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Abstract  21 

serosim is an open source R package designed to aid inference of serological surveys, by 22 

simulating data arising from user-specified vaccine and infection-generated antibody kinetics 23 

processes using a random effects model. Serological surveys are used to assess population 24 

immunity by directly measuring individuals’ antibody titers. They uncover locations and/or 25 

populations which are susceptible and provide evidence of past infection or vaccination to help 26 

inform public health measures and surveillance. Both serological surveys and new analytical 27 

techniques used to interpret them are increasingly widespread. This expansion creates a need 28 

for tools to simulate serological surveys and the processes underlying the observed titer values, 29 

as this will enable researchers to identify best practices for serological survey design, and provide 30 

a standardized framework to evaluate the performance of different inference methods. serosim 31 

allows users to specify and adjust model inputs representing underlying processes responsible 32 

for generating the observed titer values like time-varying patterns of infection and vaccination, 33 
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population demography, immunity and antibody kinetics, and serological survey sampling design 34 

in order to best represent the population and disease system(s) of interest. This package will be 35 

useful for planning sampling design of future serological surveys, understanding determinants of 36 

observed serological data, and validating the accuracy and power of new statistical methods. 37 

 38 

Author Summary  39 

Public health researchers use serological surveys to obtain serum samples from 40 

individuals and measure antibody levels against one or more pathogens. When paired with 41 

appropriate analytical methods, these surveys can be used to determine whether individuals have 42 

been previously infected with or vaccinated against those pathogens. However, there is currently 43 

a lack of tools to simulate realistic serological survey data from the processes determining these 44 

observed antibody levels. We developed serosim, an open source R package which enables 45 

users to simulate serological survey data matching their disease system(s) of interest. This 46 

package allows users to specify and modify model inputs responsible for generating an 47 

individual’s antibody level at various levels, from the within-host processes to the observation 48 

process. serosim will be useful for designing more informative serological surveys, better 49 

understanding the processes behind observed serological data, and assessing new serological 50 

survey analytical methods. 51 

 52 

 53 

 54 

 55 

 56 

 57 

 58 

 59 

 60 
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Introduction 61 

Serological surveys, also known as serosurveys, measure individual biomarker quantities, 62 

namely antibody titers, across populations to help uncover important hidden epidemiological 63 

variables such as susceptibility and past epidemic and vaccination trends[1]. These hidden 64 

variables are required to predict and prevent outbreaks at the population level, and while they 65 

may be indirectly inferred via vaccination coverage and incidence data, this inference is subject 66 

to inaccuracies since vaccination coverage does not directly translate to individuals immunized 67 

and incidence data is often underreported and incomplete[2–8]. Properly designed and analyzed 68 

serological surveys mitigate these issues by providing direct measures of population level 69 

immunity[9,10]. 70 

 71 

  The optimal design and interpretation of serological surveys depends on many factors, 72 

including the antibody class or biomarker measured, the age at which individuals are sampled, 73 

the frequency of sampling, the assay used for analysis, etc[1,6]. These features yield different 74 

insights into processes associated with the immune landscape (e.g., who is and isn’t protected 75 

from infection or disease by pre-existing immunity): cross-sectional serosurveys provide a 76 

snapshot of the seropositivity rates and therefore the proportion of individuals protected against 77 

a pathogen (which might be used to target vaccination campaigns[1,10]), while longitudinal 78 

serosurveys can also yield estimates of seroconversion events between sampling times, and 79 

antibody waning rates[11]. Difficulties arise in serosurvey design and analysis as researchers 80 

strive to achieve a representative sample of the target population to make generalizations at larger 81 

scales, or attain the right temporal sampling density to capture parameters of interest like waning 82 

rates[6].  83 

 84 

Serosurvey analysis is complicated by the various unobserved and complex 85 

immunological and epidemiological processes which generate an individual’s observed biomarker 86 
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quantity. Statistical and mathematical models designed to interpret observed antibody titers, or 87 

biomarkers more generally, range from simple measures of seroconversion or seropositivity (e.g., 88 

serocatalytic models [12,13]) to complex models of within- and between-host processes (e.g., 89 

hierarchical models of antibody kinetics [14–16]). All of these approaches aim to make useful 90 

inferences about exposures and immunity without exhaustively capturing all features of the true 91 

data-generating process[8,12,17]. More realistic models describe the link between observed 92 

biomarker measurements and latent infection and vaccination states (Fig 1) and can be used to 93 

calculate the likelihood of an infection, and estimate antibody kinetics parameters (see Supporting 94 

Text 1.2 of Hay et al., 2020 for a full description) [14–16]. These models typically describe key 95 

features of the multi-level data-generating process: the population-level processes which govern 96 

rates of exposure; the within-host processes which determine immunity and latent antibody 97 

kinetics; and the observation process which dictates the relationship between observed and true 98 

biomarker quantities (Fig 1). Additionally, hierarchical Bayesian models can help account for the 99 

variability from multiple epidemiological processes which can improve our understanding of 100 

heterogeneities driving disease dynamics[14,15].  101 
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 102 
Fig 1. Directed acyclic graph representation of the full serosim model. Each model level is shown 103 

within a box with stochastic dependencies depicted by a solid arrow and deterministic dependencies by a 104 

dashed arrow. Parameters/latent states of interest are depicted within the blue circles while the red square 105 

represents the observed state. The unobserved processes level (latent states) contains the epidemiological 106 

model (exposure model and immunity model) and the antibody model while the observed processes level 107 

contains the observation model. The probability of a successful exposure event x for individual i at time t 108 

(𝜙𝑖,𝑡,𝑥) is determined by the user-specified exposure and immunity models (1,2,3) while 𝑍𝑖,𝑡,𝑥 is the binary 109 

state indicating whether individual i was infected or vaccinated by exposure event x at time t as determined 110 

by a Bernoulli trial (4). The antibody model (5) specifies how the true quantity of biomarker b for individual 111 

i at time t (𝐴𝑖,𝑡,𝑏) is generated. Lastly, the observation model (6) specifies how the observed quantity of 112 

biomarker b for individual i at time t (𝑌𝑖,𝑡,𝑏) is generated as a probabilistic function of the true, latent 113 

biomarker quantity A.  114 

 115 

 116 

 117 
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Although new analytical techniques have been developed to aid in the interpretation of 118 

serological surveys[9,13,15,16,18], there is a need for common frameworks to simulate observed 119 

serological data arising from complex hidden and unobserved epidemiological and immunological 120 

processes within different pathogen systems. By simulating synthetic datasets from different 121 

complex generative models where the true, full complexity of the data generating process is 122 

specified but not observable, such frameworks can be used to assess the performance and trade-123 

offs of new analytical techniques. The serosim package allows users to simulate observed 124 

biomarker quantities arising from a user-specified set of between- and within-host processes. 125 

These simulations provide datasets to evaluate different statistical methods and study designs, 126 

allowing users to specify and adjust model inputs to best represent the population and disease 127 

system(s) of interest.  128 

 129 

We envisage three main use cases for serosim:  130 

● Plan serosurvey sampling strategies by simulating various observation processes (varying 131 

sample sizes, sampling frequency and assay characteristics) and analyzing the inferences 132 

that can be made given the quality of the generated data (e.g., power analyses).  133 

● Uncover the underlying immunological and epidemiological mechanisms responsible for 134 

observed biomarkers (e.g., antibody titers) by comparing simulations under different 135 

models and parameter values to existing serological survey results. 136 

● Generate synthetic serological data from complex, user-specified generative models to 137 

assess the performance and trade-offs of inference models. 138 

 139 

 140 

Here, we explain the structure of the serosim package and its implementation. We then 141 

outline the components required for the main function, runserosim, explain their purpose and 142 

structure, outline useful tools available within serosim to aid in their construction and provide a 143 
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simple example case study. Additionally, we direct users to two additional case study vignettes, 144 

available in the package, structured in the same order as the following methods subsections to 145 

assist users in constructing the required simulation inputs under different contexts. Lastly, we 146 

demonstrate a simple use case for serosim; using simulation-recovery experiments to assess the 147 

sensitivity and specificity of different biomarker thresholds of seropositivity. 148 

 149 

 150 

  151 
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1 Methods 152 

  153 

Approach 154 

Serosim allows users to define the data-generating process underpinning theoretical 155 

serosurvey data with maximum flexibility. To define the different stages of the simulation, we first 156 

consider what a generic, full likelihood and prior function would look like to estimate antibody 157 

kinetics and epidemiological parameters conditional on a set of observed biomarker quantities in 158 

a Bayesian framework (Equation 1, also see [15,19,20]). Each probabilistic term in this equation 159 

corresponds to a stochastic event in the simulation (though deterministic models may also be 160 

implemented in the same framework). There are a number of indices which must first be described 161 

(Table 1). Each individual is denoted i, t denotes the discrete time period during which an 162 

exposure event or observation could take place and j denotes all time periods prior to t. Each 163 

biomarker which we are concerned with, either as latent quantities or observations are denoted 164 

b, and may be stimulated by one or more exposure events denoted x. Each individual may be 165 

associated with a set of demographic information, Di including a group identifier g.  166 

 167 

 168 

(1) 169 

 170 

 171 

 172 

 173 

 174 

 175 

 176 

 177 

 178 

 179 

 180 
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Table 1. Names and descriptions of the variables used in the serosim package. 181 

Variable Name  Description 

Inputs 

i Individual Unique individual identifier. 

t Time Time point at which an individual may be exposed or have a biomarker 

quantity calculated. 

x Exposure event Identifier for each exposure event which can generate an immunological 

response in the model (e.g., infection with a SARS-CoV-2 variant or 

vaccination with a multivalent vaccine). 

b Biomarker  Identifier for the biomarker(s) boosted in response to a particular antigen 

present in the exposure event (e.g., pathogen-specific ELISA IgG titers, 

microneutralization titers etc.). 

g Group Group identifier, allowing group-specific force of infection and vaccination 

parameters (e.g., spatial structure). 

D Demography data Additional demographic data which may impact the infection generation 

process, the immunity model and/or antibody kinetics (e.g., age-

dependent antibody waning rates or vaccination schedule). 

λ Force of exposure 

(FOE)  

Parameters for the exposure process model, ultimately used to generate 

a probability of infection or vaccination for a given time period t. 

Ө Antibody, immunity 

and observation 

model parameters 

Parameters governing the within-host process models (e.g., how 

biomarker quantities change over time-since-infection and how immunity 

depends on past exposure events).  

Outputs 

Φ Time varying 

probability of a 

successful 

exposure event 

Probability of exposure (determined by the exposure model) multiplied by 

the probability of a successful exposure event defined as a measurable 

immunological response (determined by the immunity model). 

Z Exposure history 

array 

Array of latent binary states (i.e., 0 or 1) representing the time points and 

exposure events that an individual has been infected or vaccinated at. 

A True biomarker 

quantity  

True, latent biomarker quantity predicted by the antibody kinetics model 

prior to simulating the observation process. 

Y Observed 

biomarker quantity 

Observed biomarker quantity assuming some observation process 

dictating the distribution of Y as a function of A. 

 182 
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Serosim combines the unobserved and observed processes which together contain three 183 

different model levels (Fig 1, Table 2). The unobserved processes are composed of the 184 

epidemiological model and antibody model. The epidemiological model contains the exposure 185 

model h which will determine the probability that an individual i is exposed in an exposure event 186 

x and the immunity model m which will determine whether that exposure event is successful at 187 

generating or boosting biomarker quantities given any relevant factors (e.g., vaccination schedule, 188 

titer threshold required for protection, etc.). For the purpose of serosim, exposure events x are 189 

defined as any event which leads to biomarker b production, irrespective of any associated 190 

disease onset. This definition of exposure allows users to track vaccination, infection and re-191 

infection events simultaneously but separately alongside the biomarkers produced as a result of 192 

different exposure events. Biomarkers b can represent antibodies binding the entire virus or a 193 

specific epitope depending on the user’s preference and assay characteristics. Users will define 194 

the biomarker(s) affected by each exposure type within the exposure-to-biomarker map which 195 

follows a many-to-many relationship and tells the antibody model f which biomarker(s) (e.g., which 196 

specific antibody titers) will get boosted and tracked after each exposure event x, allowing for 197 

simulation of a diverse range of pathogen systems [10,18,21–24] (Fig 2).  198 

Table 2. serosim framework. 199 

Unobserved processes Observed processes 

Epidemiological model Antibody model Observation model 

1. Exposure model 

(h):  

will determine the 

probability that an 

individual is exposed to 

an exposure event 

which can be any event 

which leads to 

biomarker production 

2. Immunity model 

(m):  

determines whether an 

exposure event is 

successful conditional 

on what the actual 

exposure is 

(vaccination, infection 

or re-infection) and the 

relevant factors 

3. Antibody model 

(f): tracks  antibody 

kinetics, or more 

broadly biomarker 

kinetics for each 

biomarker produced 

from successful 

exposure events  

4. Observation model (q): 

indicates how observed 

biomarker quantity Y  are 

generated as a probabilistic 

function of the true, latent 

biomarker quantity  A 

 

 200 
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 201 
Fig 2. Exposure to biomarker mapping example scenarios.  The biomarker map specifies the exposure 202 

events x and biomarkers b of interest for the user's simulation. Exposure events x are defined as any event 203 

which leads to biomarker production. Biomarkers b can represent antibodies against the entire virus, a 204 

specific epitope or a specific antibody class depending on the user’s preference and assay characteristic. 205 

Here, we provide various examples of biomarker maps to illustrate the flexibility over the data-generating 206 

process provided to the user.  207 

 208 

 209 

We distinguish between exposure event x and biomarker b to allow both a single exposure 210 

event to boost multiple biomarkers (e.g., antibody titers of multiple antigens following a multivalent 211 

vaccine of a single infection) and also to allow the same biomarker to be boosted by multiple 212 

exposure events (e.g., both vaccination and natural infection boosting the same biomarker) (Fig 213 

2). This distinction also allows the user to assign different biomarker kinetics parameters (e.g., 214 

boosting and waning rates) to different exposure events. Biomarkers can also represent different 215 

antibody classes (e.g. IgM and IgG) allowing users to assign different time signatures to 216 

biomarkers tracked within the simulation. Users can also incorporate multi-dose vaccines given 217 
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at different ages by breaking up the vaccine exposure events into multiple exposure events for 218 

each vaccine dose. This will allow users to set different age restrictions and antibody kinetics 219 

parameters for each dose. Although a majority of serosim use cases will track antibodies as 220 

biomarkers, we use “biomarker” as a broader term to accommodate newer technologies emerging 221 

which don’t measure antibodies directly but rather measure a proportional biomarker[25]. For the 222 

purposes of this paper and example vignettes in serosim, the term biomarker and antibody are 223 

used interchangeably. 224 

 225 

The immunity model m then determines whether that exposure event x is successful 226 

conditional on what the actual exposure is (vaccination, infection or re-infection) and any relevant 227 

factors, discussed later. The antibody model f  tracks  antibody kinetics, or more broadly biomarker 228 

kinetics for each biomarker produced from successful exposure events  through time . The 229 

exposure, immunity and antibody models make up the complex, unobserved processes 230 

responsible for generating an individual’s true biomarker quantity A (Fig 1, Table 2). 231 

 232 

The second and final level contains the observation model q which specifies the 233 

serological survey observation process to indicate how observed biomarker quantity Y are 234 

generated as a probabilistic function of the true, latent biomarker quantity A (Fig 1, Table 2).  235 

Users can also specify the sampling design (time, frequency and sample size) for the serosurvey 236 

and any assay characteristics (sensitivity, specificity and detection limits). Although the 237 

underlying, unobserved model inputs can be varied, serosim ultimately produces the same output: 238 

observed biomarker quantities Y. 239 

 240 

 241 

 242 

 243 

 244 

 245 
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Implementation 246 

The serosim package is written in the R programming language. Package dependencies 247 

are ggplot2[26], data.table[27], tidyverse[28], patchwork[29] and reshape2[30]. All code is publicly 248 

available on GitHub (https://github.com/AMenezes97/serosim). For the following sections 249 

describing the code, typewriter font refers to function arguments while bold font refers to R 250 

functions. 251 

 252 

The core of serosim is contained within the runserosim function, where users specify 253 

each of the required model inputs (S1 Table). This function must take a number of default 254 

arguments described in S1 Table, but additional optional arguments may also be provided for 255 

user-written functions. This gives the user flexibility to tailor their own settings, models and 256 

parameters to their population and disease system(s) of interest. For example, if the user wishes 257 

to model a fully immunizing pathogen system like measles they can specify an immunity model 258 

which only allows individuals with biomarker quantity (e.g. IgG antibody titer) below a specified 259 

threshold to become infected and restrict re-infections. If the user wishes to model a pathogen 260 

system with multiple infection events and cross-reactivity between different pathogen strains like 261 

influenza then they would specify an immunity model where the probability of infection is 262 

conditional on an individual’s biomarker quantity (e.g., antibody titer) from any cross-reacting 263 

antibodies and allows for multiple infection events. These models would be specified within their 264 

respective runserosim argument and any additional arguments needed will be passed at the end 265 

of runserosim. Users are not constrained to data structures of particular dimensions or types, 266 

and thus all of the model components can be extended to any desired level of complexity. 267 

 268 

The serosim package includes tools to help the user generate the necessary inputs for the 269 

runserosim function, discussed below in their respective sections. Additionally, there are some 270 

ready-to-use model functions built into the serosim package for convenience (S4-8 Tables). If any 271 
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of these model functions meet the needs of the user’s disease system and simulation model, the 272 

user simply has to specify the desired function as its corresponding argument within the 273 

runserosim function. These ready-to-use functions also provide a helpful framework if users wish 274 

to create their own function or make modifications to an existing function.  275 

 276 

 The following subsections 1.1-1.7 step through the process of building and specifying the 277 

required inputs for a simulation presented in the same order as Figure 3. We have also integrated 278 

the README example available within the package within this description.    279 

 280 

 281 

 282 

 283 

 284 

 285 

 286 

 287 
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Fig 3. Required inputs, models and subsequent outputs from the main serosim function, 289 

runserosim. In order to build a simulation with serosim, users must follow the 7 steps outlined here and in 290 

the methods section to specify the required inputs and models for runserosim. Steps 1-3 specify initial 291 

simulation inputs while steps 4-7 specify the bulk of the unobserved and observed processes. For steps 4-292 

7, we outline the user-specified inputs in the left column which are used for the user-specified models as 293 

depicted by the sampling statements in the middle column. Lastly, the generated outputs produced once 294 

the simulation is complete are depicted in the right column. 295 

 296 

 297 

1.1 Simulation settings  298 

Here, the user specifies the start and end time for the simulation. The model will simulate 299 

from the initial time point to the final time point in increments of one unless specified otherwise. 300 

Note that these are arbitrary time steps selected by the user which will need to be scaled to the 301 

right time resolution to match any time-based parameters used in the model (e.g., antibody 302 

waning rates). In this example, we simulated a ten year period at the monthly timescale by setting 303 

the start and end time points to 1 and 120. 304 

 305 

1.2 Population demography  306 

Users will specify the population size and have the option of specifying any population 307 

demographic elements of interest and relevance for the subsequent models like an individual’s 308 

socioeconomic status, nutritional status, sex, group, birth time, etc… via the demography tibble 309 

[31]. See S1.1 Text for information on how to use the generate_pop_demography function to 310 

build your demography tibble.  311 

 312 

For this example, we simulate a population with 100 individuals and we are not interested 313 

in tracking any demographic information other than an individual’s birth time. We will use the 314 

generate_pop_demography function to simulate random birth times and create the 315 

demography tibble needed for runserosim. 316 

 317 

 318 
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1.3  Exposure to biomarker mapping 319 

Here, users specify the relationship between exposure event x and biomarker(s) b (Fig 2). 320 

This example assumes one circulating pathogen responsible for a natural infection exposure 321 

event (exposure_ID=ifxn) and one vaccine exposure event (exposure_ID=vacc) both of which will 322 

boost the same biomarker (biomarker_ID=IgG) (S1 Fig). runserosim requires that exposure and 323 

biomarker IDs are numeric so we will use the reformat_biomarker_map function to create a new 324 

version of the biomarker map (S1.2 Text, S1 Fig). Users can go directly to the numeric version if 325 

they wish (S1 Fig). 326 

 327 

1.4 Exposure model  328 

Here, users specify any known information on force of exposure for all exposure events x 329 

and the first part of the epidemiological model, the exposure model h. We distinguish between 330 

the probability of exposure (determined by the exposure model) and the probability of an exposure 331 

event generating a successful immunological response (determined by the immunity model), so 332 

that the latter can take into account important immunological and epidemiological considerations. 333 

For example, an individual’s probability of exposure to exposure event x which is specified at the 334 

population level might be different from their probability of becoming immunized conditional on 335 

what the actual exposure event is (vaccination, infection or re-infection) and any relevant factors 336 

(e.g. age, number of past vaccinations, current titer level, etc). 337 

 338 

The force of the exposure event (foe_pars) argument is typically a three-dimensional 339 

array indicating the force of exposure for each exposure event in each group (if groups are 340 

specified within demography) in each time period, though this object can also be another data 341 

type for more complex models. Since exposure events can also be vaccination events, we use 342 

force of exposure (FOE) rather than force of infection. If there is only one group specified then all 343 
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individuals will be under the same force of exposure parameter and dimension 1 of foe_pars 344 

will contain just one row.  345 

 346 

Although this package does not include a suite of complex transmission models (e.g., 347 

complex Susceptible-Infected-Recovered models), users can incorporate the outputs of their own 348 

preferred transmission model within runserosim. In foe_pars, users can input the force of 349 

infection generated from their transmission model into the exposure_id dimension associated 350 

with natural infection events. Users can also use the optional exposure_histories_fixed 351 

argument in runserosim to include prespecified information on an individual’s exposure history if 352 

known (See S2.1 Text and S2 Fig). 353 

 354 

The force of exposure (foe_pars) array is called by the exposure model function which 355 

will determine the probability that an individual is exposed. The exposure model, specified by the 356 

exposure_model argument within runserosim, allows the user to determine which factors are 357 

relevant for an individual’s probability of exposure. The exposure model can vary in complexity 358 

with simpler versions calculating the probability of exposure by just taking the exposure event’s 359 

population level force of exposure into account and with more complex versions providing a 360 

functional transformation of the population level force of exposure given an individual's 361 

demographic information specified within demography. For example, an individual can be in a 362 

group (e.g., a location) where the force of exposure is 0.5 but their socio-economic status is high 363 

which might reduce their probability of exposure given that the disease is circulating less in that 364 

socio-economic class. See S4 Table  for more information on the ready-to-use exposure models 365 

included within the serosim package. The exposure model is given by:  366 

𝑃(𝐸𝑖,𝑡,𝑥 = 1) = ℎ( 𝜆𝑔,𝑡,𝑥, 𝐷𝑖)                                       (2) 367 
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where P(𝐸𝑖,𝑡,𝑥 = 1), the probability of an exposure E for individual i at time t to exposure event 368 

x, is a function h of parameters specified within the exposure model, namely 𝜆𝑔,𝑡,𝑥     which 369 

represents the force of the exposure (FOE) at time t in group g from exposure event x. Di 370 

represents relevant demographic information of individual i, which may be used to modulate the 371 

force of exposure term (e.g., if there are differences in FOE by age).  372 

 373 

 For simplicity in this example, we assumed a constant force of exposure for exposure 374 

event one representing natural infection at  𝜆1,𝑡,1 = 0.01 and for exposure event two 375 

representing vaccination at  𝜆1,𝑡,2 = 0.1 for all t. Since we did not specify different groups for 376 

our individuals within demography, all individuals will automatically be assigned group one within 377 

runserosim. Therefore, we only need one row for dimension one in foe_pars. Dimension two 378 

of foe_pars represents the total simulation time so there are 120 columns (where the first 379 

column is time step one, second column is time step two, etc.) and dimension three is for each 380 

exposure event. Similarly, we specified a simple exposure model which calculates the probability 381 

of exposure directly from the force of exposure at that time step. In this selected model, the 382 

probability of exposure (1-e-λ)  depends only on the force of exposure (λ)  at that time. 383 

 384 

  385 
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1.5 Immunity model 386 

The immunity model m, specified by the immunity_model argument, will determine 387 

whether an exposure event is successful in generating an immunological response given any 388 

relevant factors specified by the user. The immunity model can vary in complexity with simpler 389 

versions assuming all exposures are successful and with more complex versions taking into 390 

account what the exposure event is (e.g., a vaccination event or natural exposure to a pathogen), 391 

an individual’s past exposure history, current biomarker quantity and any relevant demography 392 

data. The immunity model is given by: 393 

 394 

𝑃(𝑍𝑖,𝑡,𝑥 = 1| 𝐸𝑖,𝑡,𝑥 = 1) = 𝑚(𝑍𝑖,𝑗<𝑡, Ө𝑖, 𝐷𝑖)                     (3) 395 

where P(𝑍𝑖,𝑡,𝑥 = 1| 𝐸𝑖,𝑡,𝑥 = 1), the probability of successful infection or vaccination of 396 

exposure event x given an exposure, is a function m of parameters specified within the immunity 397 

model. Zi,j<t represents all successful infection/vaccination events at each timepoint j prior to 398 

time t (i.e., the exposure history), Өi  represents the immunity model parameters and Di 399 

represents any relevant demographic data. Note that  400 

P(𝑍𝑖,𝑡,𝑥 = 1| 𝐸𝑖,𝑡,𝑥 = 0) = 0 and P(𝑍𝑖,𝑡,𝑥 = 0| 𝐸𝑖,𝑡,𝑥 = 0) = 1. 401 

 402 

   𝜙𝑖,𝑡,𝑥 = 𝑃(𝑍𝑖,𝑡,𝑥 = 1|𝐸𝑖,𝑡,𝑥 = 1)𝑃(𝐸𝑖,𝑡,𝑥 = 1)                 (4) 403 

 404 

where 𝜙𝑖,𝑡,𝑥 is the probability of successful exposure by exposure type x for individual i at time t 405 

given the probability of exposure 𝐸𝑖,𝑡,𝑥 as determined by the exposure model h and the 406 

probability of a successful exposure event 𝑍𝑖,𝑡,𝑥 as determined by the immunity model m. 407 

 408 

𝑍𝑖,𝑡,𝑥 ~ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝜙𝑖,𝑡,𝑥)                                      (5) 409 

 410 

where 𝑍𝑖,𝑡,𝑥 is the binary state indicating whether individual i was infected or vaccinated by 411 

exposure type x at time t as determined by a Bernoulli trial. 412 
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Users can incorporate immunity from prior infection or vaccination and add limits to 413 

vaccine exposure events to prevent vaccinations after a completed series or before an individual 414 

is eligible. See S5 Table for more information on the ready-to-use immunity models included 415 

within the serosim package. Any immunity model parameters Ө needed for the immunity model 416 

can be specified within model_pars. 417 

 418 

For this example, we selected a simple immunity model where the probability of a 419 

successful exposure event is only conditional on the total number of previous exposure events. 420 

With this model, the probability of successful vaccination exposure depends on the number of 421 

vaccines received prior to time t (j≤t) and age at time t, while the probability of successful infection 422 

is dependent on the number of infections prior to time t (j≤t). We set both the maximum number 423 

of successful vaccination and natural infection events to one and age of vaccine eligibility starting 424 

at nine months old. 425 

 426 

 427 

1.6 Antibody model and model parameters  428 

The antibody model f, specified by the antibody_model argument, is used to track  429 

antibody kinetics, or more broadly biomarker kinetics for each biomarker produced following 430 

successful exposure events given the biomarker kinetics model parameters specified in 431 

model_pars and any relevant demography data specified in demography. Here, users can 432 

specify their preferred model to represent the antibody kinetics process.  433 

 434 
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The antibody model is formulated to capture the possibility of a probabilistic relationship 435 

between exposure history, demography and model parameters with true biomarker quantities. 436 

However, in most cases the user will likely assume that biomarker quantity is a deterministic 437 

function of exposure history, demography and model parameters. In the deterministic case, latent 438 

biomarker quantity A for individual i  at time t for biomarker b given that individual’s vector of latent 439 

infection states Zi, antibody model parameters Өi and relevant demographic information Di can 440 

be generically described by: 441 

 442 

𝐴𝑖,𝑡,𝑏 =  𝑓(𝑍𝑖,𝑗≤𝑡,𝑥 , Ө𝑖 , 𝐷𝑖 )                                   (6) 443 

where 𝐴𝑖,𝑡,𝑏, the true quantity of biomarker b for individual i at time t, is described by a function 444 

𝑓 conditional on parameters specified within the antibody model, including the 445 

infection/vaccination history for individual i for all exposure events which occurred prior to time t 446 

( Zi,j≤t,x ), the antibody model parameters (Өi) and any relevant demography data Di. 447 

 448 

The model parameters tibble, model_pars, specifies any parameters needed for the 449 

antibody model. Like the exposure and immunity models, the antibody model can vary in 450 

complexity depending on the user’s preferences. For example, users could implement an explicit 451 

model of antibody secreting B cells or a biphasic boosting-waning model [32–34].  452 

 453 

The last component of the antibody model layer is the draw_parameters function which 454 

indicates how parameters Ө for the antibody model are simulated from model_pars. Here, users 455 

can either assume a fixed effects or random effects model. A fixed effects model would assume 456 

all individuals are governed by the same set of parameters while the random effects model 457 

assumes each individual has their own unique set of parameters Ө drawn from model_pars 458 
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allowing for individual- and group-level differences in antibody kinetics. See S6 and S7 Tables for 459 

more information on the ready-to-use antibody models and draw_parameters functions included 460 

within the serosim package. The antibody model, model parameters tibble (model_pars) and 461 

draw_parameters function must be structured in agreement with each other. The model 462 

parameters tibble must contain all of the necessary information needed for the draw_parameters 463 

function to simulate all required variables in the antibody model.  464 

 465 

For this example, we selected a monophasic boosting-waning antibody model where 466 

parameters are drawn randomly from a distribution (e.g., see simple hierarchical boosting-waning 467 

model with individual heterogeneity for Salmonella infection [35]). This antibody model assumes 468 

that for each exposure there is a boost and boost waning parameter drawn randomly from a 469 

distribution with mean and standard deviation specified within model_pars (Table 3). 470 

 471 

Table 3. model_pars parameters needed for a monophasic boosting-waning 472 

antibody model with random effects  473 

exposure_ID biomarker_ID name mean sd distribution 

ifxn IgG boost 4 2 log-normal 

ifxn IgG wane 0.0033 .0005 log-normal 

vacc IgG boost 2 1 log-normal 

vacc IgG wane 0.0016 .0005 log-normal 

 474 

 475 

 476 

 477 

 478 

 479 

 480 

 481 

 482 

 483 
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1.7 Observation model 484 

The observation model q, specified by observation_model, along with 485 

observation_times are the last required parts of the simulation which specifies the serological 486 

survey observation process (Table 2). Here, users can indicate how observed biomarker 487 

quantities Y are generated as a probabilistic function of the true, latent biomarker quantity A. The 488 

observation model is given by: 489 

𝑌𝑖,𝑡,𝑏  ~ 𝑞( 𝐴𝑖,𝑡,𝑏, Ө)                                                (7) 490 

where 𝑌𝑖,𝑡,𝑏, the observed quantity of biomarker b for individual i at time t, is a function q 491 

specified by the observation model which specifies which distribution to draw the observed 492 

quantity where the true biomarker quantity 𝐴𝑖,𝑡,𝑏 is the mean and the Ө includes the standard 493 

deviation as well as any parameters governing assay specificity and sensitivity. 494 

 495 

1.7a Assay characteristics  496 

To match their assay of choice, users can incorporate assay detection limits like lower 497 

bounds, upper bounds, and assay output (discrete vs. continuous titers) within 498 

observation_model (S8 Table). Users can also incorporate assay sensitivity, specificity and 499 

assay noise within the observation_model. Noise can be easily added by sampling from a 500 

distribution with the true biomarker quantity, A, as the mean and the measurement error as the 501 

standard deviation such that Yi,t,b ~ N(Ai,t,b ,Ө) where Ө is the standard deviation specified within 502 

model_pars as the “obs_sd” parameter (Table 3). See S8 Table for more information on the 503 

ready-to-use observation models included within the serosim package. Any model parameters 504 

needed for the observation model can be combined into the model_pars tibble for convenience.  505 

For this example, we selected an observation model which observes the latent  biomarker 506 

quantity given a continuous assay with added noise (representing assay and sampling variation), 507 

no limits of detection and user specified assay sensitivity and specificity. We set the observation 508 

standard deviation to 0.25, the assay sensitivity to 85% and the assay specificity to 90%. 509 
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Therefore, 85% of true positive individuals will have their observed biomarker quantity sampled 510 

from a distribution with their true biomarker quantity as the mean and 0.25 as the standard 511 

deviation while the other 15% will be classified as a false negative with a reported biomarker 512 

quantity of 0. On the other hand, the model will accurately report 90% of true negative individuals’ 513 

observed biomarker quantity as 0 with the remaining 10% becoming false positives with an 514 

observed biomarker quantity sampled from the range of observed biomarker quantities.  515 

 516 

1.7b Sampling design  517 

Lastly, users can set the sampling design for the serological survey by indicating  the 518 

timepoints, individuals and biomarkers to sample from with the observation_times input. 519 

observation_times is a tibble of observation times and biomarkers for each individual. If 520 

observation_times is not specified within runserosim then the simulation will observe 521 

quantities of all biomarkers for all individuals at all time steps. For this example, we sample all 522 

individuals at the end of the simulation (t=120) for biomarker one (IgG antibody titer). 523 

 524 

2 Results 525 

Once all arguments have been defined (S1 Table), runserosim is ready to go and 526 

produce its 6 main outputs (S2 Table). Lastly, users can use available functions to visualize the 527 

generated outputs (S3 Table). Here, we have displayed 4 of the runserosim outputs for our 528 

example simulation (Figs 4 and 5). 529 

 530 

 531 

 532 

 533 
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 534 
Fig 4. Individual exposure probabilities and individual exposure history plots from a simulation with 535 

two exposure types. The left hand plot displays the probability of successful (immunity-boosting) exposure 536 

for a simulation with 120 time steps, two exposure events and 100 individuals. The right hand plot displays 537 

the exposure histories for the same simulation. Exposure event one (top row) represents an infection event 538 

and exposure event two (bottom row) represents a vaccination event. NA indicates that an individual was 539 

not available to be exposed in that time period, usually because they were not yet born or entered the study 540 

population. 541 

 542 
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 543 
Fig 5. True and observed biomarker quantity plots. The left hand plot displays the true antibody kinetics 544 

for a simulation with 120 time steps, one biomarker and 100 individuals. This plot displays all 100 individuals 545 

true biomarker quantities for all time steps. The right hand plot displays the observed biomarker quantity at 546 

the observation time (t=120) given the specified observation model. In this example, all individuals alive 547 

during the endpoint (t=120) had their biomarker quantity, in this case antibody titer, measured with a 548 

continuous assay with user-specified noise, sensitivity and specificity. The left hand plot represents the 549 

unobserved process level within serosim generated by the exposure, immunity and antibody models while 550 

the right hand plot represents the observed data generated by the observation model (Fig 1). The true 551 

antibody kinetics for each individual (left hand plot) is not known in real world settings where researchers 552 

only have cross-sectional antibody titers (right hand plot).  553 

 554 

 555 

 556 

 557 

 558 

 559 

 560 

 561 

 562 

 563 
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2.1 Case studies  564 

 The serosim package contains two example case study vignettes to illustrate how to use 565 

serosim and how to structure the required inputs for runserosim.  Case study 1 provides an 566 

example of a longitudinal singular biomarker serological survey simulation structured around 567 

measles, a one-pathogen system with vaccination, but also applicable to other vaccine 568 

preventable diseases. Case study 2 provides an example of a cross-sectional multi-biomarker 569 

serological survey structured around diphtheria and pertussis, a two-pathogen system with 570 

bivalent vaccination, but also applicable to multi-pathogen systems with multivalent vaccines. 571 

Figure 6 provides run times for simulations of varying complexity by adjusting the number of 572 

individuals for the README example and 2 case studies. serosim is not limited to either of these 573 

scenarios and we hope it will have applications in other systems including wildlife 574 

pathogens[20,36].  575 

 576 

 577 

 578 

 579 

 580 

 581 

 582 

 583 

 584 

 585 

 586 

 587 

 588 
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Fig 6. runserosim run times for simulations of varying complexities. We ran the runserosim function 100 times and report the mean and range 

of run times under various simulation settings (number of individuals and time steps). All three of these example cases are included in serosim. As 

you move to the right, model complexity increases so that case study 2 uses more computationally complex exposure, immunity, antibody, and 

observation models than the README example. Case study 1 is similar to the README in the number of exposure events and biomarkers but uses 

more realistic and complex exposure, immunity, antibody and observation models. The increase in run time between case study 1 and case study 

2 is due to a computationally complex exposure model which modifies each individual's force of exposure based on their age and nutritional status. 
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2.2 Sensitivity and specificity for varying thresholds of seropositivity 

Lastly, we briefly explore the sensitivity and specificity of various seropositivity thresholds 

within the context of case study one. The seropositivity threshold is commonly used to separate 

seropositive and therefore immune individuals from seronegative individuals who might be 

susceptible. This threshold is typically set by the assay manufacturer but can also be adjusted by 

the user to conduct more specific and sensitive analyses.  

 

Since each individual’s exposure history is known in serosim, we can assess the sensitivity 

and specificity tradeoffs between assigning different thresholds for seropositivity. We ran case 

study one (based on measles) which simulates 100 individuals across 120 time steps 100 times 

and examined the sensitivity and specificity of varying measles thresholds of seropositivity 

ranging from 100 milli-international units per milliliter (mIU/mL) (the lower limit of detection of the 

ELISA assay with which case study one was structured around) to 350 mIU/mL (Fig 7). Sensitivity 

remains at 99.56% while specificity increases from 83.68% at 100 mIU/mL to 99.95% at 350 

mIU/mL (Fig 7). In this scenario, sensitivity remains high because of the large quantity of true 

positives and low number of false negatives as a result of the 99.6% reported assay sensitivity, 

the fact that there isn’t much noise attributed to the antibody measurement step and ultimately 

that biomarker boosts due to vaccination and natural infection is high. In a system with more noise 

and lower assay sensitivity or exposure events with smaller biomarker boosts or faster waning 

rates, we would expect more variation in the sensitivity of different seropositivity thresholds. This 

example demonstrates how serosim can be used to assess the accuracy of classification criteria 

based on limited observations when the true latent state of the system is known and to explore 

the impact of epidemiological context and within-host processes on diagnostic performance. 
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Fig 7.  Sensitivity and specificity for varying thresholds of seropositivity in simulation-recovery 

experiments. We simulated case study one 100 times and stored individual exposure history and observed 

biomarker quantities.  We then calculated the number of true positives, true negatives, false positives and 

false negatives for identifying infections using various titer thresholds for seropositivity ranging from 100 

mIU/mL to 350 mIU/mL. Here, we plotted the sensitivity and specificity achieved at each of those titer 

thresholds. 
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Conclusion, limitations and future directions 

The serosim package was designed to simulate serological data under different survey 

designs and underlying immunoepidemiological processes while also providing a systematic 

framework for validating inference methods. Many epidemiological studies using serological data 

rely on pre-defined definitions of seroconversion, seropositivity or antibody kinetics to draw 

inferences about the underlying epidemiology of a pathogen[37]. However, such studies often use 

real-world datasets without first considering the biases that may arise when the fitted model differs 

substantially from the true data-generating process. Simulation studies are useful for identifying 

the limitations, biases and accuracies arising from sample variability, misspecified models or 

neglected variables[16,38–40]. serosim is a generalized approach to this problem, allowing 

researchers to simulate serological data representing a disease system of interest by explicitly 

specifying the within-host processes, patterns of infection and vaccination, population 

demography and other factors which determine observed biomarker quantities. By generating 

simulations within a single framework, we anticipate better generalization and comparison of 

methods between pathogen systems and serologic assays[1,14,41].  

 

A key use case for serosim is for researchers and public health officials to improve 

serological survey design. We envision that serosim can be used to simulate datasets with 

different sample sizes, spatial distribution of samples, and sampling frequencies, providing a tool 

for power calculations. There are a number of existing frameworks for evaluating survey designs 

based on seroprevalence estimates, taking into account both the contribution of imperfect 

sensitivity, specificity and model variability to parameter estimation uncertainty[16,42]. However, 

few tools explicitly consider the full complexity of the underlying biology and epidemiology which 

determine an observed sample of antibody titers[40]. By separating each step of this generative 

process into distinct modules, serosim requires users to account for sources of measurement 

error, variation and bias that cause deviation from the underlying parameters of interest. With this 
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generative model in place, inference models (e.g., estimating force of infection using a 

serocatalytic model [12] or estimating time-since-infection using antibody waning estimates[35]) 

can be applied to simulated datasets of different sizes and sampling designs to assess their power 

in recovering ground-truth parameters. These so-called “simulation-recovery” experiments are 

especially useful as the model being fitted will be, by definition, a misspecified version of the true 

generative model (with parallels to statistical model misspecification [43]). Designing studies using 

these simulated datasets also provides interim data with which researchers can develop their 

inference methods as data collection progresses. 

 

Although we have structured the serosim model and code in a flexible, generalized 

framework, there are limitations to its ease of application to some systems. Some parts of the 

generative process are very poorly understood for some pathogens (e.g., correlates of protection 

for the immunity model may be complex[44]; the relationship between time-since-infection and 

multiple biomarker quantities may be highly variable[45]), and the relationships between exposure 

and measurements of some modern multiplex serological assays are not yet precisely 

characterized[25]. We have included a range of ready-to-use functions to encompass various 

epidemiological and immunological contexts here (S4-8 Tables), however, this is not an 

exhaustive list as we encourage users to construct new model inputs to match their desired 

system (e.g., constructing their own antibody kinetics model). There is also a trade-off between 

framework flexibility and computational speed. Structuring serosim as distinct modules places 

responsibility on the user to ensure that custom code is fast enough to not substantially bottleneck 

the simulation, particularly for systems with a large number of exposure types, biomarkers, or 

individuals. However, given that serosim is not intended for integration in multi-iteration code (e.g., 

nested within a Markov chain Monte Carlo algorithm), speed is unlikely to be an issue for most 

use cases.  
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Part of the motivation behind serosim is to support the rise in development of complex 

models relying on quantitative antibody measurements as opposed to simple binary serostatus 

data. These models explicitly describe the relationship between antibody titer and time-since-

infection, often estimated using longitudinal data, and then use this relationship to back-calculate 

seroincidence from cross-sectional data [13,14,35,46–48]. Although underpinned by similar 

principles, such approaches are usually tailored to a particular pathogen system. By encouraging 

researchers to be explicit about the generative process common to many settings, we hope to 

facilitate the sharing and standardization of these more advanced sero-epidemiologic methods. 
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Data availability  

All code, tutorials and documentation are made freely available under the GNU General Public 

License at https://github.com/AMenezes97/serosim. Commit 65c7163 was used at the time of 

submission.  
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