSNP×𝐴𝑔𝑒2 = 0.001. 

In other scenarios βSNP×Age = 0 and βSNP×𝐴𝑔𝑒2 = 0.  
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Figure 3C. Heat maps displaying the absolute bias (Monte Carlo standard error) for each method, scenario and age overlap for the linear and non-linear 

age-varying genetic effect (βSNP×Age , βSNP×𝐴𝑔𝑒2) ( N =1,000). Squares represent scenarios where βSNP×Age = 0.02 and  βSNP×𝐴𝑔𝑒2 = 0.001. In other 

scenarios βSNP×Age = 0 and βSNP×𝐴𝑔𝑒2 = 0. 
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Figure 4. Estimated main genetic effect (i.e., the genetic effect in a population of mean age=0)  (𝛽𝑆𝑁𝑃) and 95% confidence intervals. (A) 

Fixed-effect meta-analysis (B) random-effects meta-analysis, (C) Random-effects meta-regression including a linear term of age (C) 

Random-effects meta-regression including a quadratic term of age.  
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Figure 5. (A) and (B) show the estimated linear age-varying genetic effects (βSNP×Age ) and their 95% confidence intervals using meta-regression including 

a linear and a quadratic term by age overlap between studies, respectively. (C) shows the estimated non-linear age-varying genetic effects (βSNP×𝐴𝑔𝑒2) and 

their 95% confidence intervals using meta-regression including a quadratic term by age overlap between studies. 
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Figure 6. Estimated genetic association between rs9939609 SNP at the FTO locus and BMI, as estimated using fixed-effect meta-analysis and meta-regression 

adjusting for cubic term of age. Number of studies=8, N=19,725  
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Figure 7. Recommendations for the application of meta-regression in estimating age-varying genetic effects in GWAS, 

based on the number of studies included and the age-diversity between studies. 
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