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Abstract

The primary treatment of CNS tumors starts with a neurosurgical
resection in order to obtain tumor tissue for diagnosis and to reduce
tumor load and mass effect. The neurosurgeon has to decide between
radical resection versus a more conservative strategy to prevent sur-
gical morbidity. The prognostic impact of a radical resection varies
between tumor types. However due to a lack of pre-operative tissue-based
diagnostics, limited knowledge of the precise tumor type is available
at the time of surgery. Current standard practice includes preoper-
ative imaging and intraoperative histological analysis, but these are
not always conclusive. After surgery, histopathological and molecular
tests are performed to diagnose the precise tumor type. The results
may indicate that an additional surgery is needed or that the initial
surgery could have been less radical. Using rapid Nanopore sequencing,
a sparse methylation profile can be directly obtained during surgery,
making it ideally suited to enable intraoperative diagnostics. We devel-
oped a state-of-the-art neural-network approach called Sturgeon, to
deliver trained models that are lightweight and universally applicable
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across patients and sequencing depths. We demonstrate our method
to be accurate and fast enough to provide a correct diagnosis with
as little as 20 to 40 minutes of sequencing data in 45 out of 49
pediatric samples, and inconclusive results in the other four. In four
intraoperative cases we achieved a turnaround time of 60-90 minutes
from sample biopsy to result; well in time to impact surgical decision
making. We conclude that machine-learned diagnosis based on intra-
operative sequencing can assist neurosurgical decision making, allowing
neurological comorbidity to be avoided or preventing additional surgeries.
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1 Introduction

Central Nervous System (CNS) tumors are the most lethal category of tumors
among children. Most commonly, the first line treatment of pediatric CNS
tumors is neurosurgical resection of the tumor. During this procedure a del-
icate balance must be struck between maximizing resection on the one hand
and minimizing the risk of neurological damage on the other hand (Duffau
and Mandonnet 2013; Yong and Lonser 2011). An important factor in deter-
mining if the risk of a more aggressive resection is acceptable, is the tumor
subtype (Cohen 2022). For instance, Diffuse Midline Gliomas with a Histone
3 mutation are considered incurable, indicating that surgery should primarily
be aimed at acquisition of tumor tissue for diagnosis and preserving quality
of life rather than attempting total resection (Karremann et al. 2018). Like-
wise, Medulloblastoma cases show limited prognostic improvement between
total and near-total resection, also indicating that conservative resection is
warranted (Thompson et al. 2016). In other cases radical resection is benefi-
cial: in Posterior Fossa Ependymoma type A (PFE-A) a strategy of aiming at
a Gross Total Resection (GTR) should be followed since this is an important
prognostic factor (Venkatramani et al. 2012; Ramaswamy et al. 2016; Pajtler
et al. 2017). In Atypical Teratoid Rhabdoid Tumor (ATRT) cases a similar
trend was found where total resection improved overall patient survival (Egiz,
Kannan, and Asl 2022). The neurosurgical strategy thus depends on a precise
and reliable diagnosis of the tumor.

Current practice consists of preoperative imaging and intraoperative diag-
nosis achieved by rapid histological assessment of frozen tumor sections by a
pathologist. However, these tests do not always result in a clear diagnosis, and
are sometimes even revised based on postoperative tissue-based diagnostics.
As a result, some patients require a second surgery, while others could in hind-
sight have been operated less radically. For this reason our aim is to have a
fast and reliable method to classify CNS tumors during surgery and thereby
to optimize surgical strategy for resection.
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Altered genome-wide DNA methylation patterns are highly distinctive
features of neoplasms, and the assessment of DNA methylation can reveal
information about the origin and prognosis of a tumor (Papanicolau-Sengos
and Aldape 2022). The most routinely used assays for diagnostic methylation
profiling are the Illumina Infinium 450K and EPIC arrays (Capper, Jones, et
al. 2018); Jaunmuktane et al. 2019; Priesterbach-Ackley et al. 2020), which
interrogate cytosine methylation status of 450.000 (Sandoval et al. 2011) and
850.000 (Moran, Arribas, and Esteller 2016) CpG sites, respectively. Recent
work demonstrated that methylation profiling can be used to accurately diag-
nose CNS tumors (Capper, Jones, et al. 2018; Jaunmuktane et al. 2019). Using
machine learning approaches, in particular random forest classification, high-
dimensional methylation profiles can be accurately assigned to a specific CNS
subtype (Capper, Jones, et al. 2018; Jaunmuktane et al. 2019). These methy-
lation arrays in combination with the algorithm described by Capper et al. is
widely used in routine diagnostic practice. However, the turnaround time for
array-based methylation profiles is in the order of several days, even if the diag-
nostic workflow is optimized, and therefore incompatible with an intraoperative
setting.

Nanopore DNA sequencing recently emerged as a method that enables
ultrarapid sequencing-based diagnosis (Gorzynski et al. 2022; Sagniez et al.
2022). A major advantage of nanopore sequencing is that the sequencing data
is available for analysis in real time. In addition, nanopore sequencing directly
samples the native DNA strand thereby allowing direct measurement of methy-
lated cytosines, significantly reducing sample preparation times (Xu and Seki
2020). Combined, these features make it ideally suitable for intraoperative
methylation-based tumor classification. In this setting, a tissue sample is sent
for sequencing in the early stages of surgery to obtain a molecular diagno-
sis in time to, combined with the histological diagnosis, affect and shape the
neurosurgical strategy (Djirackor et al. 2021). A major challenge of this appli-
cation is that in such a short time, only very sparse methylation profiles can
be generated and the majority of potentially methylated sites is not covered
by sequence reads. Moreover it is a priori unknown which sites will be covered.

To enable tumor classification using sparse and therefore rapidly obtain-
able data we have developed Sturgeon, a deep learning neural network classifier
that is patient agnostic, is optimally tuned to deal with sparse data, and does
not require in situ training or validation. In the Sturgeon approach, extensive
computational resources can be allocated to train and validate highly perfor-
mant and complex neural networks prior to surgery. This is a major advantage
over existing classification algorithms that rely on patient-specific model train-
ing during surgery (Djirackor et al. 2021). Our final models are trained on
14 million and validated on 4 million simulated nanopore runs, respectively,
which is practically impossible to achieve with in situ training due to the
computational demands. After training and validation, the resulting Sturgeon
model is portable and only takes a few seconds to run on a laptop CPU. This
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allows us to extensively validate the robustness of our models on indepen-
dent datasets, from which we simulate tens of thousands of sequencing runs.
Our approach thus allows training and applying multiple models, fine tuning
for different classification tasks, and to apply them in parallel in a clinically
relevant timeframe.

As a proof of concept we trained Sturgeon models for CNS tumor clas-
sification, and retrospectively applied them on sparse nanopore sequencing
data in 48 pediatric CNS tumor samples and 415 publicly available nanopore
sequenced CNS samples. The model shows very high accuracy and is able to
correctly classify the vast majority of patients (45 out of 49) with the equiv-
alent of 20-40 minutes of sequencing, in line with a 90 minute time-window
between biopsy and diagnosis. Finally, we demonstrate the ability of Sturgeon
to influence surgical decision making by applying it in a realistic intraoperative
setting for four independent pediatric CNS tumor resection surgeries.

2 Results

2.1 Data augmentation and simulation enables effective
neural network training

To reach a turn around time (TAT) of 60-90 minutes only very limited
nanopore sequencing data can be generated, in the order of 100-400 Mb. As a
result, extremely sparse coverage across the entire genome is expected (cover-
ing 0.5-4% of the CpG sites in a 450K array), and it is a priori unknown which
sites will be covered. This poses a significant challenge for the downstream
machine learning model. As large well-annotated nanopore-based methylation
datasets are currently lacking and will take years to reach the comprehensive-
ness of the available array-based datasets, we developed a simulation strategy
that generates realistic training data from array-based methylation profiles
(or other methylation measurement data). Finally, effectively training neural
network models requires orders of magnitude more training samples than the
number of patient samples available. Sturgeon therefore employs a data aug-
mentation approach to effectively upsample the number of training samples
available. This approach also allows for class-balancing by upsampling small
classes relatively more compared to larger classes.

Sturgeon is designed to train a neural network on simulated nanopore
sequencing runs from the publicly available Infinium 450K profiles reported
in Capper et al. (Capper, Jones, et al. 2018). This dataset contains 2801 ref-
erence labeled methylation profiles from CNS tumor samples. The simulation
consists of the following components (Figure 1): (1) Binarization of the array
beta values, to account for the fact that in the sparse setting, where the maxi-
mum coverage is 1x, heterogeneously methylated sites cannot be detected. (2)
Non-uniform CpG site sampling to account for the fact that nanopore sequence
reads are 5Kb in the rapid sample prepping methods used in an intraoperative
setting. (3) Variable sampling of the number of CpG sites covered, to account
for read accumulation as time progresses. (4) Random error, to account for
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Fig. 1 Schematic representation of the simulation and cross-validation pro-
cesses. Capper et al. reference dataset. with 2801 CNS samples is used for training,
validation (assessing best performing state and calibration) and testing (final model perfor-
mance). We simulate nanopore sequencing runs based on previous existing sequencing runs
(read length distribution and throughput), since these simulations produce very sparse sam-
ples we can simulate millions of samples. We perform 4-fold cross-validation, and rotate the
folds to obtain 4 models that are used in the final prediction of external microarray data
and nanopore sequencing data.

the fact that nanopore methylation calling has an expected error rate of 10%
according to the most performant methylation caller (Megalodon combined
with the Rerio CpG methylation model, as suggested in (Yuen et al. 2021)).

The resulting model consists of four neural networks (submodels), each
trained, validated and calibrated independently (Figure 1). To this end, we
split the Capper et al. reference dataset into 4 folds while keeping the origi-
nal class distributions. We then use two folds to train the submodel, one fold
to determine the best performing state of the submodel and to perform score
calibration and the final fold to evaluate the submodel’s performance. Simu-
lations are tightly controlled through the seeds of the pseudo-random number
generator, i.e. training, validation and test seeds are mutually exclusive, to
avoid cross-validation leakage. We rotated folds between submodels in order to
independently incorporate and evaluate the whole reference dataset (Figure
2). New samples are then classified by all four submodels, and the result of
the most confident submodel is reported.



Preprint - January 25, 2023

6 Ultra-fast deep-learned pediatric CNS tumor classification during surgery

a

b c

d

Fig. 2 Sturgeon submodel cross-validated evaluation. Sturgeon performance on
the four test folds of the Capper et al. dataset. (a) Confusion matrix showing the highest
scoring class for each reference label at 40 minutes of simulated sequencing (∼97% missing
values from microarray data). Bars on the right side of the plot indicate the top 1 (solid)
and top 3 (transparent) F1-scores per reference label class. (b) Performance when scores are
aggregated per family label. (c) F1-scores at increasing sequence depths per class and per
family, and when taking into account the top 3 classifications. (d) True positive rate for each
class at the 0.95 score threshold.

2.2 Sturgeon submodels achieve >0.94 true positive rate
within 40 minutes of simulated sequencing

We first evaluated Sturgeon submodels based on left-out array-based methyla-
tion data. From each sample in the test fold we simulated 500 sparse samples at
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each of twelve different simulated sequencing depths (from 0.6% to 14% cover-
age of the reference data; Supplementary Figure 1-2 and Supplementary
Table 2). Applying Sturgeon to these data shows that at approximately 40
minutes of simulated sequencing, the submodels reach an average F1-score of
0.935 across all classes (Figure 2a). Some confusion remains between Melan-
otic Schwannoma (0.589 F1-score) and regular Schwannoma samples; between
TSH-secreting pituitary adenomas (0.716 F1-score) and other pituitary ade-
nomas; and also some confusion is observed between glioblastoma subclasses
(0.847 average F1-score). When considering the top 3 classifications, an aver-
age 0.992 F1-score across all classes (ie. in the majority of cases the correct
label is in the top 3 of highest classifications) is reached; and performance on
these aforementioned difficult classes becomes comparable to the rest (Figure
2a). Notably, the few misclassifications are predominantly confusions of sam-
ples within the same family; when we aggregate scores for subclasses within
families, the average F1-score for family classification is 0.984 (Figure 2b).
As expected, Sturgeon’s performance is directly correlated to the sequencing
depth and confidence improves as more sequencing data is available. However,
most significant improvements occur within the (simulated) first 50 minutes
of sequencing, with the number of covered CpG ranging from 0.6% to 4% of
the 450K available sites (Figure 2c, Supplementary Figures 1-2).

We next sought to calibrate the classifiers, meaning that a classification
score of 0.7 should translate to a 70% chance of a correct classification. For
this purpose we applied temperature scaling (Guo et al. 06–11 Aug 2017).
After calibration the overall Expected Calibration Error (ECE), decreased
from 0.023 to 0.003 in the validation set and from 0.025 to 0.002 in the test
set (Supplementary Table 3, Supplementary Figures 3-6). As this does
not solve the challenges of sparse calls at intermediate confidence scores, we
decided to conservatively use a cut-off score of 0.95 to confidently classify a
sample. Using this cut-off, 80 out of the 91 classes in the test set have a True
Positive Rate (TPR) higher than 0.95; for a less conservative threshold of
0.8, 26 classes do not reach the expected TPR (Figure 2d, Supplementary
Figure 7). The 11 classes that do not reach the 0.95 threshold have a TPR
between 0.8 and 0.9, except for Melanotic Schwannoma. However, the presence
of melanin pigment in melanotic schwannoma (an exceedingly rare tumor,
renamed in the WHO 2021 CNS tumor classification as malignant melanotic
nerve sheath tumor) can be expected to allow for discriminating these tumors
from ordinary schwannomas based on histological evaluation.

2.3 Sturgeon performance compared to the Heidelberg
V11b4 classifier in pediatric samples

The training dataset for Sturgeon consists of a varied patient population of
different ages, which is not necessarily a good representation of the expected
population in a pediatric oncology center. We therefore aimed to validate Stur-
geon on pediatric methylation profiles. For this purpose we obtained 94 EPIC
profiles generated for patients that underwent a brain tumor resection surgery
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in the Princess Maxima Center for Pediatric Oncology. For each of these
samples, the publicly available “Heidelberg classifier (V11b4)” was applied in
routine clinical care and results were used in clinical decision making. This
classifier can be considered an updated version of the Capper et al. classifier
since it is based on an extremely comprehensive collection of EPIC profiles.
For the analysis of Sturgeon performance we divided the samples based on
the output of the Heidelberg classifier. The “clear diagnosis” group is defined
as samples where the Heidelberg classifier reached a score of 0.84 or higher
(N=68); the cutoff recommended by the developers of the Heidelberg classi-
fier (Capper, Stichel, et al. 2018). The “difficult diagnosis” group is defined as
samples with a score below the 0.84 cutoff (N=26). This group is considered
difficult to diagnose based on methylation profile, which is likely to occur for
uncommon tumor types that do not correspond to any of the previously anno-
tated classes, tumors that occur in the context of a genetic tumor syndrome,
heterogeneous samples or samples with a low tumor purity.

For each methylation profile, we simulate 500 nanopore sequencing runs
at seven sequencing depths, as described before, for a total of 332.500 simu-
lated nanopore sequencing experiments, after which we applied the Sturgeon
classifier (Figure 3, Supplementary Table 1, supplementary figures
8-9).

We consider the classification result at two thresholds. A score exceeding
0.95 indicates confident diagnosis that can be provided to the pathologist. A
score exceeding 0.8 indicates a likely diagnosis which can also be communicated
but with some caution, if time permits further sequencing is recommended
as the confidence will likely increase. We consider scores below 0.8 unsafe to
communicate with the clinical staff, and more data needs to be obtained. For
the clear diagnosis group Sturgeon classified correctly (at the 0.8 threshold) in
95.3%( 32412 of the 34000 simulated samples) in as little as 25 minutes of sim-
ulated sequencing (timepoint 1, figure 3c, average of 8091 (1.7%) 450K CpG
sites covered). For the conservative threshold of 0.95, still 86.2% (29316/34000)
of simulated samples were correctly classified. At the same time point, only
2.7% and 13.8%of simulations did not reach a confidence score exceeding 0.8
and 0.95 respectively. Wrong diagnoses were called in 2.0% of simulations at
the 0.8 threshold, and only 0.5% for the conservative 0.95 threshold.

At 50 minutes of simulated sequencing (timepoint 3 in Figure 3c, an aver-
age of 17945 CpG sites covered), performance improved slightly, with 97.1%
(33020/34000) simulations reaching a correct diagnosis with confidence >0.8
and 90.8% with a score over 0.95. 1.6% did not reach a score >0.8. Wrong
diagnoses were called in only 1.3% of simulations with a score over 0.8 and
0.5% with a score >0.95. Taken together, these results suggest that a conclu-
sive diagnosis can be reached within 25-50 minutes of sequencing for the vast
majority of pediatric cases that can be classified using the heidelberg v11b4
classifier, with a very low false positive rate.

For the cases where the Heidelberg classifier was not able to provide a
diagnosis (N=26), Sturgeon was also less performant in general. For most of
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Fig. 3 Classification performance over time on nanopore runs simulated from
pediatric CNS tumor methylation arrays. For each of 96 methylation profiles, a series
of nanopore sequencing experiments were simulated. At each timepoint 500 experiments
were simulated corresponding to approximately 5 minutes of sequencing per timepoint. Each
bar indicates a consecutive timepoint and simulated sequencing data is accumulated over
time. A stacked bar graph is plotted based on the number of correct, unclear or wrong
classifications. Correct classifications are those with a confidence score >0.95 (left) and >0.8
(right) and with a class corresponding to the true diagnosis (bars are colored according to the
class label). Unclear classifications are those with confidence-scores <0.95 or <0.8 colored
in gray). Wrong classifications are misdiagnoses where a confidence-score >0.95 or >0.8 is
obtained for the incorrect class (colored in yellow). (a) Clear diagnosis group (Heidelberg
classifier score >0.84) (b) Difficult diagnosis group (Heidelberg classifier score <0.84). (c)
Distribution of the number of CpG sites covered at each simulated timepoint.

these cases a definitive diagnosis was reached based on the combination of
molecular and histological features. In 11 of the 27 cases Sturgeon frequently



Preprint - January 25, 2023

10 Ultra-fast deep-learned pediatric CNS tumor classification during surgery

reached a diagnosis in concordance with the pathologist’s diagnosis (but often
at later time points). All of these cases also reached a Heidelberg classifier
score between 0.6 and 0.84 (see Figure 3b and Supplementary Table
1). In the other cases, both sturgeon and the Heidelberg classifier performed
poorly, most frequently resulting in an unclear diagnosis (low confidence scores
or high scores for control tissue classes). This can be attributed to different
reasons; Four samples (PMC 1, PMC 28, PMC 82 and PMC 76) had a Low
tumor fraction based on histology.

Four samples were diagnosed with a class not present in the 2018 classifica-
tion scheme. PMC 71; low grade glioma with PLAG-FOXO fusion (Sievers et
al. 2021), sometimes classified by sturgeon as a SUBEPN. PMC 88; low grade
glioma with a PLAG amplification (Keck et al. 2022), Sturgeon does not reach
the 0.8 threshold in this sample, but we note that the highest scoring class is
often Medulloblastoma Group 3. PMC 77; High grade glioma with underlying
Li-Fraumeni syndrome consistently classified as a Glioblastoma with a MYCN
amplification across different simulations. Similarities between MYCN ampli-
fied and Li-Fraumeni tumors have recently been reported (Guerrini-Rousseau
et al. 2023). We theorize that the methylation profile could be similar between
a TP53 loss and a MYCN amplification, as MYCN directly opposes TP53 func-
tion (Agarwal et al. 2018). PMC 73: a low grade biphenotypic glioneuronal
tumor sometimes classified as a Pilocytic Astrocytoma/Ganglioglioma).

Two samples could not be classified by histology either and to date
do not have a definitive diagnosis (PMC 72 and PMC 75). Finally four of
the underperforming cases originate due to germline mutations (PMC 89,
PMC 85, PMC 91 and PMC 77 (Li-fraumeni mentioned before)) which has
previously also been suggested to complicate methylation-based classification
(Jaunmuktane et al. 2019).

Together these results indicate that Sturgeon can perform on par with the
Heidelberg v11b4 classifier, even when only a very limited number of (simu-
lated) nanopore sequence reads is available. It also reiterates the limitation
that Sturgeon (as any other machine learning-based classifier) is only able to
perform well in samples that are sufficiently represented in the training data.
Reassuringly, for classes that are not represented in the training data, confi-
dence scores are usually low, resulting in an unclear outcome rather than a
misdiagnosis.

2.4 Sturgeon provides accurate diagnoses from sparsely
nanopore sequenced samples

To assess the performance of Sturgeon in a realistic setting, we retrospectively
sequenced and classified 26 pediatric brain tumor DNA samples obtained from
the Princess Maxima center biobank. We then applied Sturgeon to increasing
numbers of reads, simulating a normal minION sequencing run in 5 pseudotime
(see methods) minute intervals (Figure 4b).

The classification results demonstrate that for 23 out of 26 samples Stur-
geon assigned a score higher than 0.95 to the correct class after the equivalent of
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Fig. 4 Sturgeon applied to nanopore sequenced samples. (a) Sturgeon classification
scores for 26 pediatric CNS tumor samples at increasing sequencing time (5 minute pseudo
time intervals). Top bar indicates the sample name and diagnosis. Circles indicate the pre-
dicted score of the correct class; diamonds indicate the predicted score of incorrect classes
(classes with overtime averaged scores lower than 0.1 are omitted). Asterisks indicate the first
time point where the score of the correct class was higher than 0.8. Horizontal dashed lines
indicate the 0.8 and 0.95 thresholds. (b) Distributions for the number of covered CpG sites
from the reference microarray data at increasing sequencing durations in nanopore sequenc-
ing MinION runs. (c) Sturgeon classifications on 415 CNS nanopore sequenced samples from
a publicly available dataset (GSE209865), compared to the results from the nanoDx classi-
fier. Either both classifiers were correct (dark blue), only nanoDx was correct (orange), only
Sturgeon was correct (light blue), or both classifiers were incorrect (red). Horizontal dashed
lines indicate the 0.8 and 0.95 score thresholds.

25 minutes of sequencing; and on average such threshold was achieved between
15-20 minutes of sequencing (Figure 4a, Supplementary table 4). Samples
PMC 60, PMC 29 and PMC 2 reached the 0.95 threshold at 30, 40 and 40
minutes of sequencing respectively. Samples PMC 68, PMC 98 and PMC 103
had an incorrect score higher than 0.8, but were correctly predicted in the
following time points and the correct class score stabilized afterwards.
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For each sample we generated 200.000 reads ( 3.9Gb), where a typical intra-
operative run (60 minutes of sequencing) would be expected to yield 60.000
reads ( 200Mb) of throughput. This allowed us to evaluate the robustness of
the results by randomly subsampling sequence reads, essentially simulating a
different order in which the DNA molecules were sequenced. Our results show
that Sturgeon is very robust, reporting the correct class in 29252 (23984 with
score >0.95, 27354 with score > 0.8) out of the 31200 predictions (each sample
is simulated 100 times and predicted 12 times (5 pseudotime minute intervals)
per simulation). Notably it only reports the incorrect class 11 and 263 times
with scores higher than 0.95 and 0.8 respectively (Supplementary Table 5).
With increasing data available, the outcomes are more confident and accurate
(Supplementary figure 11). It also showcases how some samples are easier
to classify than others. For example, samples PMC 2 and PMC 29, which took
longer than average to classify (Figure 4a), still have simulations in which
the 0.95 threshold is not reached.

We next validated Sturgeon on a publicly available dataset (GSE209865)
generated by Kuschel et al. (Kuschel et al. 2021), consisting of nanopore
sequencing data for 415 CNS tumor samples available (Figure 4c, Supple-
mentary Table 6). We note that the number of sequencing reads per sample
is highly variable for this dataset and that for 24 samples fewer than 2000 CpG
sites are covered, a number expected with less than 15 minutes of sequencing in
a MinION flowcell (Figure 4b). We find that Sturgeon outperforms nanoDx,
the patient-specific random forest classifier, as it is able to correctly predict
9 additional samples (Supplementary figure 12). Sturgeon correctly classi-
fied 383 (92.2%) samples, 343 (82.6%) at a threshold of 0.8 and 252 (60.7%)
samples with a confidence >0.95. From the 415 samples, 32 (7.7%) were incor-
rectly classified of which 13 (3.1%) reached a confidence >0.8 and 8 (1.9%)
reached a confidence score >0.95. Interestingly, on samples with fewer than
2000 CpG sites covered, Sturgeon still managed to correctly classify 14 sam-
ples, 3 of which at the 0.95 confidence threshold; however, the remaining 10
the samples were classified incorrectly. Overall, Sturgeon performs better and
is more confident with an increasing number of measured CpG sites; and nan-
oDx is able to perform better on low CpG scenarios due to its patient-tailored
model.

2.5 Site-specific classification can further improve
turnaround time

The Capper et al. dataset consists of 80 classes, however, many class distinc-
tions are only relevant within a particular topological context. Thus prior to
surgery many classes can be ruled out. For instance, for a surgery of the spinal
mass, a classifier does not need to be able to detect pituitary adenomas. We
reasoned that by merging such irrelevant classes from the training dataset into
a single class (“Other - Non Brainstem”), the model can focus on the truly rel-
evant classes and improve its performance. Compared to other regions in the
brain, the number of relevant classes in the brainstem is relatively low (N=21,
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Supplementary Table 8); and to test this hypothesis, we developed a Stur-
geon classifier specifically for brainstem tumors. We trained the model on the
complete Capper et al. dataset, however, non-brainstem classes were grouped
together as a single class (“Other - Non Brainstem”) with the exception of the
control classes.

a

b

General Brainstem

General Brainstem

Fig. 5 Results of the brainstem classifier compared to the general classifier.
(a) Reads were accumulated in the order they were obtained at a rate based on the average
minION sequencing speed. At each (approximately 5 minutes) timepoint both the brainstem
and general classifier were applied, only correct classification classes are displayed (brain-
stem: dashed line, general: full line). Asterisks indicate the first time point the predicted
score is higher than 0.95. Horizontal dashed lines indicate the 0.8 and 0.95 score thresh-
olds. Mixed color labels indicate the diagnosis class that would be correct for the general
(left) and brainstem (right) classifiers. (b) Reads were randomly selected from all sequence
reads obtained per sample at a rate based on an average minION sequencing run. For each
timepoint 100 random samplings were performed and the brainstem and general classifier
were applied (brainstem: green, General: orange). Boxplots indicate median and interquar-
tile range.

We first evaluate the performance of the brainstem classifier on the pedi-
atric EPIC profiles through cross-validation, as described earlier. Expectedly,
for samples that are diagnosed with a class that is included as a brainstem
class in the classifier training and with a clear heidelberg classifier score
(>0.84, N=56), the brainstem classifier reaches high confidence scores at early
timepoints (Supplementary Table 7). When using a conservative threshold con-
fidence of 0.95, at timepoint 1 25461 out of 28000 (91.0%) of the simulations
reach a definitive diagnosis, and 1953 (7.0%) of simulations are unclear (ie the
classifier reports a score <0.95 or a high score for control tissue or classified as
“Other”). At timepoint 3, the number of definitive diagnoses decreases slightly
to 25260 (90.0%) and the number of unclear diagnoses is increased to 2131
(7.6%). The number of wrong diagnoses is 586 (0.6%) and 609 (0.7%) at time-
points 1 and 3 respectively. This indicates that the brainstem classifier reaches
an optimal performance at very early timepoints compared to the general clas-
sifier. We note that practically all of the misdiagnoses arise from two of the
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35 samples: PMC 38 and PMC 63. PMC 38 is a Glioblastoma GBM G34 that
seems difficult to classify and is frequently mis-classified as a Glioblastoma -
GBM - MID, similar classifications happen in the general classifier (see figure
3). PMC 63 is a Glioblastoma - GBM - Group 4 that is frequently misclassified
as a Glioblastoma - GBM - Group 3 (again in both the general and brainstem
classifiers).

In samples that did not reach the 0.84 threshold in the heidelberg classi-
fier, but that were diagnosed as a class within the brainstem classifier (N=15),
results were mixed: 4199 out of 7500 (55.0%) simulations were correct at time-
point 1, and 3274 (43.7%) were unclear. The brainstem classifier only made
27 misclassification out of 7500 simulations at timepoint 1 (Supplementary
Table 7). When applying the brainstem classifier to samples from classes that
do not typically occur in the brainstem (N=23), Sturgeon results in unclear
outcomes (other or low scores) in the vast majority of cases, except in PMC 77
where it consistently classifies the Li-Fraumeni tumor as a Glioblastoma with
MYCN amplification as discussed before.

To further evaluate the performance of the brainstem classifier, we obtained
24 additional tumor DNA samples from the PMC biobank that originated in
the brainstem (two of which; PMC 42 and PMC 105 were also included in
the previous analyses). Reflective of the epidemiology of pediatric brainstem
tumors, the vast majority of samples (23/24) were diagnosed with a glioblas-
toma harboring a H3K27 alteration. We multiplex sequenced these samples
in two batches on the PromethION platform to a depth of >100.000 reads
per sample. We then evaluated the performance of both the brainstem-specific
and general classifier on an increasing number of covered CpG sites, with a
rate expected in a single-sample MinION run (Supplementary Figure 5,
Supplementary Figure 11, Methods). The general classifier slightly under-
performed compared to earlier samples, as expected from the initial training
and validation where glioblastoma subclasses showed a reduced TPR (Figure
1A, Figure 1d), it did not reach a confident diagnosis (score >0.95) in 4/24
samples and misclassified one sample (PMC 116) with a 0.84 confidence score.
In comparison, the brainstem-specific classifier resulted in higher confidence
score at earlier time points in most but not all cases (Figure 5a, Supple-
mentary Figure 14), but also resulted in an unclear classification (“Other -
non brainstem” location classification) in 5/24 samples. The brainstem classi-
fier correctly classified PMC 116. Notably the brainstem classifier seems prone
to changing its classification to the “Other - non brainstem” class at later
time points (for example PMC 44, PMC 121, PMC 126), likely due to the
high diversity within that particular training class. Notably in three out of
five cases where the EPIC array classification was unclear (score below 0.84),
a diagnosis was reached by the brainstem classifier (PMC 122), or both the
brainstem and general classifier (PMC 121, PMC 114). In cases where both
models reached the 0.95 threshold, the brainstem classifier was faster in 15
cases (saving on average 10 minutes of sequencing); however, it delayed diag-
nosis in one case by 20 minutes. We finally tested the brainstem classifier
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on non-brainstem samples. The classifier performed as good as the general
classifier, and properly classified non-occurring brainstem classes as “Other
location” (Supplementary Figure 15).

We further assessed the added value of the brainstem classifier by gener-
ating 100 random read samplings per time point and comparing the scores
between the brainstem and the general classifier (Figure 5b, Supplemen-
tary Figure 16) Overall, the brainstem classifier achieves higher scores during
early sequencing; for example, on average, the correct class scores are 0.20,
0.33 and 0.22 points higher during the first 5, 10 and 15 minutes of sequencing
respectively. Furthermore, the brainstem classifier reaches the 0.95 score on
average in ∼15 minutes, while the general classifier in ∼20 minutes. A similar
trend can also be observed on samples that are not from the brainstem, but
that fall within the brainstem classes (Supplementary Figure 17).

To mitigate the risk of a misdiagnosis due to overfitting, or when an unusual
tumor type is encountered in the brainstem, and to take advantage of both
classifiers, the brainstem classifier can easily be deployed in parallel to the
general Sturgeon classifier. In which case a high brainstem score should always
be supported by a similar class from the general classifier, but possibly with a
less stringent confidence threshold in the general classifier.

2.6 Intraoperative sequencing is compatible with surgical
timeline

To demonstrate the clinical feasibility of Sturgeon in an intraoperative sequenc-
ing context, we performed the protocol intraoperatively on 4 samples. Samples
obtained for histological assessment during surgery were split, and one part
was used for intraoperative sequencing while the other part was used for his-
tological assessment. In our institute, roughly 15 minutes are required to move
the sample from the operating room to tissue processing where an appropri-
ately sized sample is cut from the surgical sample. We note that this time can
be further reduced by positioning the laboratory closer to the operating room.
We optimized our DNA extraction protocol to rapidly obtain a high concen-
tration of input DNA. In brief: we heavily reduced the lysis duration, relying
on Qiashredder columns instead, and shortened all centrifugation times (see
methods). This enables us to isolate DNA from brain tumor samples within
17-20 minutes. The library preparation is completed in approximately 15 min-
utes after DNA isolation, and sequencing commences roughly 30 minutes after
the sample is received in the DNA isolation lab.

The sequencing itself is slowed down by the startup phase
(Supplementary Figure 11), where mostly sequencing adapters are
sequenced, and then ramps up towards higher pore activity and more infor-
mative reads per minute. Nevertheless, we typically obtain 10.000-20.000
sequence reads within one hour after the samples arrive in the isolation lab.
In some, but not all, cases this is enough for a reliable diagnosis. After an
hour and 30 minutes we typically obtain 40.000-60.000 reads, which is enough
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Extra sequencing
for additional 

analsysis

Sample Clinical diagnosis Heidelberg 
score (v11.b4)

Sturgeon general 
(40 minutes)

Sturgeon brainstem 
(40 minutes)

PMC_96 Embryonal EPN PF A 0.99 Embryonal EPN PF A (0.99) -

PMC_97 Glioblastoma DMG K27 0.99 Glioblastoma DMG K27 (0.99) -

PMC_62 Embryonal MB G3G4 - G4 0.99 Embryonal MB G3G4 - G4 (0.99) -

PMC_60 Embryonal SSH 0.98 Embryonal SSH (0.97) -

PMC_98 Pilocytic Astrocytoma 0.99 Other glioma - LGG PA - PA (0.98) -

PMC_99 Embryonal SSH 0.99 Embryonal SSH (0.99) -

PMC_100 Pilocytic Astrocytoma 0.99 Other glioma - LGG PA - PA (0.99) -

PMC_101 Ependymal - EPN - PF B 0.99 Ependymal - EPN - PF B (0.99) -

PMC_69 Embryonal - MB G3G4 - G3 0.99 Embryonal - MB G3G4 - G3 (0.99) -

PMC_102 Embryonal - ATRT - TYR 0.99 Embryonal - ATRT - TYR (0.99) -

PMC_103 Other glioma - PXA - PXA 0.99 Other glioma - PXA - PXA (0.99) -

PMC_102 Embryonal - ATRT - TYR 0.99 Embryonal - ATRT - TYR (0.99) -

PMC_104 Embryonal - ATRT 0.99 Embryonal - ATRT - MYC (0.99) -

PMC_2 Other glioma - PXA - PXA 0.87 Other glioma - PXA - PXA (0.97) -

PMC_68 Embryonal - MB G3G4 - G3 0.99 Embryonal - MB G3G4 - G3 (0.99) -

PMC_106 Glioblastoma - DMG - K27 0.99 Glioblastoma - DMG - K27 (0.99) -

PMC_107 Ependymal - EPN - PF A 0.99 Ependymal - EPN - PF A (0.99) -

PMC_108 Glioblastoma - DMG - K27 0.99 Glioblastoma - DMG - K27 (0.99) -

PMC_109 Medulloblastoma non-WNT non SHH 0.99 Embryonal - MB G3G4 - G3 (0.99) -

PMC_110 Ependymal - EPN - PF A 0.99 Ependymal - EPN - PF A (0.99) -

PMC_55 Embryonal - MB G3G4 - G4 0.99 Embryonal - MB G3G4 - G4 (0.99) -

PMC_111 Medulloblastoma non-WNT non SHH 1.00 Embryonal - MB G3G4 - G4 (0.99) -

PMC_53 Ependymal - EPN - PF A 0.99 Ependymal - EPN - PF A (0.99) -

PMC_29 Pilocytic Astrocytoma 0.84 Other glioma - LGG PA - PA (0.97) -

PMC_112 Pilocytic Astrocytoma 0.99 Other glioma - LGG PA - PA (0.99) -

PMC_113 Glioblastoma - DMG - K27 0.99 Glioblastoma - DMG - K27 (0.99) Glioblastoma - DMG - K27 (0.99)

PMC_42 Glioblastoma - DMG - K27 0.99 Glioblastoma - DMG - K27 (0.99) Glioblastoma - DMG - K27 (0.99)

PMC_40 Glioblastoma - DMG - K27 0.99 Glioblastoma - DMG - K27 (0.99) Glioblastoma - DMG - K27 (0.99)

PMC_105 Glioblastoma - DMG - K27 0.99 Glioblastoma - DMG - K27 (0.99) Glioblastoma - DMG - K27 (0.99)

PMC_114 Glioblastoma - DMG - K27 <0.84 Glioblastoma - DMG - K27 (0.99) Glioblastoma - DMG - K27 (0.99)

PMC_115 Glioblastoma - DMG - K27 0.99 Glioblastoma - DMG - K27 (0.99) Glioblastoma - DMG - K27 (0.99)

PMC_116 Glioblastoma - DMG - K27 <0.84 Glioblastoma - GBM - G34 (0.93)* Other - Non Brainstem (0.99)

PMC_117 Glioblastoma - DMG - K27 0.91 Glioblastoma - DMG - K27 (0.99) Glioblastoma - DMG - K27 (0.99)

PMC_118 Glioblastoma - DMG - K27 0.99 Glioblastoma - DMG - K27 (0.99) Glioblastoma - DMG - K27 (0.99)

PMC_119 Glioblastoma - DMG - K27 0.98 Glioblastoma - DMG - K27 (0.99) Glioblastoma - DMG - K27 (0.99)

PMC_120 Glioblastoma - DMG - K27 0.99 Glioblastoma - DMG - K27 (0.89)* Other - Non Brainstem (0.99)

PMC_43 Glioblastoma - DMG - K27 0.95 Glioblastoma - DMG - K27 (0.99) Glioblastoma - DMG - K27 (0.99)

PMC_121 Glioblastoma - DMG - K27, EGFR mutant <0.84 Glioblastoma - DMG - K27 (0.97) Glioblastoma - DMG - K27 (0.97)

PMC_122 Glioblastoma - DMG - K27 <0.84 Glioblastoma - DMG - K27 (0.99) Glioblastoma - DMG - K27 (0.99)

PMC_123 Glioblastoma - DMG - K27 Not available Glioblastoma - GBM - MID (0.92)* Other - Non Brainstem (0.98)

PMC_124 Glioblastoma - DMG - K27 0.97 Glioblastoma - DMG - K27 (0.98) Glioblastoma - DMG - K27 (0.99)

PMC_125 Glioblastoma - DMG - K27 0.99 Glioblastoma - DMG - K27 (0.99) Glioblastoma - DMG - K27 (0.98)

PMC_45 Glioblastoma - DMG - K27 0.97 Glioblastoma - DMG - K27 (0.99) Glioblastoma - DMG - K27 (0.99)

PMC_41 Glioblastoma - DMG - K27 0.99 Glioblastoma - DMG - K27 (0.99) Glioblastoma - DMG - K27 (0.99)

PMC_126 Glioblastoma - DMG - K27 0.99 Glioblastoma - DMG - K27 (0.97) Glioblastoma - DMG - K27 (0.99)

PMC_127 0.96 Glioblastoma - GBM - MYCN (0.85)* Other - Non Brainstem (0.99)

PMC_128 Glioblastoma - DMG - K27 Not available Glioblastoma - DMG - K27 (0.99
)

Glioblastoma - DMG - K27 (0.99)

PMC_129 Glioblastoma - DMG - K27 <0.84 Glioblastoma - DMG - K27 (0.98) Glioblastoma - DMG - K27 (0.99)

PMC_44 Glioblastoma - DMG - K27 1.00 Glioblastoma - DMG - K27 (0.99) Glioblastoma - DMG - K27 (0.99)

PMC_130 Sella - CPH - ADM (low tumor fraction) <0.84 Control - CONTR - INFLAM (0.94)* -

PMC_132 Embryonal - MB G3G4 - G3 0.99 Embryonal - MB G3G4 - G3 (0.99) -

PMC_133 Blood clot (no tumor) Not available Glio-neuronal - LGG - DIG/DIA (0.49)* -

PMC_134 Nerve - SCHW - SCHW 0.99 Nerve - SCHW- SCHW (0.98) -

Difuse High Grade Glioma, IDH wildtype

Call from the
operating room

Sample collection

16 (minutes) 4 17 3 10 32 (minutes)

Schwannoma (0.73)

Registration & sampling

DNA isolation

Quality control

Library preparation

Sequencing

Schwannoma (>0.8)

Extra sequencing
for additional 

analsysis

5 10 15 20 25 30 35 40 45 50 55 60 75 80 85 9065 70

32 (minutes)

Total Turnaround Time

a

b

Fig. 6 Intraoperative run timing and summary of all nanopore sequenced
classified samples. (a) Timeline for the PMC 134 intraoperative run (as recorded in Sup-
plementary Video) with the total turnaround time and required time per processing step
indicated. (b) Table summarizing all patients where nanopore sequencing was performed.
Clinical diagnosis refers to the diagnosis reached using best available means, including EPIC
arrays, CNV profiling and histology. Heidelberg score indicates the score reached when the
EPIC data (if generated) was classified by the heidelberg v11b4 classifier. Sturgeon outcome
and Sturgeon Brainstem (if applicable) indicate the class and highest score obtained during
40 minutes of sequencing (* samples with a confidence score below 0.95).

to produce a reliable diagnosis for the majority of retrospective and simulated
cases as described above.
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To demonstrate feasibility we applied the method intraoperatively in four
cases (PMC 130 - PMC 134) (Supplementary Figure 18 shows the results
of a slightly older model used at the time of sequencing, and Supplementary
Figure 19 shows the result with the most recent model). Due to the validation
status of this method we did not communicate any outcomes with the clinical
staff. In all cases sequencing was initiated within 40 minutes of the sample
arriving in the DNA isolation lab.

In the first case (PMC 130) the tumor fraction was too low for analysis.
Based on histology, this sample was classified as an Adamantinomateuos Cran-
iofaryngioma, and it was also not submitted for an EPIC array due to the
low tumor purity. Sturgeon did not reach a certainty threshold for any of the
tumor classes.

In the second case (PMC 131) the pre-operative imaging pointed to a high
likelihood of a medulloblastoma or ependymoma. After 30 minutes of sequenc-
ing, Sturgeon classified the sample as a G3 Medulloblastoma (non-WNT,
non-SHH) with a score >0.8. Histological assessment also pointed towards a
likely medulloblastoma and this was communicated to the operating room.
Following the surgery, an EPIC array was also generated and submitted to the
heidelberg classifier, this confirmed the diagnosis of Medulloblastoma Group
3 (v11b4, score 0.99). In this case the Sturgeon outcome could have provided
the additional confirmation needed in time to adjust the neurosurgical strat-
egy, in this case to opt for a relatively conservative resection as this yields a
similar prognosis to GTR (Thompson et al. 2016).

In the third case (PMC 132) the sample submitted for nanopore sequencing
did not contain tumor cells but a blood clot. DNA isolation yield was unusually
low, and sequencing was compromised. Sturgeon did not report a score over
0.8 at any time point.

In the fourth case (PMC 133) the diagnosis was already known (Schwan-
noma located in the spine), but was not communicated to the scientific
personnel. The entire procedure for this case was timed and filmed (Figure
6a, Supplementary Video, Supplementary Figure 13). One hour and
22 minutes after receiving a call from the operating room, the sample was clas-
sified by Sturgeon as a Schwannoma with a score over 0.8. This diagnosis was
also confirmed using an EPIC array (v11b4, score 0.99).

Together these cases show that this approach can consistently yield clin-
ically valuable information within 90 minutes from the moment a sample
is obtained (Figure 6b), providing pathologists with an orthogonal diag-
nostic tool to assess the tumor class and ultimately, potentially preventing
unnecessary surgical comorbidity or the need for a second surgery.

3 Discussion

Here we demonstrate the practical feasibility of intraoperative methylation-
aware nanopore sequencing for pediatric brain tumor subtyping. Previously,
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the challenges of intraoperative sequencing have been addressed using a ran-
dom forest approach, wherein the classifier is trained and validated during the
surgery, based on the covered sites obtained at that point in time (Djirackor et
al. 2021). Training a classifier “on the fly” requires a large - and thus potentially
time consuming - computational effort during the surgery and also requires re-
training at each timepoint. The resulting classifier is unique to the patient, and
is therefore not reusable for other patients. Validation and score-calibration of
the classifier needs to occur during the surgery, and may suffer from overfitting
and therefore require on-site machine learning expertise. Finally, full methyla-
tion profiles of a large collection of patients have to be available on-site during
training, meaning that every center that seeks to apply this method needs to
have a copy of all the training data. Distributing such large patient datasets
may not be compatible with privacy laws or patient consent.

To address these challenges, we developed Sturgeon, a deep learning
approach that, despite being trained on methylation arrays, can still accu-
rately classify tumor types based on the very sparse information obtained from
time-constrained nanopore sequencing. Sturgeon uniquely moves the compu-
tationally intensive model training, validation and calibration phase outside
the surgical time window, providing well-tested highly accurate one-size-fits-
all classifications. Sturgeon models are not patient specific and can be used
universally without retraining, mitigating the need to have access to privacy
sensitive training data at the site of deployment. As a result, only limited com-
putational resources are required during surgery. For example, the Sturgeon
classifiers shown here can classify a megalodon output file containing data
from 32610 reads in 17 seconds on a AMD Ryzen 7 6800H CPU. As the clas-
sification step practically poses no constraint on the time it takes to classify a
sample, it is possible to run multiple Sturgeon classifiers in parallel. We show
that the models perform robustly across different sequencing devices (min-
ION and PromethION), laboratories (Utrecht and Berlin) and methylation
calling methods (Megalodon and Nanopolish). However, as any other methyla-
tion classifier to date, performance is limited by tumor purity in the analyzed
sample, and cannot account for intratumor heterogeneity.

We envision training of improved versions of Sturgeon as more data
becomes available. The class definition used in the Capper et al. data, used
for training Sturgeon, has since been updated several times, with the addi-
tion of many new classes (WHO Classification of Tumours Editorial Board
2022). However, to our knowledge, no up-to-date training dataset is avail-
able to the community for these new classes and therefore Sturgeon is unable
to discern them. Furthermore the 450K arrays used by Capper et al. have
since been surpassed by EPIC arrays with nearly twice as many CpG sites.
Training Sturgeon on EPIC datasets would thus increase the information
density per sequence read, and likely shorten the time to diagnosis. Further-
more, with nanopore-based methylation sequencing becoming a real alternative
to array-based techniques, more sizable patient cohorts with nanopore-based
methylation profiling may become available. Including such truly genome-wide
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datasets in the model training will make them more robust as more sites in
the genome can be leveraged to make a prediction in the sparse situation.

Leveraging all available data for training Sturgeon is complicated due to
data sharing restrictions as a result of privacy legislation that follows from the
patient’s consent. Sturgeon is ideally suited to address this as it can readily be
employed in a federated learning setting. Herein, rather than collecting training
data at a central location, the model is distributed to participating institutes
for training with local data for model refinement. Models are then returned to
a central point to incorporate model updates after which the model is redis-
tributed. Moreover, due to the simulation approach employed by Sturgeon, we
envision that different types of training data, such as Infinium (450K or EPIC),
nanopore or bisulfite sequencing data can all be naturally accommodated.

Ultra rapid methylation sequencing may hold great potential for several
other fields of application. An increasing number of tumor types are routinely
analyzed and/or diagnosed using EPIC arrays. Typical turnaround times for
these arrays is four days or more, which can cause undesirable patient distress
and anxiety. The Sturgeon approach may be a straightforward approach to
drastically reducing the diagnostic TAT in these cases. Moreover, the required
equipment cost is low; a consumer grade computer and a minION device,
amounting to a combined investment of 2-3 thousand euros, can already be
sufficient. This low capital investment also makes the application ideally suited
for diagnostics in settings where finances are limited or where no dedicated
pathologists are available. Return on investment may further be increased by
considering that nanopore sequence reads can also be used to identify copy
number variation (CNV) profiles. While this would require increased sequenc-
ing depth compared to the intraoperative application described here, the
sequencing device can continue sequencing after a methylation-based diagno-
sis is reached. Sufficient coverage can easily be obtained using a single flowcell,
thus providing very cost-effective whole-genome methylation profiling as well
as CNV profiling for additional diagnostic consideration.

When implementing the Sturgeon approach in clinical practice, further
improvements can be considered. For instance, sequencing can be performed
on two flowcells simultaneously. This can further speed up sequencing time,
by pooling the data from both flowcells, or aid in preventing wrong diagnoses
due to “sampling errors”, by treating the data from both (or more) flowcells
as duplicates. Alternatively, larger (but more expensive) sequencing devices
such as PromethION, are available and could similarly improve the speed or
reliability of the method.

In conclusion our results demonstrate that TATs of one and a half hours
are feasible for the majority of samples. This is fully compatible with the time-
lines of conventional intraoperative histological assessment of the sample. We
envision clinical application of Sturgeon to be deployed parallel to histological
assessment by a trained pathologist who then also integrates the results into
a final verdict. Using Sturgeon in this way could also reduce the requirement
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for a confidence score of >0.95 since the pathologist will always weigh the pre-
dicted tumor class in the context of the observed tumor histology. Sturgeon
can thereby play an important role in guiding decision making in challeng-
ing cases where the histological picture is ambiguous. As a result, Sturgeon
offers tangible potential to prevent second surgeries or surgical comorbidity
and improve patients’ quality of life.

4 Methods

4.1 Data simulation

Short nanopore sequencing runs yield low (<1X) and random coverage of the
genome. To enable model training, we generate simulated sparse nanopore runs
based on the microarray data. To this end, N simulated reads are randomly
sampled from the read length distribution (D) and assigned a start mapping
position in the genome. N and D are defined based on a nanopore whole genome
sequencing run (Figure 1). Forward or reverse direction is chosen at random.
Reads are clipped at the start/end of the chromosome. Given this set of reads,
the covered CpG sites are determined and their binarized methylation status
is obtained from the microarray sample. To include measurement noise due
to the nanopore methylation calling error rate, 10% of the covered CpG sites
are randomly flipped. To reduce overtraining on specific sparsity levels, we
simulate runs ranging from 5 to 60 minutes of sequencing in 5 minute intervals
and combine the samples of different sparsity levels in a balanced fashion in a
single training set (see below). To ensure reproducibility and avoid simulation
leakage between samples of the different cross-validation folds, simulations can
be completely deterministic (with the exception of noise) given a random seed
and the simulation time.

4.2 Cross-validation

To assess model performance the Capper et al. dataset (Capper, Jones, et al.
2018) is split in four equally sized class-stratified folds. Two folds are used for
submodel training, one for validation to assess the best model state during
training and to perform score calibration. The final fold is used for testing
to assess the submodel performance. Folds are rotated so that a total of four
submodels are obtained. Simulation seeds are kept separate between the three
folds: we used seed values between 0-499 for the test fold, between 500-999 for
the validation fold and between 1000-1001000 for the training fold.

4.3 Submodel training

Sturgeon is a neural network containing three fully connected layers. The first
two layers have 256 and 128 dimensions respectively, and are followed by a
sigmoid activation. The last linear layer has a dimensionality equal to the
number of classes to be predicted (91 dimensions for the general classifier, and
30 dimensions for the brainstem classifier). Dropout rate between layers was
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set to 0.5. As classification loss cross-entropy with uniform weights was chosen.
We train the neural network in a two step process: we first pretrain a neural
network on the Capper et al., 2018 classes (91 classes) using simulations that
range between 0.6% and 14% sparsity. We then finetune this neural network
for the final classifier by training using simulations that range between between
0.6% and 6.3% sparsity. For the brainstem classifier, the last layer is substituted
by an untrained layer with the correct dimensionality (30 classes).

We pretrain the initial neural network for a total of 3000 epochs with a
batch size of 256. For this purpose the AdamW optimizer (Loshchilov 2019)
is used with a starting learning rate of 1e-5 that increases linearly for the
first 1000 training batches until 1e-3; afterwards, it is decreased using a cosine
function until it reached 1e-4 on the 1000th epoch; we then keep training at a
constant learning rate of 1e-4 for 2000 epochs. Other parameters of the opti-
mizer are: β1 = 0.9, β2 = 0.999, ϵ = 1e-8 and λ = 0.0005. We define one epoch
as the number of reference samples in the most abundant class multiplied by
the number of output classes. For every 2000 training batches the current
weights of the model are saved; and the model is evaluated on 50 validation
batches (12.800 samples) by calculating their average loss and sensitivity. Val-
idation batches are sampled in the same manner as the training batches, with
the exception that simulation seeds were independent. We finetune the neu-
ral network using the exact same parameters as described for the pretraining,
with the exception that we finetune for 3000 epochs with a constant learning
rate of 1e-4.

During inference, we classify samples using the four trained submodels and
use as final classification the scores from the model with the highest confidence.

4.4 Adaptive Sample Balancing

Because of class imbalance in the training dataset, all classes are upsampled
such that they are equally represented by simulating additional samples for
classes smaller than the largest class. Similarly, we balance the sequencing
sparsity levels such that the training data for each class consists of samples
that have a uniform distribution of simulated sequencing times. At the end
of each epoch, we recalculate the class balance by increasing the upsampling
of classes and/or simulation times for which the model performs worse. Con-
versely, classes and/or simulation times for which the model performs well
are upsampled relatively less. The number of samples for each class (c) and
sparsity level (t) for epoch i+1 is provided by:

Fig. 7 Adaptive sampling function
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We add a correction constant (0.3), to avoid completely removing classes
or timepoints from the epoch. The total number of samples per epoch is kept
constant, based on the first epoch.

4.5 Score calibration

To calibrate the classifier scores, enabling interpretation of these scores as con-
fidence scores, we use temperature scaling (Guo et al. 2017). To optimize the
calibration, we simulate each validation fold sample sample 500 times (using all
validation fold seeds) for all sparsity levels (between 0.6% and 14% sparsity).
Given the whole reference dataset, 2801 samples, this results in 16.806.000
total simulations. Based on these data we optimize the temperature parameter.
To this end the non-scaled logits output from the last layer of the network are
used to minimize the class weighted cross-entropy after dividing the non-scaled
logits by the temperature parameter. For this purpose we use the L-BFGS
algorithm implemented in PyTorch with learning rate 0.01 and a maximum of
500 iterations. We evaluate the calibration of the model using the Expected
Calibration Error (ECE), a statistical measure that summarizes the difference
between classifier accuracy and confidence. The ECE is defined as the weighted
average of the absolute difference between accuracy and confidence on equally
sized bins B (here we use 10 bins).

Fig. 8 Score calibration function

4.6 Model evaluation

We assessed the final performance of the model on the left-out test-fold sam-
ples. For this purpose, each sample was simulated 500 times and for all sparsity
levels. In this way, each sample contributes 6000 simulated samples to the test
set. We report top1 and top3 F1-scores for each class individually across all
time intervals, as well as average metrics across classes.

4.7 Pseudotime

To reduce costs, some Nanopore sequencing samples used for validation were
multiplexed in a MinION or PrometheION flowcell. Multiplexed sequencing
times are not directly comparable to sequencing runs of a single sample. Simi-
larly, samples sequenced on PrometheION flowcells are not directly comparable
to MinION flowcells due to their larger throughput. In order to make these
runs comparable to a real intraoperative scenario (one sample and one MinION
flowcell), we use the number of Megalodon CpG calls as a proxy for sequencing
time. This also avoids skewing the data for samples with shorter or longer than
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average read lengths. We use the median amount of CpG calls per 5 minute
time bin from all MinION sequencing runs as the expected sequencing through-
put (Supplementary Figure 11). The number of CpG sites collected from
5 to 60 minutes in increments of 5 minutes is: 51924, 104073, 124078, 149111,
173504, 194399, 207456, 217193, 232101, 241278, 247600, 258197). Thus, in
a multiplexed sequencing run, we take the first N reads until the expected
CpG calls are reached for that time bin. Furthermore, because the number of
CpG calls is directly correlated with sequencing throughput (Supplementary
Figure 11), differences in read length distribution are not affected by this.
Finally, this also allows us to properly simulate the ramp up in sequencing
throughput that happens during the first minutes of sequencing.

4.8 Robustness analysis

To analyze the robustness of the results on our Nanopore sequencing runs,
we randomize the order of the sequenced reads and simulate 12 consecutive 5
minute (pseudotime) sequencing bins. We randomize the sequenced read order
of each sample 100 times and evaluate in which time bin the desired threshold
would have been reached and whether the classification was correct or not.

4.9 Methylation profile validation

EPIC arrays are routinely performed on pediatric CNS cancer samples. We
gathered 95 such profiles that were generated in the routine diagnostic pro-
cess within the princes Máxima pediatric cancer center. Raw EPIC profiles
were binarized with a cutoff of beta >0.6 using scripts kindly provided by the
authors of (Kuschel et al. 2021). EPIC probes were downsampled to match
those within the 450K set (the number available in the reference cohort). We
then simulate 500 nanopore runs at 12 sparsity levels as described above. The
EPIC profiles were all submitted to the heidelberg v11b classifier (with the
exception of PMC 20 which was classified with classifier v12.5), results (clas-
sification and score) thereof are listed in Supplementary table 7. Samples
were also labeled with a “final diagnosis”, the result of a combination of his-
tological assessment, imaging, CNV profiling and molecular characterization
which we consider the ground truth.

4.10 Classification of publicly available nanopore
sequencing data

We downloaded nanopore sequencing data from GSE209865. Of note, this
dataset consists of processed sequencing data, which uses a different processing
method, using Guppy and nanopolish, and mapping to hg19 (Kuschel et al.
2021), which can result in a reduced number of CpG calls compared to using
megalodon combined with a rerio model (Yuen et al. 2021); but also results in
binary methylation calls for EPIC methylation probes and can thus directly
be used for Sturgeon classification.
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4.11 DNA extraction and library prep

DNA is extracted from a tumor sample using an adapted Qiagen QiaAmp
mini protocol. A tumor sample of roughly 5x5x5mm is (ideally) used as input
material. 180uL ATL buffer is added to the sample and the sample is shortly
ground using a pestle, then 200uL buffer AL and 20uL Proteinase K are added
and the sample is moved to a 70 degree heat-block. Once heated the sample
is ground with a pestle every minute to improve proteinase K accessibility.
When the sample contains no more solid tissue or after five minutes of incu-
bation/grinding, the sample is added to a Qiashredder column (Qiagen ID:
79656), not including any solid matter if still present. Shredder column is cen-
trifuged at 20.000xG for 1 minute. 200uL of 96% ethanol is added to the eluate
and the eluate is moved to a qiaAmp column and centrifuged for 1 minute at
6000xg. The column is washed with 500uL AW1, centrifuged at 6000g for 1
minute, then with 500uL AW2 at 12.000xg for 1.5 minute. Remaining ethanol
is removed in a fresh elution column, centrifuged at 12.000xg for 30 seconds.
Sample is eluted with 25 uL of MilliQ water. Samples are quantified using a
nanodrop. Samples are library prepped using the Oxford Nanopore RBK004
kit using 600 ng input material and following manufacturers instructions for
other steps.

4.12 Flowcell loading

ONT MinION sequencing initializes with a pore scan, which takes around 5
minutes and produces no sequence reads. Therefore we start the sequencing as
soon as the sample arrives in the lab, so that sequencing commences as soon as
the library is loaded onto the flowcell. Flowcells are primed using 800uL Flush
Buffer (from ONT flowcell priming kit) at the start of the DNA isolation, after
five minutes the flowcell is flushed with 200uL flush buffer and sequencing
is initiated at which point the software will first perform a pore scan. The
DNA library is loaded as soon as it is ready, at which point the pore scan has
typically finished and actual sequencing commences.

4.13 Methylation calling

To call methylation from nanopore data we use Megalodon V2.5.0, which runs
with Guppy V5 to perform basecalling and mapping to the CHM13 reference
genome. To call per-read-per-site methylation we use the Rerio CpG methyla-
tion model as described by Yuen et al. (Yuen et al. 2021). Methylation calls are
collated to the 450K CpG sites using 50 base pairs windows centered on the
CpG site targeted by each infinium probe. If multiple CpG sites are present
within the 50 base pairs window, majority voting is used to convert the calls
to a single call per read. When multiple reads cover the same infinium probe
site, majority voting is also used to create a methylation call. The methylation
calling error rate was evaluated by comparing the methylation calls between
nanopore sequencing and the microarray data for the same samples where both
methods were available. This indicated a consistent concordance of 88-90%
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between binarized array data (beta cutoff at >0.6) and nanopore methylation
calls (Supplementary Table 1). The error rate is evenly distributed between
false positives (calling unmethylated sites as methylated) and false negatives
(calling methylated sites unmethylated).

4.14 Live analysis

We developed a custom R script to run parallel to the sequencing software. As
we noticed that megalodon outperforms the default guppy methylation calling,
we run minKNOW with disabled basecalling. MinKNOW outputs fast5 files,
each containing 4000 reads. The R script checks the minKNOW output folder
for new fast5 files, and checks if they contain 4000 reads. Complete fast5 files
are copied to a separate working directory where they are processed using
megalodon. qCat is used to identify barcodes and depending on user settings
either the most frequent or a user-specified barcode is selected. “Per-read-
per-site” methylation calls originating from reads with the selected barcode
are saved and sturgeon is run. Sequencing and analysis are performed on an
ASUS TUF A15 FA507RR-HN003W laptop with 64Gb RAM. All live analysis,
including the experiment registered on film, were performed with an earlier
version of the general model (V1), that had not been as extensively trained as
the model presented in this work (V2). Results for the live analysis with the
older model version can be found in Supplementary Figure 18, and results
for the new model version can be found in Supplementary Figure 19.
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