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Abstract 

Background: 

While biological age in adults is often understood as representing general health and resilience, the 

conceptual interpretation of accelerated biological age in children and its relationship to development 

remains unclear. We aimed to clarify the relationship of accelerated biological age, assessed through 

telomere length and three omics-derived biological clocks, to child developmental outcomes, 

including growth and adiposity, cognition, behaviour, lung function and onset of puberty, among 

European school-age children participating in the HELIX exposome cohort. 

Methods: 

The study population included up to 1,173 children, aged between 5 and 12 years, from study centres 

in the UK, France, Spain, Norway, Lithuania, and Greece. Telomere length was measured through 

qPCR, blood DNA methylation and gene expression was measured using microarray, and proteins and 

metabolites were measured by a range of targeted assays. DNA methylation age was assessed using 

Horvath’s skin and blood clock, while novel blood transcriptome and “immunometabolic” (based on 

plasma protein and urinary and serum metabolite data) clocks were derived and tested in a subset of 

children assessed six months after the main follow-up visit. Associations between biological age 

indicators with child developmental measures as well as health risk factors were estimated using linear 

regression, adjusted for chronological age, sex, ethnicity and study centre. The clock derived markers 

were expressed as Δ age (i.e., predicted minus chronological age). 

Results: 

Transcriptome and immunometabolic clocks predicted chronological age well in the test set (r= 0.93 

and r= 0.84 respectively). Generally, weak correlations were observed, after adjustment for 

chronological age, between the biological age indicators. Higher birthweight was associated with 

greater immunometabolic Δ age, smoke exposure with greater DNA methylation Δ age and high family 
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affluence with longer telomere length. All biological age markers were positively associated with BMI 

and fat mass, and all markers except telomere length were associated with height, at least at nominal 

significance (p<0.05).  Immunometabolic Δ age was associated with better working memory (p = 4e -

3) and reduced inattentiveness (p= 4e -4), while DNA methylation Δ age was associated with greater 

inattentiveness (p=0.03) and poorer externalizing behaviours (p= 0.01). Shorter telomere length was 

also associated with poorer externalizing behaviours (p=0.03).  

Conclusions: 

In children, as in adults, biological ageing appears to be a multi-faceted process and adiposity is an 

important correlate of accelerated biological ageing. Patterns of associations suggested that 

accelerated immunometabolic age may represent build-up of biological capital while accelerated DNA 

methylation age and telomere attrition may represent a “wear and tear” model of biological ageing in 

children. 

Funding: UK Research and Innovation (MR/S03532X/1); European Commission (grant agreement 

numbers:  308333; 874583 )  

 . CC-BY 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted January 23, 2023. ; https://doi.org/10.1101/2023.01.23.23284901doi: medRxiv preprint 

https://doi.org/10.1101/2023.01.23.23284901
http://creativecommons.org/licenses/by/4.0/


4 
 

Introduction 

The field of geroscience proposes that biological ageing, a set of interrelated molecular and cellular 

changes associated with ageing, drive the physiological deterioration that is the root of multiple age-

related health conditions [1]. Understanding the process of biological ageing and developing markers 

to accurately assess biological age in individuals, holds great promise for public health and biomedical 

research in general to develop interventions, even in childhood and early life, that slow physiological 

decline and reduce the risk of chronic disease and disability in later life. 

Telomere length, which shortens with age, is one of the most widely applied biological age markers 

primarily as it directly assesses a primary Hallmark of Ageing [2, 3]. More recently, high-throughput 

‘omic’ methods, which provide simultaneous quantification of thousands of epigenetic marks, 

transcripts, proteins and metabolites, have been used to develop ‘biological clocks’ that provide a 

global measure of changes with age at the molecular level [4]. While biological clocks have been 

primarily trained on chronological age, “age acceleration”, commonly defined as the difference 

between clock-predicted age and chronological age, has been associated with age-related phenotypes 

and mortality [5-11], indicating their utility as biological age markers. DNA methylation-based clocks, 

such as the clock of Horvath [12], have been extensively applied in large-scale studies and remain a 

research field under active development [13, 14]. Further clocks have been developed using 

transcriptome [8], metabolome [15] and proteome [9] data, including those that specifically target 

immune-system related proteins [16]. Generally, clocks have been found to be only weakly correlated 

with each other, suggesting that each clock captures different facets of biological ageing [17, 18]. 

While biological age in adults is intuitively understood as an overall indicator of general health and 

resilience, the conceptual interpretation of biological age acceleration in children is much less clear. 

Child development and ageing may at first be considered opposing processes, representing growth 

and decay respectively. However, various related theoretical frameworks link the two processes: 

Under the developmental origin of health and disease hypothesis, the early life environment is a key 

 . CC-BY 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted January 23, 2023. ; https://doi.org/10.1101/2023.01.23.23284901doi: medRxiv preprint 

https://doi.org/10.1101/2023.01.23.23284901
http://creativecommons.org/licenses/by/4.0/


5 
 

determinant of ageing trajectories and disease risk in later life. Life-course models of ageing, 

supported by measures of physical and cognitive capability, view the childhood developmental phase 

as key to building up “biological capital” and to determining how long capabilities and disease risk 

remain above critical thresholds in later years following the gradual decline phase of adult life [19]. 

Horvath’s DNA methylation clock is currently the only clock trained to predict age throughout the 

lifespan, and many of the clock’s CpGs are in genomic regions known to regulate development and 

differentiation [12]. However, unlike life-course models of physical function, the level of DNA 

methylation at the clock’s CpGs changes in a predictable, unidirectional manner throughout the life-

course, albeit at a much faster rate during childhood. This continuous molecular readout suggests that 

processes directing development are at least indirectly related to detrimental process in later-life and 

is consistent with quasi-programmed theories of ageing such as antagonistic pleiotropy [20], whereby 

molecular functions that promote development, inadvertently lead to ageing in later life [21]. 

Therefore, some authors have suggested that DNA methylation-based age acceleration may be 

beneficial during childhood [21, 22], reflecting greater physical maturity and build-up of biological 

capital. 

Biological ageing is conceived as continuous balance of cellular damage, caused by both extrinsic 

environmental factors and by normal physiological processes, and resiliency mechanisms that protect 

against and compensate for this damage [23]. An alternative “wear and tear” model would view 

cellular damage to occur continuously from birth and, since the epigenetic clock has been proposed 

to reflect the epigenomic maintenance system, a resiliency mechanism, DNA methylation age 

acceleration in children may, as in adults, represent a greater accumulation of epigenetic instability 

and therefore reduced biological capital. However so far only a handful of studies have examined 

associations with developmental maturity in children [24-26]. Telomere length attrition is more rapid 

in early childhood during rapid somatic growth and more gradual in adulthood, with those with a 

shorter telomere length in childhood maintaining a lower telomere length into adulthood [27]. While 

telomere length may serve as both a mitotic-clock and as a mediator of cellular stress [28], the 
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associations reported between environmental stress in childhood and shorter telomere length suggest 

it reflects early-life cellular damage that may be carried into adulthood. 

Little is known regarding the interpretation of biological age in children assessed at the transcriptome, 

proteomic and metabolomic levels, since few biological clocks are available for this age range using 

these data. To the best of our knowledge, only the study of Giallourou et al [29] has applied 

metabolomic data to provide a multivariate model of age in children, finding that growth constrained 

infants lag in their metabolic maturity relative to their healthier peers.  It is possible that biological 

clocks constructed using these data, particularly proteomic and metabolomics, support the life-course 

ageing framework, where age acceleration in children represents a buildup of biological capital, since 

they are closer to the phenotype than the DNA-based epigenetic clocks and telomere length. 

To explore these questions, we have performed a comparative analysis of four assessments of 

biological age within the pan-European Human Early Life Exposome (HELIX) cohort of children aged 

between 5 and 12 years. We hypothesized that biological age measures would be associated with child 

development. We systematically compared associations with developmental endpoints, including 

growth and adiposity, cognition, behaviour, lung function and pubertal development, and common 

health risk factors, for telomere length, DNA methylation age, and two newly derived clocks: 

transcriptome age and immunometabolic age. Through this analysis, we aimed to clarify the 

relationship of age acceleration in children to the buildup of biological capital, and more broadly 

develop new biological markers of overall developmental staging in children. 

Results 

Sample characteristics 

We used blood or urine derived measurements from the pan-European HELIX cohort. This included 

blood telomere length (N = 1,162), blood DNA methylation (N = 1,173, 450K CpGs), blood gene 

expression (N = 1,007, 50K genes), and proteins and metabolites (N= 1,152, 36 plasma proteins, 177 
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serum metabolites and 44 urinary metabolites), with 869 children overlapping across all 

measurements. Each subsample included around 55% boys, 89% children of white European ancestry, 

and a mean age of around 8 years (range 5-12 years). Around 51% of mothers of the HELIX children in 

each subsample had a high education level. The HELIX cohort included children from six study centres 

based in the UK, Spain, Greece, Lithuania, France, and Norway, with each centre contributing between 

11 and 24% to each subsample (see Table 1 for sample characteristics).  

Biological age marker performance 

We assessed four markers of biological age: telomere length, DNA methylation age, transcriptome age 

and ‘immunometabolic’ age (Figure 1). DNA methylation age was calculated using the published Skin 

and blood Horvath clock [30] to allow greater comparison to the wider literature, including in adults. 

We previously reported this epigenetic clock to show the best performance in chronological age 

prediction within the HELIX cohort [31]. Since no published applicable transcriptome, proteome or 

metabolome clocks were available for the age range of our sample, we trained two new biological 

clocks using these data in the HELIX cohort, through elastic net regression and cross-validation. We 

combined the proteome and metabolome data into a single immunometabolic age clock, since the 

available proteomic data included biomarkers targeting both metabolic and inflammatory functions, 

both omic types represent final products of gene regulation, and since the metabolic and immune 

systems are closely linked [32].  

The correlation between telomere length and chronological age was weak but statistically significant 

(r = -0.07, p= 0.02). Correlations with chronological age were r= 0.85 for DNA methylation age, r= 0.94 

for transcriptome age, and r = 0.86 for immunometabolic age (Figure 1).  

We validated the transcriptome and immunometabolic clocks using cross-validation within the HELIX 

subcohort (cross-validated r of 0.87 and 0.82 respectively) and further tested in a subset of children 

who attended a second clinic visit approximately 0.5 years after the main follow-up visit (standard 

deviation (SD) = 0.18 years) as part of the HELIX panel study. Correlations in this test set were r= 0.93 
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for transcriptome age (N= 128) and r= 0.84 for immunometabolic age (N=151) (Figure 1). Predicted 

biological age increased by mean 0.33 years (SD =0.58) for transcriptome age (t-test, p=3e -5) and 

mean 0.22 years (SD: 0.59 years) for immunometabolic age (t-test, p=2e -5) between the first and 

second visits (Figure S1). Correlations were significant (p < 0.05) within each study centre for both 

clocks, except for immunometabolic age for children from the BiB (UK) cohort (Figures S2 and S3).  

The immunometabolic age clock was composed of 135 predictors including 20 proteins, 79 serum 

metabolites and 36 urinary metabolites (table S1). The transcriptome clock was composed of 1,445 

genes, 652 of which were annotated to Gene Symbols (table S2). The transcriptome clock genes were 

enriched (false discovery rate (FDR)-corrected p < 0.05) in ‘ribosome’ and ‘ribosome biogenesis’ KEGG 

pathways (table S3) and the following level 2 Gene Ontology biological process terms: ‘leukocyte 

activation’, ‘movement of cell or subcellular component’, ‘leukocyte migration’, ‘cell activation’, and 

‘secretion by cell’ (table S4). We also tested enrichment of transcriptome clock predictors among 

genes reported by a large meta-analysis of age in adults [8]: among the 1,406 reported age-associated 

genes that could be matched to our measured genes, 43 were included in our transcriptome clock 

(hypergeometric enrichment test, p = 0.052). 

Figure 2 shows partial correlations, adjusted for chronological age and study centre, between the 

biological age markers. Only null to weak correlations were observed, with significant correlations 

between telomere length and DNA methylation age (r = -0.06, p = 0.04) and between transcriptome 

age and immunometabolic age (r = 0.08, p = 0.01). 

Biological clock associations with health risk factors 

Table 2 shows associations, adjusted for chronological age, sex, study centre and ethnicity, between 

health risk factors and the biological age markers. The markers derived from omic-based biological 

clocks are expressed as Δ age (clock-predicted age – chronological age) and since the adjustment set 

included chronological age, effects can be interpreted as years of age acceleration as often defined 

[18].  
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Nominally significant associations were observed for the following health risk factors: Telomere length 

was longer among girls compared to boys (p= 3e -06) and among children of high affluence families 

(p= 0.008). DNA methylation Δ age was higher among children of mothers who actively smoked during 

pregnancy (p= 0.018) and children exposed to passive smoke (p= 0.023), while DNA methylation Δ age 

was lower among children from families with high social capital (p= 0.048). Conversely, transcriptome 

Δ age was positively associated with medium and high (p= 0.011) family social capital. 

Immunometabolic Δ age was associated with higher birthweight (p= 0.0075). Only the association 

between longer telomere length and female sex passed FDR correction 

Biological age associations with development 

Figure 3 and table S5 shows associations, adjusted for chronological age, sex, study centre and 

ethnicity, between the biological age markers and developmental outcomes related to growth and 

adiposity, cognition, behaviour, lung function and onset of puberty.  

Several developmental outcomes were associated with biological age markers after FDR correction: 

DNA methylation and immunometabolic Δ age were associated with greater height z-score (p= 6e -6 

and p= 4e -11 respectively) and greater fat mass % (p= 0.0004 and p= 5e -6 respectively). All biological 

age markers were associated with greater BMI z-score (telomere length p =8e -4, DNA methylation Δ 

age p = 8e -5, transcriptome Δ age p = 0.005, immunometabolic Δ age p =4e -19). Furthermore, 

immunometabolic Δ age was associated after FDR correction with better working memory (p = 0.0036) 

and reduced inattentiveness (p= 5e -4). 

Associations at the nominal significance (p<0.05) level were observed for increases in height z-score 

with transcriptome Δ age (p= 0.014), shorter telomere length with increased fat mass % (p= 0.009), 

and DNA methylation Δ age with greater inattentiveness (p=0.03). Both shorter telomere length and 

DNA methylation Δ age were associated with greater externalizing behaviours (p= 0.032 and p= 0.01 

respectively). Among a smaller subset of children (table 1) aged over 8 years, we observed a nominally 
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significant association between immunometabolic Δ age and odds of onset of puberty (Odds Ratio: 

1.41, 95% CI: 1.01, 1.97, p =0.046).  

No significant associations with lung function were observed, but like the patterns of associations 

observed with cognitive and behavioural outcomes, there was a trend for a negative association with 

DNA methylation Δ age (p = 0.085) and a positive association with immunometabolic Δ age (p=0.16). 

Sensitivity Analysis 

In sensitivity analysis. We firstly stratified by sex and generally observed similar associations among 

boys and girls, apart from the following differences (Figure S4): Associations between shorter 

telomere length and BMI z-score and adiposity were stronger among boys. For DNA methylation Δ 

age, associations with poorer externalizing and internalizing behaviours were only apparent among 

boys. For transcriptome Δ age, stronger associations among boys were observed with BMI z-score, 

adiposity and poorer externalizing and internalizing behaviours. Conversely, we observed an 

association between transcriptome Δ age and reduced inattentiveness among girls only. 

Immunometabolic Δ age was more strongly associated with reduced inattentiveness among girls and 

also associated with greater odds of puberty onset among girls only. 

Secondly, we additionally adjusted our models by estimated cell counts to determine the influence of 

cell composition on associations with developmental outcomes (Figures S5B, S6B, S7B and S8B, Table 

S5). Associations were generally little changed: For DNA methylation Δ age, associations were 

attenuated with adiposity and growth outcomes although all remained FDR significant and the 

association with externalizing behavior was slightly attenuated. For transcriptome Δ age associations 

with adiposity and growth outcomes and lung function increased slightly and the association with 

greater lung function became nominally significant.  

Finally, we assessed the effects of further adjustment for health risk factors (family affluence and 

social capital, birthweight, maternal active smoking, and child passive smoking) since health risk 

factors could be independently associated with both biological age and developmental outcomes 
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(Figures S5C, S6C, S7C and S8C, Table S5). Associations were generally little changed, expect for an 

attenuation of the association between telomere length and externalizing behavior, while conversely 

the association between DNA methylation Δ age and externalizing behavior was slightly strengthened.  

Discussion 

In a large sample of European children, we have analysed four measures of biological age, derived 

from molecular features at different levels of biological organization, in relation to developmental 

outcomes and health risk factors. We assessed two established biological age markers, telomere 

length and DNA methylation age, and derived two new measures, transcriptome age and 

immunometabolic age.  Despite finding only null to weak correlations between the measures, we 

found all measures to be positively associated with greater BMI and adiposity, and both DNA 

methylation Δ age and immunometabolic Δ age were associated with taller height. While 

immunometabolic Δ age was associated with greater cognitive maturity including greater working 

memory and attentiveness, conversely DNA methylation Δ age was nominally associated with greater 

inattentiveness and both DNA methylation Δ age and shorter telomere length were nominally 

associated with poorer externalizing behaviours. 

BMI has consistently been associated with accelerated ageing in adults across a diverse range of 

biological age markers [8, 18, 33, 34] underlining the integral role of metabolism in ageing. Indeed, a 

recent large study of Dutch adults found BMI to be the only health risk factor tested associated with 

accelerated ageing across five biological age clocks, including telomere length, DNA methylation, 

transcriptome, proteome and metabolomic age markers [18]. Here we show that the link between 

BMI and multiple dimensions of accelerated ageing is also apparent in children. Energy and nutrient 

intake influence all Ageing Hallmarks and multiple lines of evidence link increased adiposity to shorter 

lifespan [35]. These effects appear to be partially mediated through evolutionarily conserved nutrient 

sensing systems such as the mTOR signaling pathway, which promote anti-ageing cellular repair 

mechanisms, at the expense of growth and metabolism, in response to lower nutrient availability [35].  
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Furthermore, excess adiposity increases generalized inflammation and oxidative stress [36, 37], which 

may have direct effects on age markers, particularly telomere length and DNA methylation age 

acceleration.  

The observed associations between greater height with biological age may indicate developmental 

maturity. Height is generally considered reflective of a beneficial early-life environment [38], however,  

evidence for an association with lifespan is mixed [38, 39], with a recent meta-analysis suggesting a u-

shaped relationship with all-cause mortality [40]. Greater comparative height at 10 years was also 

inversely associated with longevity in a recent large-scale Medelian randomization study [41]. 

Furthermore, there is some evidence that the link between height and longevity may be mediated 

through the insulin-like growth factor-1 signaling pathway [39, 42].  The associations may also be 

interpreted as greater rates of growth and anabolism exerting greater “wear and tear” on cellular 

structures. Two other studies have also observed an association between height and DNA methylation 

age acceleration in children [25, 26]. 

Despite similarities in associations with growth and adiposity measures, patterns of association across 

cognitive and behavioral domains varied across biological age markers, underlying the view of 

biological ageing as a multi-faceted process. Immunometabolic Δ age was associated with greater 

cognitive maturity, fitting the life-course model of greater accumulation of biological capital during 

the build-up phase of development. Immunometabolic Δ age may be considered a phenotypic 

summary measure of metabolic and immune system maturity, and these cognitive developmental 

associations suggest that it may also be generalisable to overall developmental stage. On the other 

hand, DNA methylation Δ age was related to relative immaturity in attentiveness and externalizing 

behaviour. A previous Finish study of children age between 11 and 13 years also reported associations 

between DNA methylation age acceleration and behavioural problems [26]. Similarly, shorter 

telomere length was associated here with greater externalizing behaviours, although not with any 
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cognitive domains. Four other studies have examined the link between shorter telomere length and 

externalizing behaviours [43-46], with all, except one [46], also reporting an association. 

Overall patterns of associations between risk factors and biological age measures also suggest the 

detrimental nature of accelerated ageing in children assessed through telomere length and DNA 

methylation Δ age, and potentially beneficial nature of advanced immunometabolic Δ age. Both 

prenatal maternal active smoking and child passive smoking were associated with DNA methylation Δ 

age, while greater birthweight was associated with immunometabolic Δ age. We examined maternal 

education level, family affluence, and social capital that broadly represent the three forms of 

interconvertible capital (cultural, economic, and social) proposed by Bourdieu [47].  It has been 

theorized that biological capital represents a fourth type of human capital, and that the conversion 

across these forms of capital underlies inequalities in ageing trajectories [48].  Nominally significant 

associations between higher family affluence with longer telomere length and high social capital with 

a younger DNA methylation age indicate that age acceleration assessed through these measures does 

not represent an accumulation of biological capital.  Generally, directions of effect for 

immunometabolic Δ age were in the opposite direction which may suggest it represents greater 

biological capital.  

Girls were found to have longer telomere lengths than boys. Women have been consistently found to 

have longer telomere lengths [49] although the few generally smaller studies in children have been 

inconsistent [45, 50-52]. No other biological age markers were associated with sex, which contrasts 

with the study of Jansen et al [18] in adults which reported accelerated biological age in men across 

all measures tested except for proteomic age. Indeed, the phenomenon of accelerated DNA 

methylation age in men is well-established [21], consistent with lower life-expectancies for men. 

Although it is not known if these biological age differences are due to biological mechanisms or greater 

prevalence of disease risk factors among men, our data in children before divergence of risk factor 

prevalence could indicate a biological mechanism for telomere sex differences and a risk factor 
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mediated mechanism for other biological age markers. Interestingly, we observed differences in 

associations between biological age and development between boys and girls, with some consistency 

across markers:  Both shorter telomere length and transcriptome Δ age and were more strongly 

associated with adiposity in boys, DNA methylation and transcriptome Δ age showed stronger 

associations among boys with poorer behaviour, while in girls both transcriptome and 

immunometabolic Δ age showed stronger associations with improved attentiveness. Given observed 

sexual dimorphism in both developmental rates [53] and biological age measures through a variety of 

proposed mechanisms [54], it may be unsurprising that relationship between biological age and 

development also differs between the sexes. 

Furthermore, we observed that immunometabolic Δ age was associated with greater odds of puberty 

onset, driven by effects observed among girls only. We did not observe any further significant 

associations with onset of puberty, however the sample size in the subset of children was small 

compared to the other developmental measures. There was also suggestive evidence for associations 

between DNA methylation Δ age with onset of puberty with associations close to the nominal 

significance threshold. Three previous studies have reported associations between DNA methylation 

age acceleration and puberty onset and stage [24-26], and one study has reported associations 

between shorter telomere length and puberty onset [55]. However, directions of effect for telomere 

length in our study were in the opposite direction. While earlier age at puberty is representative of 

more advanced physical maturation, it has been associated with metabolic diseases in later life, 

including cancers [56] and all-cause mortality [57]. 

We found transcriptome data to be highly accurate in predicting chronological age, including in a test 

set of children assessed six months later, demonstrating that gene expression tracks closely with age 

in children, even over this relatively short period. We analyzed biological pathways and processes 

enriched among transcript clusters contributing to the transcriptome clock, observing the integral role 

of ribosome and ribosome biogenesis pathways, central to protein synthesis, and biological processes 
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including the immunity related processes leukocyte migration and activation, and cell movement, 

activation, and secretion. Strikingly, gene expression in adults is similarly characterized by 

downregulation of ribosomal genes and enrichment of expression in immune related genes [8]. This 

indicates that, similar to DNA methylation changes [21], there is some overlap in gene expression 

related to both development in children and ageing in adults. Although formal testing of enrichment 

of genes contributing to transcriptome clock presented here among age-associated genes in adults 

showed enrichment at only borderline statistical significance, the transcriptome clock predictors are 

an underrepresentation of the full profile of gene expression associated with age in children, due to 

the sparsity enforced during the variable selection training process.  

Despite associations with growth and adiposity measures, transcriptome age generally showed 

weaker associations with other developmental outcomes than for the other biological age markers. 

While this in part can be attributed to the slightly smaller sample size for children with transcriptome 

data, it is also likely due to the high accuracy in predicting chronological age of the transcriptome 

clock, resulting in lower variation in the portion of transcriptome age that is not explained by 

chronological age, further reducing statistical power. This makes it challenging to judge the relevance 

of transcriptome age, if any, to developmental endpoints, which may be mixed since, non-significant 

direction of effects were observed with both maturity in attention and lung function, yet relative 

immaturity in behaviour. In fact, training clocks using chronological age, which while providing an 

accessible route to understanding molecular changes associated with age, does pose limitations 

generally for inference regarding biological ageing. Particularly for high-dimensional data such as DNA 

methylation, it has been shown that it is possible to predict chronological age near-perfectly [58], 

thereby limiting information on biological age and its variation. For this reason, newer epigenetic 

clocks have included clinical and mortality data, to improve clinical relevance and sensitivity to risk 

factors [13, 14], which should be considered in future studies developing clocks in children. 
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Other limitations include the cross-sectional design of the main analysis, which limits inference 

regarding the directionality of associations and allows the possibility of age-associated environmental 

factors to influence the clock development. Furthermore, there were differences in age by study 

centre. Children from the EDEN cohort study centre were generally older, which likely introduced a 

degree of cohort bias into the age modelling. For this reason, we adjusted all associations by study 

centre and additionally assessed age correlation within each study centre. Although cohorts were 

recruited from the general population, certain ethnicities or socio-economically disadvantaged groups 

may have been under-represented, limiting generalizability somewhat. A bias towards over-

representation of White ethnic groups is an issue generally with the development of biological clocks, 

which means associations observed with ethnicity should be interpreted cautiously. While the DNA 

methylation and transcriptome data was representative of the full genome, our coverage of the 

metabolome and proteome was limited to targeted assays. However, the strengths of this study 

include the large population sample, drawing from six countries from around Europe, increasing 

generalizability, and the integration of rich molecular data and a broad range of developmental 

outcomes into a single systematic analysis. Although our age range was somewhat limited, missing 

the infancy and adolescent periods, the age range covered a key childhood period, where energy 

expenditure (an indicator of level of overall physiology) has entered a period of steady increase 

following more rapid increases during infancy and before stabilization during adolescence [59]. 

In conclusion, in this large Pan-European study we have found that four indicators of biological age, 

representing complimentary molecular processes, were all associated with BMI after controlling for 

chronological age, indicating that adiposity is an important correlate of accelerated biological ageing 

in children. We developed a highly accurate “transcriptome age” clock although it was found to be 

relatively insensitive to other development phenotypes. We found that immunometabolic Δ age was 

associated with cognitive maturity fitting a buildup of biological capital model of ageing in children, 

while shorter telomere length and DNA methylation Δ age was associated with greater behavioral 

problems suggesting a “wear and tear” model of ageing in children. Our findings contribute to the 
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interpretation and understanding of biological age measures in children, crucial for clinical and 

epidemiological research into early life risk factors for adverse ageing trajectories. Future long-term 

studies should investigate associations between age acceleration in children and adults to further test 

the antagonistic pleiotropy hypothesis.  

Materials and Methods 

Study population 

This study population included children recruited into the European population-based HELIX 

exposome cohort [60, 61], which was based on six on-going longitudinal population-based birth 

cohorts established in six countries across different parts of Europe (Born in Bradford [BiB; UK] [62], 

Étude des Déterminants Pré et Postnatals du Développement et de la Santé de l'Enfant [EDEN; France] 

[63], Infancia y Medio Ambiente [INMA; Spain] [64], Kaunas Cohort [KANC; Lithuania] [65], Norwegian 

Mother, Father and Child Cohort Study [MoBa; Norway] [66], and Mother-Child Cohort in Crete [RHEA; 

Greece] [67]) covering singleton deliveries from 2003 to 2008. All children participated in a 

harmonized ‘HELIX subcohort’ clinical examination in their respective study centres during 2014-2015, 

where biological samples were collected.  A subset of children (from all study centres apart from 

MoBa), attended a second clinical examination, as part of the ‘HELIX panel study’ approximately 6 

months after the first ‘HELIX subcohort’ examination, where a similar suite of biological samples were 

collected. A full description of the HELIX follow-up methods and study population, including eligibility 

criteria and sample size calculations are available in [60, 61]. In the current study we included all 

children with available molecular data (figure S9). 

Prior to the start of HELIX, all six cohorts had undergone the required evaluation by national ethics 

committees and obtained all the required permissions for their cohort recruitment and follow-up 

visits. Each cohort also confirmed that relevant informed consent and approval were in place for 

secondary use of data from pre-existing data. The work in HELIX was covered by new ethical approvals 

in each country and at enrolment in the new follow-up, participants were asked to sign a new informed 
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consent form. Additionally, the current study was approved by the Imperial College Research Ethics 

Committee (Reference: 19IC5567). 

Biological sample collection and processing 

Blood was collected at the end of the clinical examination of the child to ensure an approximate 3 

hours (median = 3.5 hours, SD = 1.1 hour) fasting time since the last meal. Blood samples were 

collected using a ‘butterfly’ vacuum clip and local anaesthetic and processed into a variety of sample 

matrices, including plasma, whole blood for RNA extraction (Tempus tubes - Life Technologies, USA), 

red cells, and buffy coat for DNA extraction. These samples were frozen at -80°C under optimized and 

standardized procedures until analysis. 

DNA was obtained from children’s peripheral blood (buffy coat) collected in EDTA tubes. DNA was 

extracted using the Chemagen kit (Perkin Elmer, USA) in batches of 12 samples within each cohort. 

DNA concentration was determined in a Nanodrop 1000 UV-Vis Spectrophotometer (Thermo Fisher 

Scientific, USA) and also with Quant-iTTM PicoGreen dsDNA Assay Kit (Life Technologies, USA). DNA 

extraction was repeated in around 8% of the blood samples as the DNA quantity or quality of the first 

extraction was low. Less than 1.5% of the samples were finally excluded due to low quality. 

RNA was extracted from whole blood samples collected in Tempus tubes (Thermo Fisher Scientific, 

USA) using MagMAX for Stabilized Blood Tubes RNA Isolation Kit. The quality of RNA was evaluated 

with a 2100 Bioanalyzer (Agilent Technologies, USA) and the concentration with a NanoDrop 1000 UV-

Vis Spectrophotometer. Samples classified as good RNA quality (78.67%) had a similar RNA pattern at 

visual inspection in the Bioanalyzer, a RNA Integrity Number (RIN) >5 and a concentration >10 ng/ul. 

Mean values (standard deviation, SD) for the RIN, concentration (ng/ul), Nanodrop 260/280 ratio and 

Nanodrop 260/230 ratio were: 7.05 (0.72), 109.07 (57.63), 2.15 (0.16) and 0.61 (0.41). 

During the clinical examination, two spot urine samples (one before bedtime and one first morning 

void) were brought by the participants to the research centre in cool packs and stored at 4°C until 

processing. Urine samples of the night before the visit and the first morning void on the day of the 
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visit were combined to provide Two urine samples, representing last night-time and first morning 

voids, were collected on the evening and morning before the clinical examination and were 

subsequently pooled to generate a more representative sample of the last 24 h for metabolomic 

analysis (n = 1107). Either the night-time void (n = 37) or morning void (n = 48) sample was analysed 

in cases where a pooled sample was missing [60]. 

Telomere length measurement 

Blood average relative telomere length was measured by a modified qPCR protocol as described 

previously [68]. Telomere and single copy-gene reaction mixture and PCR cycles used can be found in 

Martens et al. [69]. All measurements were performed in triplicate on a 7900HT Fast Real-Time PCR 

System (Applied Biosystems) in a 384-well format. On each run, a 6-point serial dilution of pooled DNA 

was run to assess PCR efficiency as well as eight inter-run calibrators to account for the inter-run 

variability. Relative telomere lengths were calculated using qBase software (Biogazelle, Zwijnaarde, 

Belgium) and were expressed as the ratio of telomere copy number to single-copy gene number (T/S) 

relative to the average T/S ratio of the entire sample set. We achieved CV’s within triplicates of the 

telomere runs, single-copy gene runs, and T/S ratios of 0.84%, 0.43%, and 6.4%, respectively. 

DNA methylation  

Blood DNA methylation was assessed with the Infinium HumanMethylatio450 beadchip (Illumina, 

USA) at the University of Santiago de Compostela – Spanish National Genotyping Center (CeGen-USC) 

(Spain). 700 ng of DNA were bisulfite-converted using the EZ 96-DNA kit (Zymo Research, USA) 

following the manufacturer’s standard protocol. All samples of the study were randomized 

considering sex and cohort. In addition, each plate contained a HapMap control sample and 24 HELIX 

inter-plate duplicates were included. 

After an initial inspection of the quality of the methylation data with the MethylAid package[70], 

probes with a call rate <95% based on a detection  p-value of 1e-16 and samples with a call rate <98% 

were removed [71]. Samples with discordant sex were eliminated from the study as well as duplicates 
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with inconsistent genotypes and samples with inconsistent genotypes respect to existing genome-

wide genotyping array data. Methylation data was normalized using the functional normalization 

method with prior background correction with Noob [72]. Then, some probes were filtered out: 

control probes, probes to detect single nucleotide polymorphisms (SNPs), probes to detect 

methylation in non-CpG sites, probes located in sexual chromosomes, cross hybridizing probes [73], 

probes containing a SNP at any position of the sequence with a minor allele frequency (MAF) >5% and 

probes with a SNP at the CpG site or at the single base extension (SBE) at any MAF in the combined 

population from 1000 Genomes Project. Batch effect (slide) was corrected using the ComBat R 

package [74]. CpGs were annotated with the IlluminaHumanMethylation450kanno.ilmn12.hg19 R 

package [75]. 

Transcriptome analysis 

Gene expression was assessed using the GeneChip Human Transcriptome Array 2.0 (HTA 2.0) from 

Affymetrix (USA) at the University of Santiago de Compostela (USC) (Spain). Briefly, RNA samples were 

concentrated or evaporated in order to reach the required RNA input concentration (200 ng of total 

RNA). Amplified and biotinylated sense-strand DNA targets were generated from total RNA. 

Microarrays were hybridized according to the Affymetrix recommendations using the Affymetrix 

labeling and hybridization kits. All samples were randomized within each batch considering sex and 

cohort. Two different types of control RNA samples (HeLa and FirstChoice Human Brain Reference 

RNA (Thermo Fisher Scientific, USA)) were included in each batch, but they were hybridized only in 

the first batches. 

Raw data were extracted with the Affymetrix AGCC software and normalized with the GCCN (SST-

RMA) algorithm at the gene level (http://tools.thermofisher.com/content/sfs/brochures/ 

sst_gccn_whitepaper.pdf). Annotation of transcripts clusters (TCs) to genes was done with the 

Affymetrix Expression Console software using the HTA-2_0 Transcript Cluster Annotations Release 

na36 (hg19). A transcript cluster is defined as a group of one or more probes covering a region of the 

genome reflecting all the exonic transcription evidence known for the region and corresponding to a 
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known or putative gene. Four samples with discordant sex were detected with the MassiR R package 

[76] and excluded. Control probes, and TCs in sexual chromosomes and without chromosome 

information were filtered out. Batch effect (slide) was corrected using the ComBat R package [74]. To 

determine TC call rate, 10 constitutive or best probes based on probe scoring and cross-hybridation 

potential were selected per TC. Probe Detection Above Background (DABG) p-values were computed 

based on the rank order against the background probe set intensities. Probe level p-values were 

combined into a TC level p-value using the Fisher equation. TCs with a DABG p-value <0.05 were 

defined as detected. Three samples with low call rate (<40%) as well as TCs with a call rate <1% were 

excluded from the dataset. Gene expression values were log2 transformed. 

Proteome analysis 

Plasma protein levels were assessed using the antibody-based multiplexed platform from Luminex. 

Three kits targeting 43 unique candidate proteins were selected (Thermo Fisher Scientifics, USA): 

Cytokines 30-plex (Catalog Number (CN): LHC6003M), Apoliprotein 5-plex (CN: LHP0001M) and 

Adipokine 15-plex (CN: LHC0017M).  

All samples were randomized and blocked by cohort prior measurement. For quantification, an 8-point 

calibration curve per plate was performed with protein standards provided in the Luminex kit and 

following procedures described by the vendor. Commercial heat inactivated, sterile-filtered plasma 

from human male AB plasma (Sigma-Aldrich, USA) was used as constant samples to control for intra- 

and inter-plate variability. Four control samples were added per plate. All samples, including controls, 

were diluted ½ for the 30-plex kit, ¼ for the 15-plex kit and 1/2500 for the 5-plex kit.  

Raw intensities obtained with the xMAP and Luminex system for each plasma sample were converted 

to pg/ml using the calculated standard curves of each plate and accounting for the dilutions made 

prior measurement. The percentages of coefficients of variation (CV%) for each protein by plate 

ranged from 3% to 36%. The limit of detection (LOD) and the lower and upper limit of quantification 

(LOQ1 and LOQ2, respectively) were estimated by plate, and then averaged. Only proteins with >30% 

of measurements in the linear range of quantification were kept in the database and the others were 
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removed. Seven proteins were measured twice (in two different multiplex kits). We kept the measure 

with higher quality. The 36 proteins that passed the quality control criteria mentioned above were 

log2 transformed [77]. Then, the plate batch effect was corrected by subtracting the plate specific 

average for each protein minus the overall average of all plates for that protein. After that, values 

below the LOQ1 and above the LOQ2 were imputed using a truncated normal distribution 

implemented in the truncdist R package [78]. Twenty samples were excluded due to having ten or 

more proteins out of the linear range of quantification.  

 

Metabolomic analysis 

The AbsoluteIDQTM p180 kit was chosen for serum analysis as it is a standardised, targeted LC-MS/MS 

assay, widely used for large-scale epidemiology studies and its inter-laboratory reproducibility has 

been demonstrated by several independent laboratories [79].Serum samples were quantified using 

the AbsoluteIDQTM p180 kit following the manufacturer’s protocol (User Manual 

UM_p180_AB_SCIEX_9, Biocrates Life Sciences AG) using LC-MS/MS; an Agilent HPLC 1100 liquid 

chromatography coupled to a SCIEX QTRAP 6500 triple quadrupole mass spectrometer. A full 

description of the HELIX metabolomics methods and data can be found elsewhere [80].   

Briefly, the kit allows for the targeted analysis of 188 metabolites in the classes of amino acids, 

biogenic amines, acylcarnitines, glycerophospholipids, sphingolipids and sum of hexoses, covering a 

wide range of analytes and metabolic pathways in one targeted assay. The kit consists of a single 

sample processing procedure, with two separate analytical runs, a combination of liquid 

chromatography (LC) and flow injection analysis (FIA) coupled to tandem mass spectrometry (MS/MS). 

Isotopically labelled and chemically homologous internal standards were used for quantification. The 

AbsoluteIDQ p180 data of serum samples were acquired in 18 batches. Every analytical batch, in a 96-

well plate format, included up to 76 randomised cohort samples. Also in every analytical batch, three 

sets of quality control samples were included, the NIST SRM 1950 plasma reference material (in 4 

replicates), a commercial available serum QC material (CQC in 2 replicates, SeraLab, S-123-M-27485) 
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and the QCs provided by the manufacturer in three concentration levels. The NIST SRM 1950 reference 

was used as the main quality control sample for the LC-MS/MS analysis. Coefficients of variation (CVs) 

for each metabolite were calculated based on the NIST SRM 1950 and also the limits of detection 

(LODs) were also used to assess the analytical performance of individual metabolites. Metabolite 

exclusion was based on a metabolite variable meeting two conditions: (1) CV of over 30% and (2) over 

30% of the data are below LOD. Eleven out of the 188 serum metabolites detected were excluded as 

a result, leaving 177 serum metabolites to be used for further statistical analysis. The mean coefficient 

of variation across the 177 LC-MS/MS detected serum metabolites was 16%. We also excluded one 

HELIX sample, which was hemolyzed.  

Urinary metabolic profiles were acquired using 1H NMR spectroscopy according to (Lau et al., 2018). 

In brief one-dimensional 600 MHz 1H NMR spectra of urine samples from each cohort were acquired 

on the same Bruker Avance III spectrometer operating at 14.1 Tesla within a period of 1 month. The 

spectrometer was equipped with a Bruker SampleJet system, and a 5-mm broad-band inverse 

configuration probe maintained at 300K. Prior to analysis, cohort samples were randomised. 

Deuterated 3-(trimethylsilyl)-[2,2,3,3-d4]-propionic acid sodium salt (TSP) was used as internal 

reference. Aliquots of the study pooled quality control (QC) sample were used to monitor analytical 

performance throughout the run and were analysed at an interval of every 23 samples (i.e. 4 QC 

samples per well plate). The 1H NMR spectra were acquired using a standard one-dimensional solvent 

suppression pulse sequence. 44 metabolites were identified and quantified as described (Lau et al., 

2018). The urinary NMR showed excellent analytical performance, the mean coefficient of variation 

across the 44 NMR detected urinary metabolites was 11%. Data was normalized using the median fold 

change normalization method [81], which takes into account the distribution of relative levels of all 

44 metabolites compared to the reference sample in determining the most probable dilution factor. 

An offset of ½ of the minimal value was applied and then concentration levels were expressed as log2.  
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Building biological clocks 

Child epigenetic age was calculated based on Horvath’s Skin and Blood clock [30] using the methylclock 

R package [82].  

New transcriptome and immunometabolic clocks were trained against chronological age on 

transcriptome data and concatenated proteomic and metabolomic data respectively, from the HELIX 

subcohort children through elastic net regression, using the glmnet R package [83].  All ‘omic data was 

first mean centred and univariate scaled. To tune hyperparameters alpha and lambda, we performed 

a line search for alpha between 0 and 1, in 0.1 increments, and each time found the optimal value of 

lambda based on minimization of cross-validated mean squared error, using the cvfits function and 

10-fold cross-validation. The best performing combination of alpha and lambda was reserved for 

fitting the final model.  

Transcriptome data and concatenated proteomic and metabolomic data from the HELIX panel study 

children, was reserved for testing performance (Pearson’s r and mean absolute error with 

chronological age) of the derived clocks. Paired, one-tailed t-tests were used to test if biological age 

measures increased between the HELIX subcohort and subsequent HELIX panel clinical examinations. 

Developmental measurements 

During the HELIX subcohort examination, height and weight were measured using regularly calibrated 

instruments and converted to BMI and height age-and-sex–standardized z-scores (zBMI and zHeight) 

using the international World Health Organization (WHO) reference curves [84]. Bioelectric 

impedance analyses were performed with the Bodystat 1500 (Bodystat Ltd.) equipment after 5 min of 

lying down. The proportion of fat mass was calculated using published age- and race-specific equations 

validated for use in children [85]. 

Trained fieldwork technicians measured three cognitive domains in children using a battery of 

computer-based tests: fluid intelligence (Raven Coloured Progressive Matrices Test [CPM]), attention 

function (Attention Network Test [ANT]) and working memory (N-Back task). Complete outcome 
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descriptions are provided in [86]. The CPM comprised a total of 36 items and we used the total number 

of correct responses as the outcome. A higher CPM scoring indicates better fluid intelligence. Fluid 

intelligence is the ability to solve novel reasoning problems and depends only minimally on prior 

learning. For ANT, we used the outcome of hit reaction time standard error (HRT-SE), a measure of 

response speed consistency throughout the test. A high HRT-SE indicates highly variable reaction time 

during the attention task and is considered a measure of inattentiveness [87]. As the main parameter 

of N-Back, we used d prime (d′) from the 3-back colours test, a measure derived from signal detection 

theory calculated by subtracting the z-score of the false alarm rate from the z-score of the hit rate. A 

higher d′ indicates more accurate test performance, i.e. better working memory [87]. All examiners 

were previously trained following a standardized assessment protocol by the study expert 

psychologist. Furthermore, during the pilot phase, a coordinator visited each cohort site and checked 

for any potential error committed by the previously trained examiners. 

Parents completed questionnaires related to child’s behavior, including the Conner rating scale’s (N = 

1287) and child behavior checklist (CBCL, N = 1298), within a week before the follow-up visit at 6–11 

years of age. The 99-item CBCL/6–18 version for school children was used to obtain standardized 

parent reports of children's problem behaviours, translated and validated in each native language of 

the participating six cohort populations [88]. The parents responded along a 3-point scale with the 

code of 0 if the item is not true of the child, 1 for sometimes true, and 2 for often true. The internalizing 

score includes the subscales of emotionally reactive and anxious/depressed symptoms, as well as 

somatic complaints and symptoms of being withdrawn. The externalizing score includes attention 

problems and aggressive behaviors. 

Lung function was measured by a spirometry test (EasyOne spirometer; NDD [New Diagnostic Design], 

Zurich, Switzerland), by trained research technicians using a standardised protocol. The child, sitting 

straight and equipped with a nose clip, was asked to perform at least six manoeuvres (if possible). 

Details of exclusion of unacceptable maneuvers and validation of acceptable spirometer curves is fully 

described in [89]. FEV1 percent predicted values were computed using the reference equations 
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estimated by the Global Lung Initiative [90] for computing the (standardised by age, height, sex, and 

ethnicity). 

Parents of children aged 8 years or older completed an additional questionnaire based on the pubertal 

development scale (PDS) [91]. Boys are asked whether growth has not begun, barely begun, is 

definitely underway, or has finished on five dimensions: body hair, facial hair, voice change, skin 

change, and growth spurt. Girls are asked the same questions about body hair, skin change, breast 

development, and growth spurt. Responses are coded on 4-point scales (1 = no development and 4 = 

completed development). For girls, a yes-no question about onset of menarche is weighted more 

heavily (1 = no and 4 = yes). For both genders, ratings are then averaged to create an overall score for 

physical maturation. Due to the young age of participants, we took the average scores and created a 

binary variable, to define whether puberty had started (PDS >1) or not (PDS=1). 

 

Covariates 

During pregnancy and in the childhood HELIX subcohort examination information on the following 

key covariates was collected: cohort study centre (BiB, EDEN, INMA, MoBa, KANC and RHEA), self-

reported maternal education (primary school, secondary school and university degree or higher), 

self-reported ancestry (White European, Asian and Pakistani, or other), birth weight (continuous, 

kg), gestational age at delivery (continuous in weeks).  

Information about the children’s habitual diet was collected via a semi quantitative food-frequency 

questionnaire (FFQ) covering the child’s habitual diet, which was filled in by the parent attending the 

examination appointment. The FFQ, covering the past year, was developed by the HELIX research 

group, translated and applied to all cohorts. For the Mediterranean Diet Quality Index (KIDMED 

index) [92], items positively associated with the Mediterranean diet pattern (11 items) were 

assigned a value of +1, while those negatively associated with the Mediterranean diet pattern (4 

items) were assigned a value of −1. The scores for all 15 items were summed, resulting in a total 
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KIDMED score ranging from −4 to 11, with higher scores reflecting greater adherence to a 

Mediterranean diet.  

The smoking status of the mother at any point during pregnancy was categorised into “non-active 

smoker, or “active smoker”. Global exposure of the child to environmental tobacco smoke was 

defined based on the questionnaires completed by the parents into: "no exposure", no exposure at 

home neither in other places; “exposure”: exposure in at least one place, at home or outside. 

Moderate-to-vigorous physical activity variable was created based on physical activity questionnaire 

developed by the HELIX research group. It was defined as the amount of time children spent doing 

physical activities with intensity above 3 metabolic equivalent tasks (METs) and is expressed in units 

of min/day. 

Family Affluence Score (FAS) [93]was included based on questions from the subcohort 

questionnaire.  A composite FAS score was calculated based on the responses to the next four items: 

(1) Does your family own a car, van or truck? (2) Do you have your own bedroom for yourself? (3) 

During the past 12 months, how many times did you travel away on holiday with your family? (4) 

How many computers does your family own? A three-point ordinal scale was used, where FAS low 

(score 0,1,2) indicates low affluence, FAS medium (score 3,4,5) indicates middle affluence, and FAS 

high (score 6,7,8,9) indicates high affluence FAS.  

Family social capital-related questions were included in the HELIX questionnaire to capture different 

aspects of social capital, relating both to the cognitive (feelings about relationships) and structural 

(number of friends, number of organizations) dimensions and to bonding capital (close friends and 

family), bridging capital (neighbourhood connections, looser ties) and linking capital (ties across 

power levels; for example, political membership). Family social capital was categorized into low, 

medium and high based on terciles. 
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Statistical analysis 

All statistical analyses described here were performed among the HELIX subcohort children only. 

Since there were few missing covariate data (table S6), complete-case analysis was performed. 

Correlations between biological age measures and chronological age were calculated using Pearson’s 

correlations. Partial correlations, adjusted for chronological age and cohort study centre, were 

applied to assess correlations between biological age measures.  

In analysis with health risk factors and developmental outcomes, relative telomere length was 

multiplied by -1 to provide directions of effect consistent with the biological age clocks and 

univariate scaled to express effects in terms of SD change in telomere length. The markers derived 

from omic-based biological clocks were expressed as Δ age (clock-predicted age – chronological age). 

Associations between the biological age markers and developmental measures were estimated using 

linear regression, or logistic regression for onset of puberty, with the developmental measure as the 

dependent variable. CBCL scores were log transformed to achieve an approximately normal 

distribution. Continuous outcomes, apart from the BMI and height z-scores, were mean centered 

and univariate scaled for the purposes of graphical representation. Associations between health risk 

factors and biological age markers were estimated using linear regression with the biological age 

marker as the dependent variable. All regression analyses were adjusted for chronological age, sex, 

ethnicity, and study centre. 

We preformed three sensitivity analyses: Firstly, we repeated analysis with health outcomes 

stratified by child sex, since the relationship between biological age and development may differ 

between boys and girls. Secondly, we further adjusted regression models for estimated cell counts 

(CD4T, CD8T, monocytes, B cells, NK cells, neutrophils and eosinophils), since it has been proposed 

for epigenetic clocks that cell proportion adjustments allow estimation of effects on the intrinsic 

cellular ageing rate, rather than the extrinsic rate outputted by blood based biological clocks, which 

may be partly determined by age-related changes in cell composition [94]. Blood cell type 
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proportion was estimated from DNA methylation data using the Reinius et al. [79] reference panel as 

implemented in meffil package [80]. Finally, we assessed the effects of further adjustment for health 

risk factors identified as associated with any of the biological age markers (family affluence and 

social capital, birthweight, maternal active smoking, and child passive smoking). In our main analysis, 

we have not adjusted for these factors as our assumption is that the effects of health risk factors on 

child development is mediated through biological age. However, an alternative assumption is that 

health risk factors exert independent effects on both biological age and developmental outcomes, 

which would require adjustment for these factors to estimate direct effects of biological age on 

developmental outcomes. 

We report associations significant at the both the nominal significance threshold (p <0.05) and after 

correction for 5% false discovery rate using the Benjamini and Hochberg [95] method, calculated 

across all computed associations. 

We performed overrepresentation analyses (ORA) among KEGG and REACTOME pathways and gene 

ontology (GO) sets of all transcripts contributing to the transcriptome clock using the 

ConsensuspathDB online tool (http://consensuspathdb.org/). A pathway or GO set was considered 

significantly enriched if FDR corrected p-values were smaller than 0∙05 and included at least 3 genes. 

Additionally, to assess concordance with gene expression changes with age in adults, we tested 

enrichment of all transcripts contributing to the transcriptome clock among age-associated 

transcripts reported by Peters et al. [8], using a hypergeometric test using the R “phyper” function. 

All analyses were performed in R version 4.1.2. 

Data availability 
Due to data protection regulations in each participating country and participant data use 

agreements, human subject data used in this project cannot be freely shared. The raw data 

supporting the current study are available on request subject to ethical and legislative review. The 

“HELIX Data External Data Request Procedures” are available with the data inventory in this website: 
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http://www.projecthelix.eu/data-inventory. The document describes who can apply to the data and 

how, the timings for approval and the conditions to data access and publication. Researchers who 

have an interest in using data from this project for reproducibility or in using data held in general in 

the HELIX data warehouse for research purposes can apply for access to data. Interested researchers 

should fill in the application protocol found in ANNEX I at 

https://www.projecthelix.eu/files/helix_external_data_request_procedures_final.pdf and send this 

protocol to helixdata@isglobal.org. The applications are received by the HELIX Coordinator, and are 

processed and approved by the HELIX Project Executive Committee. All code used for data analysis 

has been provided as supplementary material. Deidentified dataset for generation of figures 1 and 2 

has been provided as a supplementary dataset. 
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Tables and Figures 
 

Table 1. Summary Statistics for study population.  
TELOMERE 

LENGTH 
DNA 

METHYLATION 
AGE 

TRANCRIPT-
OME AGE 

IMMUNO-
METABOLIC AGE 

 
N (%) or 

Mean (SD) 
N (%) or Mean 

(SD) 
N (%) or 

Mean (SD) 
N (%) or Mean 

(SD) 
N 1,162 1,173 1,007 1,152 

DEMOGRAPHIC FACTORS 

AGE (YEARS) 7.84 (1.54) 7.84 (1.54) 7.90(1.50) 7.86 (1.55) 

SEX-MALE 639 (55) 644 (54.9) 547 (54.3) 628 (54.5) 

SEX-FEMALE 523 (45) 529 (45.1) 460 (45.7) 524 (45.5) 

ETHNICITY-WHITE 1039 (89.4) 1048 (89.3) 905 (89.9) 1032 (89.6) 

ETHNICITY-PAKISTANI/ASIAN 96 (8.3) 98 (8.4) 76 (7.5) 93 (8.1) 

ETHNICITY -OTHER 27 (2.3) 27 (2.3) 26 (2.6) 27 (2.3) 

COHORT-BIB 200 (17.2) 203 (17.3) 162 (16.1) 191 (16.6) 

COHORT-EDEN 145 (12.5) 146 (12.4) 109 (10.8) 149 (12.9) 

COHORT-INMA 212 (18.2) 215 (18.3) 184 (18.3) 201 (17.4) 

COHORT-KANC 196 (16.9) 198 (16.9) 151 (15) 197 (17.1) 

COHORT-MOBA 211 (18.2) 212 (18.1) 245 (24.3) 222 (19.3) 

COHORT-RHEA 198 (17) 199 (17) 156 (15.5) 192 (16.7) 
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PRENATAL FACTORS 

MATERNAL NON-ACTIVE SMOKER 
DURING PREGNANCY 

988 (85) 998 (85.1) 859 (85.3) 981 (85.2) 

MATERNAL ACTIVE SMOKER 
DURING PREGNANCY 

174 (15) 175 (14.9) 148 (14.7) 171 (14.8) 

BIRTHWEIGHT (KG) 3.37 (0.5) 3.37 (0.5) 3.38 (0.52) 3.38 (0.5) 

GESTATIONAL AGE (WEEKS) 39.57 (1.67) 39.58 (1.67) 39.59 (1.75) 39.59 (1.66) 

FAMILY CAPITAL 

MATERNAL EDUCATION (LOW) 165 (14.7) 166 (14.7) 140 (14.4) 157 (14.1) 

MATERNAL EDUCATION (MEDIUM) 391 (34.8) 394 (34.8) 328 (33.8) 391 (35.1) 

MATERNAL EDUCATION (HIGH) 568 (50.5) 573 (50.6) 503 (51.8) 565 (50.8) 

FAMILY AFFLUENCE (LOW) 133 (11.5) 135 (11.5) 112 (11.1) 128 (11.1) 

FAMILY AFFLUENCE (MEDIUM) 462 (39.8) 466 (39.8) 394 (39.2) 450 (39.1) 

FAMILY AFFLUENCE (HIGH) 565 (48.7) 570 (48.7) 499 (49.7) 572 (49.7) 

FAMILY SOCIAL CAPITAL (LOW) 513 (47.7) 516 (47.5) 422 (45.8) 496 (46.7) 

FAMILY SOCIAL CAPITAL (MEDIUM) 264 (24.6) 269 (24.8) 228 (24.7) 259 (24.4) 

FAMILY SOCIAL CAPITAL (HIGH) 298 (27.7) 301 (27.7) 272 (29.5) 307 (28.9) 

CHILD FACTORS 

NO PASSIVE SMOKE EXPOSURE 723 (63.8) 732 (63.9) 639 (64.5) 718 (63.8) 

PASSIVE SMOKE EXPOSURE 411 (36.2) 413 (36.1) 351 (35.5) 407 (36.2) 

PHYSICAL ACTIVITY-LOW 418 (36.9) 420 (36.8) 349 (35.3) 416 (37.1) 

PHYSICAL ACTIVITY-MEDIUM 336 (29.7) 341 (29.9) 295 (29.9) 330 (29.4) 

PHYSICAL ACTIVITY-HIGH 378 (33.4) 381 (33.4) 344 (34.8) 375 (33.5) 

KIDMED DIET SCORE 2.81 (1.77) 2.82 (1.78) 2.88 (1.77) 2.84 (1.76) 

DEVELOPMENTAL MEASURES 

HEIGHT Z-SCORE 0.4 (0.97) 0.39 (0.98) 0.39 (0.96) 0.4 (0.98) 

BMI Z-SCORE 0.43 (1.2) 0.43 (1.2) 0.4 (1.15) 0.42 (1.18) 

ADIPOSITY (BIA FAT-MASS %) 6.76 (4.01) 6.77 (4.01) 6.52 (3.9) 6.72 (3.95) 

WORKING MEMORY (3-BACK D') 1.1 (1.01) 1.1 (1.01) 1.13 (1) 1.1 (1.01) 

INATTENTIVENESS (ANT-HRT) 301.97 
(90.38) 

301.93 (90.46) 297.69 
(89.36) 

301.35 (89.84) 

FLUID INTELLIGENCE (CPM) 25.87 (6.33) 25.86 (6.32) 26.12 (6.26) 25.95 (6.3) 

INTERNALIZING BEHAVIOURS 
(CBCL) 

6.49 (5.9) 6.48 (5.9) 6.36 (5.89) 6.52 (5.87) 

EXTERNALIZING BEHAVIOURS 
(CBCL) 

6.81 (6.5) 6.82 (6.51) 6.67 (6.49) 6.74 (6.42) 

LUNG FUNCTION (FEV1) 99.26 
(13.46) 

99.25 (13.47) 99.16 (13.02) 99.17 (13.47) 

PUBERTY NOT STARTED 250 (46.6) 252 (46.5) 254 (49.7) 260 (48) 

PUBERTY STARTED (PDS >1) 287 (53.4) 290 (53.5) 257 (50.3) 282 (52) 

  

 . CC-BY 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted January 23, 2023. ; https://doi.org/10.1101/2023.01.23.23284901doi: medRxiv preprint 

https://doi.org/10.1101/2023.01.23.23284901
http://creativecommons.org/licenses/by/4.0/


37 
 

Table2: Associations between health risk factors and biological age measures. Estimates calculated using linear regression, adjusted for 

chronological age, sex, ethnicity, and study centre. Bold indicates p<0.05 and *indicates FDR <5%. Telomere length is expressed as % decrease in 

length (multiplied by -1) to provide estimates indicative of accelerated biological age, as the other biological age indicators. 
 

 
TELOMERE LENGTH  DNA METHYLATION AGE TRANCRIPTOME AGE IMMUNOMETABOLIC AGE 

 
SD Decrease 

(95%CI) 
P value Increase in years 

ΔAge (95%CI) 
P 

value 
Increase in years 

ΔAge (95%CI) 
P 

value 
Increase in years 

ΔAge (95%CI) 
P value 

SEX-MALE  - - - - - - - - 

SEX-FEMALE -0.27 (-0.39, -0.16) 3.30E-
06* 

0.07 (-0.01, 0.16) 0.1 0 (-0.01, 0.02) 0.73 0.06 (-0.01, 0.13) 0.086 

PRENATAL FACTORS 

MATERNAL NON-ACTIVE SMOKER DURING 
PREGNANCY 

- - - - - - - - 

MATERNAL ACTIVE SMOKER DURING 
PREGNANCY  

0.07 (-0.1, 0.23)  0.41 0.15 (0.03, 0.28) 0.018 0 (-0.02, 0.02) 0.88 -0.04 (-0.14, 0.06) 0.43 

BIRTHWEIGHT (KG) -0.098 (-0.218, 
0.023) 

0.11 -0.021 (-0.114, 
0.072) 

0.66 0.005 (-0.01, 
0.02) 

0.51 0.102 (0.027, 
0.177) 

0.0075 

GESTATIONAL AGE (WEEKS) -0.012 (-0.048, 
0.024) 

0.52 0.013 (-0.015, 
0.041) 

0.35 0 (-0.005, 0.004) 0.89 0.018 (-0.005, 
0.04) 

0.12 

FAMILY CAPITAL 

MATERNAL EDUCATION (LOW) - - - - - - - - 

MATERNAL EDUCATION (MEDIUM) -0.06 (-0.26, 0.13) 0.53 0.02 (-0.14, 0.17) 0.84 0.01 (-0.02, 0.03) 0.61 0.08 (-0.04, 0.2) 0.21 

MATERNAL EDUCATION (HIGH) -0.1 (-0.29, 0.1) 0.32 -0.07 (-0.22, 
0.08) 

0.37 0 (-0.02, 0.03) 0.85 0.12 (0, 0.24) 0.051 

FAMILY AFFLUENCE (LOW) - - - - - - - - 

FAMILY AFFLUENCE (MEDIUM) -0.15 (-0.34, 0.05) 0.13 -0.11 (-0.26, 
0.03) 

0.13 0 (-0.03, 0.02) 0.85 0.02 (-0.1, 0.14) 0.8 

FAMILY AFFLUENCE (HIGH) -0.27 (-0.47, -
0.07) 

0.0081 -0.14 (-0.29, 
0.02) 

0.083 0.01 (-0.01, 0.04) 0.35 0.09 (-0.04, 0.21) 0.17 

FAMILY SOCIAL CAPITAL (LOW) - - - - - - - - 

FAMILY SOCIAL CAPITAL (MEDIUM) -0.06 (-0.21, 0.09) 0.45 -0.03 (-0.14, 
0.09) 

0.62 0.02 (0.01, 0.04) 0.012 -0.04 (-0.14, 0.05) 0.36 
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FAMILY SOCIAL CAPITAL (HIGH) -0.15 (-0.3, 0) 0.054 -0.12 (-0.23, 0) 0.048 0.02 (0.01, 0.04) 0.011 -0.06 (-0.15, 0.04) 0.25 

CHILD FACTORS 
        

NO PASSIVE SMOKE EXPOSURE - - - - - - - - 

PASSIVE SMOKE EXPOSURE 0.05 (-0.08, 0.18) 0.42 0.11 (0.02, 0.21) 0.023 0.01 (0, 0.03) 0.16 -0.01 (-0.09, 0.07) 0.76 

PHYSICAL ACTIVITY-LOW - - - - - - - - 

PHYSICAL ACTIVITY-MEDIUM 0.09 (-0.06, 0.23) 0.25 -0.08 (-0.2, 0.03) 0.15 -0.01 (-0.03, 
0.01) 

0.17 0.03 (-0.06, 0.12) 0.56 

PHYSICAL ACTIVITY-HIGH 0.14 (-0.01, 0.29) 0.067 -0.1 (-0.22, 0.01) 0.08 0 (-0.02, 0.01) 0.69 -0.06 (-0.15, 0.04) 0.24 

KIDMED DIET SCORE -0.03 (-0.064, 
0.005) 

0.092 0.005 (-0.022, 
0.031) 

0.74 0.004 (-0.001, 
0.008) 

0.10 -0.005 (-0.027, 
0.016) 

0.64 
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Figure 1: Study design schematic.  
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Figure 2:  Correlations between biological age indicators. Heatmap shows partial Pearson’s 

correlations, adjusted for chronological age, sex and study centre.  * indicates p<0.05. 
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Figure 3: Associations between biological age measures and developmental measures. Estimates calculated using linear regression, adjusted for 

chronological age, sex, ethnicity, and study centre. *indicates FDR <5%. Telomere length is expressed as % decrease in length (multiplied by -1) 

to provide estimates indicative of accelerated biological age, as the other biological age indicators. SD = Standard deviation 
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Figure s1: Comparison between immunometabolic and transcriptome age between 

first and second study visits. Box plots (showing minimum, maximum, median, first 

quartile and third quartile) of biological age measures at each panel study visit 

(approximately 6 months apart). Panel clinic 1 was part of the main Helix subcohort 

examination. P values calculated from paired t-tests. 
 

p= 2e -5 p= 3e -5 
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Figure s2: Age Prediction by study centre of transcriptome age. MAE = mean absolute 

error. r and p values from Pearson’s correlation. 
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Figure s3: Age Prediction by study centre of immunometabolic age. MAE = mean 

absolute error. r and p values from Pearson’s correlation. 
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Figure s4: Associations between 

biological age measures and 

developmental measures, 

stratified by sex. Estimates 

calculated using linear 

regression, adjusted for 

chronological age, sex, 

ethnicity, and study centre. 

Telomere length is expressed as 

% decrease in length (multiplied 

by -1) to provide estimates 

indicative of accelerated 

biological age, as for the other 

biological age indicators. 
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Figure s5: Associations 

between telomere length and 

developmental measures 

adjusted for A: chronological 

age, sex, ethnicity, and study 

centre; B: as for A plus 

estimated cell counts; C: as 

for A plus family affluence and 

social capital, birthweight, 

maternal active smoking, and 

child passive smoking; D as for 

C plus estimated cell counts. 

Telomere length is expressed 

as % decrease in length 

(multiplied by -1) to provide 

estimates indicative of 

accelerated biological age, as 

for the other biological age 

indicators. 
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Figure s6: Associations between DNA 

methylation Δ age and developmental 

measures adjusted for A: chronological age, 

sex, ethnicity, and study centre; B: as for A 

plus estimated cell counts; C: as for A plus 

family affluence and social capital, 

birthweight, maternal active smoking, and 

child passive smoking; D as for C plus 

estimated cell counts.  
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Figure s7: 

Associations between 

transcriptome Δ age 

and developmental 

measures adjusted for 

A: chronological age, 

sex, ethnicity, and 

study centre; B: as for 

A plus estimated cell 

counts; C: as for A 

plus family affluence 

and social capital, 

birthweight, maternal 

active smoking, and 

child passive smoking; 

D as for C plus 

estimated cell counts.  
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Figure s8: Associations 

between 

immunometabolic Δ 

age and 

developmental 

measures adjusted for 

A: chronological age, 

sex, ethnicity, and 

study centre; B: as for 

A plus estimated cell 

counts; C: as for A plus 

family affluence and 

social capital, 

birthweight, maternal 

active smoking, and 

child passive smoking; 

D as for C plus 

estimated cell count
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Figure S9: Participant flowchart 
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