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Abstract5

Forecast evaluation plays an essential role in the development cycle of predictive epidemic models6

and can inform their use for public health decision-making. Common scores to evaluate epidemiological7

forecasts are the Continuous Ranked Probability Score (CRPS) and the Weighted Interval Score (WIS),8

which are both measures of the absolute distance between the forecast distribution and the observation.9

They are commonly applied directly to predicted and observed incidence counts, but it can be questioned10

whether this yields the most meaningful results given the exponential nature of epidemic processes and11

the several orders of magnitude that observed values can span over space and time. In this paper, we12

argue that log transforming counts before applying scores such as the CRPS or WIS can effectively13

mitigate these difficulties and yield epidemiologically meaningful and easily interpretable results. We14

motivate the procedure threefold using the CRPS on log-transformed counts as an example: Firstly, it15

can be interpreted as a probabilistic version of a relative error. Secondly, it reflects how well models16

predicted the time-varying epidemic growth rate. And lastly, using arguments on variance-stabilizing17

transformations, it can be shown that under the assumption of a quadratic mean-variance relationship,18

the logarithmic transformation leads to expected CRPS values which are independent of the order of19

magnitude of the predicted quantity. Applying the log transformation to data and forecasts from the20

European COVID-19 Forecast Hub, we find that it changes model rankings regardless of stratification21

by forecast date, location or target types. Situations in which models missed the beginning of upward22

swings are more strongly emphasized while failing to predict a downturn following a peak is less severely23

penalized. We conclude that appropriate transformations, of which the natural logarithm is only one24

particularly attractive option, should be considered when assessing the performance of different models25

in the context of infectious disease incidence.26
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1 Introduction28

Probabilistic forecasts (Held et al., 2017) play an important role in decision-making in epidemiology and29

public health (Reich et al., 2022), as well as other areas as diverse as economics (Timmermann, 2018) or30

meteorology (Gneiting and Raftery, 2005). Forecasts based on epidemiological modelling in particular has31

received widespread attention during the COVID-19 pandemic. Evaluations of forecasts can provide feedback32

for researchers to improve their models and train ensembles. They moreover help decision-makers distinguish33

good from bad predictions and choose forecasters and models that are best suited to inform future decisions.34

Probabilistic forecasts are usually evaluated using so-called proper scoring rules (Gneiting and Raftery,35

2007), which return a numerical score as a function of the forecast and the observed data. Proper scoring36

rules are constructed such that forecasters (anyone or anything that issues a forecast) are incentivised to37

report their true belief about the future. Examples of proper scoring rules that have been used to assess38

epidemiological forecasts are the Continuous Ranked Probability Score (CRPS, Gneiting and Raftery, 2007)39

or its discrete equivalent, the Ranked Probability Score (RPS, Funk et al., 2019), and the Weighted Interval40

Score (Bracher et al., 2021a). The CRPS measures the distance of the predictive distribution to the observed41

data as42

CRPS(F, y) =

∫ ∞

−∞
(F (x)− 1(x ≥ y))

2
dx,43

where y is the true observed value and F the cumulative distribution function (CDF) of the predictive dis-44

tribution. The CRPS can be understood as a generalisation of the absolute error to predictive distributions,45

and interpreted on the natural scale of the data. The WIS is an approximation of the CRPS for predictive46

distributions represented by a set of predictive quantiles and is currently used to assess forecasts in so-called47

COVID-19 Forecast Hubs in the US (Cramer et al., 2020, 2021), Europe (Sherratt et al., 2022), Germany48

and Poland (Bracher et al., 2021b,c), as well as the US Influenza Forecasting Hub (Cdc, 2022). The WIS is49

defined as50

WIS(F, y) =
1

K
×

K∑
k=1

2× [1(y ≤ qτk)− τk]× (qτk − y),51

where qτ is the τ quantile of the forecast F , y is the observed outcome, K is the number of predictive quantiles52

provided and 1 is the indicator function. The WIS can be decomposed into three components, dispersion,53

overprediction, underprediction, which reflect the width of the forecast and whether it was centred above or54

below the observed value. We show an alternative definition based on central prediction intervals in Section55

A.1 which illustrates this decomposition.56

The dynamics of infectious processes are often described by the complementary concepts of the reproduction57

number R (Gostic et al., 2020) and growth rate r (Wallinga and Lipsitch, 2007), where R describes the58

strength and r the speed of epidemic growth (Dushoff and Park, 2021). In the absence of changes in59

immunity, behaviour or other factors that may affect the intensity of transmission, the reproduction number60

would be expected to remain approximately constant. In that case, the number of new infections in the61

population grows exponentially in time. This behaviour was observed, for example, early in the COVID-1962

pandemic in many countries (Pellis et al., 2021).63

If case numbers are evolving based on an exponential process and the modelling task revolves around esti-64

mating and forecasting the reproduction number or the corresponding growth rate, then evaluating forecasts65

based on the absolute distance between forecast and observed value penalises underprediction (of the repro-66

duction number or growth rate) less than overprediction by the same amount. This is because for exponential67

processes errors on the observed value grow exponentially with the error on the estimated reproduction num-68

ber or growth rate. If one is to measure the ability of forecasts to assess and forecast the underlying infection69

dynamics, it may thus be more desirable to evaluate errors on the growth rate directly.70

Evaluating forecasts using the CRPS or WIS means that scores represent a measure of absolute errors.71

However, forecast consumers may find errors on a relative scale easier to interpret and more useful in order72
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to track predictive performance across targets of different orders of magnitude. Bolin and Wallin (2021)73

have proposed the scaled CRPS (SCRPS) which is locally scale invariant; however, it does not correspond74

to a relative error measure and lacks a straightforward interpretation as available for the CRPS.75

A closely related aspect to relative scores (as opposed to absolute scores) is that in the evaluation one may76

wish to give similar weight to all considered forecast targets. As the CRPS typically scales with the order77

of magnitude of the quantity to be predicted, this is not the case for the CRPS, which will typically assign78

higher scores to forecast targets with high expected values (e.g., in large locations or around the peak of79

an epidemic). Bracher et al. (2021a) have argued that this is a desirable feature, directing attention to80

situations of particular public health relevance. An evaluation based on absolute errors, however, will assign81

little weight to other potentially important aspects, such as the ability to correctly predict future upswings82

while observed numbers are still low.83

In many fields, it is common practice to forecast transformed quantities (see e.g. Taylor (1999) in finance,84

Mayr and Ulbricht (2015) in macroeconomics, Löwe et al. (2014) in hydrology or Fuglstad et al. (2015) in85

meteorology). While the goal of the transformations is usually to improve the accuracy of the predictions,86

they can also be used to enhance and complement the evaluation process. In this paper, we argue that the87

aforementioned issues with evaluating epidemic forecasts based on measures of absolute error on the natural88

scale can be addressed by transforming the forecasts and observations prior to scoring using some strictly89

monotonic transformation. Strictly monotonic transformations can shift the focus of the evaluation in a90

way that may be more appropriate for epidemiological forecasts, while preserving the propriety of the score.91

Many different transformations may be appropriate and useful, depending on the exact context, the desired92

focus of the evaluation, and specific aspects of the forecasts that forecast consumers care most about (see a93

broader discussion in Section 4).94

For conceptual clarity and to allow for a more in-depth discussion, we focus mostly on the natural logarithm95

as a particular transformation (referred to as the log-transformtation in the remainder of this manuscript)96

in the context of epidemic phenomena. Instead of a score representing the magnitude of absolute errors,97

applying a log-transformation prior to the CRPS yields a score which a) measures relative error (see Section98

2.1), b) provides a measure for how well a forecast captures the exponential growth rate of the target quantity99

(see Section 2.2) and c) is less dependent on the expected order of magnitude of the quantity to be predicted100

(see Section 2.3). We therefore argue that such evaluations on the logarithmic scale should complement the101

prevailing evaluations on the natural scale. Other transformations may likewise be of interest. We briefly102

explore the square root transformation as an alternative transformation. Our analysis mostly focuses on the103

CRPS (or WIS) as an evaluation metric for probabilistic forecasts, given its widespread use throughout the104

COVID-19 pandemic.105

The remainder of the article is structured as follows. In Sections 2.1–2.3 we provide some mathematical106

intuition on applying the log-transformation prior to evaluating the CRPS, highlighting the connections to107

relative error measures, the epidemic growth rate and variance stabilizing transformations. We then discuss108

practical considerations for applying transformations in general and the log-transformation in particular109

(Section 2.4) and the effect of the log-transformation on forecast rankings (Section 2.5). To analyse the110

real-world implications of the log-transformation we use forecasts submitted to the European COVID-19111

Forecast Hub (European Covid-19 Forecast Hub, 2021; Sherratt et al., 2022, Section 3). Finally, we provide112

scoring recommendations, discuss alternative transformations that may be useful in different contexts, and113

suggest further research avenues (Section 4).114
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2 Logarithmic transformation of forecasts and observations115

2.1 Interpretation as a relative error116

To illustrate the effect of applying the natural logarithm prior to evaluating forecasts we consider the absolute117

error, which the CRPS and WIS generalize to probabilistic forecasts. We assume strictly positive support118

(meaning that no specific handling of zero values is needed), a restriction we will address when applying this119

transformation in practice. When considering a point forecast ŷ for a quantity of interest y, such that120

y = ŷ + ε,121

the absolute error is given by |ε|. When taking the logarithm of the forecast and the observation first, thus122

considering123

log y = log ŷ + ε∗,124

the resulting absolute error |ε∗| can be interpreted as an approximation of various common relative error
measures. Using that log(a) ≈ a− 1 if a is close to 1, we get

|ε∗| = | log ŷ − log y| =
∣∣∣∣log( ŷ

y

)∣∣∣∣ if ŷ ≈ y
≈

∣∣∣∣ ŷy − 1

∣∣∣∣ =

∣∣∣∣ ŷ − y

y

∣∣∣∣ .
The absolute error after log transforming is thus an approximation of the absolute percentage error (APE,
Gneiting, 2011) as long as forecast and observation are close. As we assumed that ŷ ≈ y, we can also
interpret it as an approximation of the relative error (RE)∣∣∣∣ ŷ − y

ŷ

∣∣∣∣
and the symmetric absolute percentage error (SAPE)∣∣∣∣ ŷ − y

y/2 + ŷ/2

∣∣∣∣ .
As Figure 1 shows, the alignment with the SAPE is in fact the closest and holds quite well even if predicted125

and observed value differ by a factor of two or three. Generalising to probabilistic forecasts, the CRPS126

applied to log-transformed forecasts and outcomes can thus be seen as a probabilistic counterpart to the127

symmetric absolute percentage error, which offers an appealing intuitive interpretation.128

2.2 Interpretation as scoring the exponential growth rate129

Another interpretation for the log-transform is possible if the generative process is framed as exponential130

with a time-varying growth rate r(t) (see, e.g., Wallinga and Lipsitch, 2007), i.e.131

d

dt
y(t) = r(t)y(t)132

which is solved by133

y(t) = y0 exp

(∫ t

0

r(t′)dt′
)

= y0 exp(r̄t)134

where y0 is an initial data point and r̄ is the mean of the growth rate between the initial time point 0 and135

time t.136
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Figure 1: Numerical comparison of different measures of relative error: absolute percentage error (APE),
relative error (RE), symmetric absolute percentage error (SAPE) and the absolute error applied to log-
transformed predictions and observations. We denote the predicted value by ŷ and display errors as a
function of the ratio of observed and predicted value. A: x-axis shown on a linear scale. B: x-axis shown on
a logarithmic scale.

If a forecast ŷ(t) for the value of the time series at time t is issued at time 0 based on the data point y0 then137

the absolute error after log transformation is138

ϵ∗ = |log [ŷ(t)]− log [y(t)]|139

=
∣∣log [y0 exp(¯̂rt)]− log [y0 exp(r̄t)]

∣∣140

= t
∣∣¯̂r − r̄

∣∣141
142

where ¯̂r is the true mean growth rate and r̄ is the forecast mean growth rate. We thus evaluate the error in143

the mean exponential growth rate, scaled by the length of the time period considered. Again generalising144

this to the CRPS and WIS implies a probabilistic evaluation of forecasts of the epidemic growth rate.145

2.3 Interpretation as a variance-stabilising transformation146

When evaluating models across sets of forecasting tasks, it may be desirable for each target to have a similar147

impact on the overall results. In disease incidence forecasting, this is not the case when using the CRPS on148

the natural scale, as the latter typically scales with the order of magnitude of the quantity to be predicted.149

Average scores are then dominated by the results achieved for targets with high expected outcomes.150

Specifically, if the predictive distribution for the quantity Y equals the true data-generating process F (an
ideal forecast), the expected CRPS is given by (Gneiting and Raftery, 2007)

E[CRPS(F, y)] = 0.5× E|Y − Y ′|,

where Y and Y ′ are independent samples from F . This corresponds to half the mean absolute difference,
which is a measure of dispersion. If F is well-approximated by a normal distribution N(µ, σ2), the approxi-
mation

EF [CRPS(F, y)] ≈
σ√
π

5
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can be used. This means that the expected CRPS scales roughly with the standard deviation, which in151

turn typically increases with the mean in epidemiological forecasting. In order to make the expected CRPS152

independent of the expected outcome, a variance-stabilising transformation (VST, Bartlett, 1936) can be153

employed. The choice of this transformation depends on the mean-variance relationship of the underlying154

process.155

If the mean-variance relationship is quadratic with σ2 = c×µ2, the natural logarithm can serve as the VST
(Guerrero, 1993). Denoting by Flog the predictive distribution for log(Y ), we can use the delta method to
show that

EF [CRPS{Flog, log(y)}] ≈
σ/µ√
π

=

√
c√
π
.

The assumption of a quadratic mean-variance relationship is closely linked to the aspects discussed in Sections156

2.1 and 2.2. It implies that relative errors have constant variance and can thus be meaningfully compared157

across different targets. Also, it arises naturally if we assume that our capacity to predict the epidemic158

growth rate does not depend on the expected outcome.159

If the variance is linear with σ2 = c× µ, as with a Poisson-distributed variable, the square root is known to
be a VST. Denoting by F√ the predictive distribution for

√
Y , the delta method can again be used to show

that

EF [CRPS{F√ ,
√
y}] ≈

σ/
√
µ

2
√
π

=

√
c

2
√
π
.

To strengthen our intuition on how transforming outcomes prior to applying the CRPS shifts the emphasis160

between targets with high and low expected outcomes, Figure 2 shows the expected CRPS of ideal forecasters161

under different mean-variance relationships and transformations. We consider a Poisson distribution where162

σ2 = µ, a negative binomial distribution with size parameter θ = 10 and thus σ2 = µ + µ2/10, and a163

normal distribution with constant variance. We see that when applying the CRPS on the natural scale, the164

expected CRPS grows with the variance of the predictive distribution (which is equal to the data-generating165

distribution for the ideal forecaster). The expected CRPS is constant only for the distribution with constant166

variance, and grows in µ for the other two. When applying a log-transformation first, the expected CRPS167

is almost independent of µ for the negative binomial distribution and large µ, while smaller targets have168

higher expected CRPS in case of the Poisson distribution and the normal distribution with constant variance.169

When applying a square-root-transformation before the CRPS, the expected CRPS is independent of the170

mean for the Poisson-distribution, but not for the other two (with a positive relationship in the normal case171

and a negative one for the negative binomial). As can be seen in Figures 2 and SI.3, the approximations172

presented above work quite well for our simulated example.173

2.4 Practical considerations174

Transformations that are strictly monotonic are permissible in the sense that they maintain the propriety175

of the score. This is because even though rankings of models may change forecasts will in expectation still176

minimise their score if they report a predictive distribution that is equal to the data-generating distribution.177

This condition holds for both the log and square root transformations, as well as many others. However, the178

order of the operations matters, and applying a transformation after scores have been computed generally179

does not guarantee propriety. In the case of log transforms, taking the logarithm of the scores, rather than180

scoring the log-transformed forecasts and data, results in an improper score. This is because taking the181

logarithm of the CRPS (or WIS) results in a score that does not penalise outliers enough and therefore182

incentivises overconfident predictions. We illustrate this point using simulated data in Figure SI.1, where it183

can easily be seen that overconfident models perform best in terms of the log WIS.184

In practice, one issue with the log transform is that they are not readily applicable to negative numbers or185

zero values, which need to be removed or otherwise handled. One common approach to deal with zeros is186
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Figure 2: Expected CRPS scores as a function of the mean and variance of the forecast quantity. We
computed expected CRPS values for three different distributions, assuming an ideal forecaster with predictive
distribution equal to the data-generating distribution. These expected CRPS values where computed for
different predictive means based on 10,000 samples each and are represented by dots. Solid lines show the
corresponding approximation of the expected CRPS based on an assumed normal distribution as discussed
in section 2.3. Figure SI.3 shows the quality of the approximation in more detail. The first distribution
(red) is a truncated normal distribution with constant variance (we chose σ = 1 in order to only obtain
positive samples). The second (green) is a negative binomial distribution with variance θ = 10 and variance
σ2 = µ+0.1µ2. The third (blue) is a Poisson distribution with σ2 = µ. To make the scores for the different
distributions comparable, scores were normalised to one, meaning that the mean score for every distribution
(red, green, blue) is one. A: Normalised expected CRPS for ideal forecasts with increasing means for three
distribution with different relationships between mean and variance. Expected CRPS was computed on the
natural scale (left), after applying a square-root transformation (middle), and after adding one and applying
a log-transformation to the data (right). B: A but with x axis on the log scale.

to add a small quantity, such as 1, to all observations and predictions before taking the logarithm (Bellégo187

et al., 2022). This represents a strictly monotonic transformation and therefore preserves the propriety of the188

resulting score. The choice of the quantity to add does however influences scores and rankings, as measures189

of relative errors shrink when adding a constant a to the forecast and the observation. We illustrate this in190

Figure SI.2. As a rule of thumb, if if x > 5a, the difference between log (x+ a) and log (x) is small, and it191

becomes negligible if x > 50a. Choosing a suitable offset a balances two competing concerns: on the one192

hand, choosing a small a makes sure that the transformation is as close to a natural logarithm as possible193

and scores can be interpreted as outlined above. On the other hand, choosing a larger a can help stabilise194

scores for forecasts and observations close to zero, avoiding giving excessive weight to forecasts for small195

quantities (see Figure SI.7).196

A related issue occurs when the predictive distribution has a large probability mass on zero (or on very small197

values), as this can translate into an excessively wide forecast in relative terms. This can be seen in Figure198

SI.5. Here, the dispersion component of the WIS is inflated for scores obtained after applying the natural199
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logarithm because forecasts contained zero in its prediction intervals.200

2.5 Effects on model rankings201

Rankings between different forecasters based on the CRPS may change when making use of a transformation,202

both in terms of aggregate and individual scores. We illustrate this in Figure 3 with two forecasters, A and B,203

issuing two different distributions with different dispersion. When showing the obtained CRPS as a function204

of the observed value, it can be seen that the ranking between the two forecasters may change when scoring205

the forecast on the logarithmic, rather than the natural scale. In particular, on the natural scale, forecaster206

A, who issues a more uncertain distribution, receives a better score than forecaster B for observed values207

far away from the centre of the respective predictive distribution. On the log scale, however, forecaster A208

receives a lower score for large observed values, being more heavily penalised for assigning large probability209

to small values (which, in relative terms, are far away from the actual observation).210

Figure 3: Illustration of the effect of the log-transformation of the ranking for a single forecast. Shown are
CRPS (or WIS, respectively) values as a function of the observed value for two forecasters. Model A issues
a geometric distribution (a negative binomial distribution with size parameter θ = 1) with mean µ = 10 and
variance σ2 = µ+ µ2 = 110), while Model B issues a Poisson distribution with mean and variance equal to
10. Zeroes in this illustrative example were handled by adding one before applying the natural logarithm.

Overall model rankings would be expected to differ even more when scores are averaged across multiple211

forecasts or targets. The change in rankings of aggregate scores is mainly driven by the order of magnitude212

of scores for different forecast targets across time, location and target type and less so by the kind of changes213

in model rankings for single forecasts discussed above. Large observations will dominate average CRPS214

values when evaluation is done on the natural scale, but much less so after log transformation. Depending215

on the relationship between the mean and variance of the forecast target, a log-transformation may even216

lead to systematically larger scores assigned to small forecast targets, as illustrated in Figure 2.217
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3 Empirical example: the European Forecast Hub218

3.1 Setting219

As an empirical comparison of evaluating forecasts on the natural and on the log scale, we use forecasts from220

the European Forecast Hub (European Covid-19 Forecast Hub, 2021; Sherratt et al., 2022). The European221

COVID-19 Forecast Hub is one of several COVID-19 Forecast Hubs (Cramer et al., 2021; Bracher et al.,222

2021b) which have been systematically collecting, aggregating and evaluating forecasts of several COVID-19223

targets created by different teams every week. Forecasts are made one to four weeks ahead into the future224

and follow a quantile-based format with a set of 23 quantiles (0.01, 0.025, 0.05, ..., 0.5, ...0.95, 0.975, 0.99).225

The forecasts used for the purpose of this illustration are forecasts submitted between the 8th of March 2021226

and the 5th of December 2022 for reported cases and deaths from COVID-19. See Sherratt et al. (2022) for a227

more thorough description of the data. We filtered all forecasts submitted to the Hub to only include models228

which have submitted forecasts for both deaths and cases for 4 horizons in 32 locations on at least 46 forecast229

dates (see Figure SI.4). We removed all observations marked as data anomalies by the European Forecast230

Hub (Sherratt et al., 2022) as well as all remaining negative observed values. In addition, we filtered out231

erroneous forecasts defined by any of the conditions listed in Table SI.2. Those forecasts were removed in232

order to be better able to illustrate the effects of the log-transformation on scores and eliminating distortions233

caused by outlier forecasters. All predictive quantiles were truncated at 0. We applied the log-transformation234

after adding a constant a = 1 to all predictions and observed values. The choice of a = 1 in part reflects235

convention, but also represents a suitable choice as it avoids giving excessive weight to forecasts close to236

zero, while at the same time ensuring that scores for observations > 5 can be interpreted reasonably. The237

analysis was conducted in R (R Core Team, 2022), using the scoringutils package (Bosse et al., 2022)238

for forecast evaluation. All code is available on GitHub (https://github.com/epiforecasts/transformation-239

forecast-evaluation). Where not otherwise stated, we report results for a two-week-ahead forecast horizon.240

In addition to the WIS we use pairwise comparisons (Cramer et al., 2021) to evaluate the relative performance241

of models across countries in the presence of missing forecasts. In the first step, score ratios are computed242

for all pairs of models by taking the set of overlapping forecasts between the two models and dividing the243

score of one model by the score achieved by the other model. The relative skill for a given model compared244

to others is then obtained by taking the geometric mean of all score ratios which involve that model. Low245

values are better, and the ”average” model receives a relative skill score of 1.246

3.2 Illustration and qualitative observations247

When comparing examples of forecasts on the natural scale with those on the log scale (see Figures 4, SI.5,248

SI.6) a few interesting patterns emerge. Missing the peak, i.e. predicting increasing numbers while actual249

observations are already falling, tends to contribute a lot to overall scores on the natural scale (see forecasts250

in May in Figure 4A, B). On the log scale, these have less of an influence, as errors are smaller in relative251

terms (see 4C, D). Conversely, failure to predict an upswing while numbers are still low, is less severely252

punished on the natural scale (see forecasts in July in Figure 4 A, B), as overall absolute errors are low.253

On the log scale, missing lower inflection points tends to lead to more severe penalties (see Figure 4C, D)).254

One can also observe that on the natural scale, scores tend to track the overall level of the target quantity255

(compare for example forecasts for March-July with forecasts for September-October in Figure 4E, F). On256

the log scale, scores do not exhibit this behaviour and rather increase whenever forecasts are far away from257

the truth in relative terms, regardless of the overall level of observations.258

Across the dataset, the average number of observed cases and deaths varied considerably by location and259

target type (see Figure 5A and B). On the natural scale, scores show a pattern quite similar to the ob-260
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Figure 4: Forecasts and scores for two-week-ahead predictions from the EuroCOVIDhub-ensemble made
in Germany. Missing values are due to data anomalies that were removed (see section 3.1. A, E: 50% and
90% prediction intervals and observed values for cases and deaths on the natural scale. B, F: Corresponding
scores. C, G: Forecasts and observations on the log scale. D, H: Corresponding scores.

servations across targets (see Figure5D) and locations (see Figure5C). On the log scale, scores were more261

evenly distributed between targets (see Figure5D) and locations (see Figure5C). Both on the natural scale262

as well on the log scale, scores increased considerably with increasing forecast horizon (see Figure 5E). This263

reflects the increasing difficulty of forecasts further into the future and, for the log scale, corresponds with264

our expectations from Section 2.2.265

3.3 Regression analysis to determine the variance-stabilizing transformation266

As argued in Section 2.3, the mean-variance, or mean-CRPS, relationship determines which transformation
can serve as a VST. We can analyse this relationship empirically by running a regression that explains the
CRPS as a function of the central estimate of the predictive distribution. We ran the regression

log[CRPS(F, y)] = α+ β × log[median(F )],

10
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Figure 5: Observations and scores across locations and forecast horizons for the European COVID-19 Forecast
Hub data. Locations are sorted according to the mean observed value in that location. A: Average (across
all time points) of observed cases and deaths for different locations. B: Corresponding boxplot (y-axis on
log-scale) of all cases and deaths. C: Scores for two-week-ahead forecasts from the EuroCOVIDhub-ensemble
(averaged across all forecast dates) for different locations, evaluated on the natural as well as the logarithmic
scale. D: Corresponding boxplots of all individual scores for two-week-ahead predictions. E: Boxplots for the
relative change of scores for the EuroCOVIDhub-ensemble across forecast horizons. For any given forecast
date and location, forecasts were made for four different forecast horizons, resulting in four scores. All scores
were divided by the score for forecast horizon one. To enhance interpretability, the range of visible relative
changes was restricted to [0.1, 10].

where the predictive distribution F and the observation y are on the natural scale. This is equivalent to

CRPS(F, y) = exp(α)×median(F )β ,

11
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meaning that we estimate a polynomial relationship between the predictive median and achieved CRPS. Note267

that we are using predictive medians rather than means as only the former are available in the European268

COVID-19 Forecast Hub. As the CRPS of an ideal forecaster scales with the standard deviation (see Section269

2.3), a value of β = 1 would imply a quadratic median-variance relationship; the natural logarithm could270

then serve as a VST. A value of β0.5 would imply a linear median-variance relationship, suggesting the271

square root as a VST. We applied the regression to case and death forecasts, pooled across horizons and272

stratified for one through four-week-ahead forecasts. Results are provided in Table 1. It can be seen that273

the estimates of β always take a value somewhat below 1, implying a slightly sub-quadratic mean-variance274

relationship. The logarithmic transformation should thus approximately stabilize the variance (and CRPS),275

possibly leading to somewhat higher scores for smaller forecast targets. The square-root transformation, on276

the other hand, can be expected to still lead to higher CRPS values for targets of higher orders of magnitude.277

Figure 6: Relationship between median forecasts and scores. Black dots represent WIS values for two-week
ahead predictions of the EuroCOVIDhub-ensemble. Shown in red are the regression lines discussed in Section
3.3 shown in Table 1. A: WIS for two-week-ahead predictions of the EuroCOVIDhub-ensemble against
median predicted values. B: Same as A, with scores obtained after applying a square-root-transformation to
the data. C: Same as A, with scores obtained after applying a log-transformation to the data.
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Horizon Target α β α√ β√ αlog βlog

all all -1.093 0.963 -0.352 0.201 0.391 0.001

all Cases 0.036 0.858 0.043 0.201 0.751 -0.033
all Deaths -0.884 0.868 0.273 0.121 0.436 -0.023

1 all -1.402 0.923 0.320 0.088 0.318 -0.014
2 all -1.221 0.967 0.112 0.164 0.364 -0.003
3 all -1.001 0.984 -0.094 0.241 0.410 0.008
4 all -0.757 0.986 0.000 0.299 0.469 0.015

1 Cases -0.862 0.876 0.790 0.087 0.433 -0.024
2 Cases -0.243 0.877 0.959 0.162 0.660 -0.031
3 Cases 0.372 0.855 1.109 0.238 0.882 -0.037
4 Cases 0.816 0.837 1.645 0.296 1.009 -0.036

1 Deaths -1.146 0.832 0.457 0.048 0.376 -0.035
2 Deaths -0.981 0.867 0.443 0.084 0.416 -0.028
3 Deaths -0.807 0.885 0.349 0.131 0.453 -0.019
4 Deaths -0.602 0.891 0.125 0.194 0.501 -0.011

Table 1: Coefficients of three regressions for the effect of the magnitude of the median forecast on expected
scores. The first regression was log[CRPS(F, y)] = α + β × log[median(F )], where F is the predictive
distribution and y the observed value. The second one was CRPS(Flog, log y) = αlog+βlog · log (median(F )),
where Flog is the predictive distribution for log y. The third one was CRPS(F√ ,

√
y) = αsqrt + βsqrt ·√

(median(F )), where F√ is the predictive distribution for
√
y.

To check the relationship after the transformation, we ran the regressions

CRPS(Flog, log y) = αlog + βlog · log (median(F )),

where Flog is the predictive distribution for log(y), and

CRPS(F√ ,
√
y) = α√ + β√ ·

√
median(F ),

where F√ is the predictive distribution on the square-root scale. A value of βlog = 0 (or β√
=0, respectively,278

would imply that scores are independent of the median prediction after the transformation. A value smaller279

(larger) than 0 would imply that smaller (larger) targets lead to higher scores. As can be seen from Table280

1, the results indeed indicate that small targets lead to larger average CRPS when using the log transform281

(βlog < 0), while the opposite is true for the square-root transform (β√ > 0). The results of the three282

regressions are also displayed in Figure 6. In this empirical example, the log transformation thus helps (albeit283

not perfectly), to stabilise WIS values, and it does so more successfully than the square-root transformation.284

As can be seen from Figure 6, the expected CRPS scores for case targets with medians of 10 and 100,000285

differ by more then a factor of ten for the square root transformation, but only a factor of around 2 for the286

logarithm.287

3.4 Impact of logarithmic transformation on model rankings288

For individual forecasts, rankings between models for single forecasts are mostly preserved, with differences289

increasing across forecast horizons (see Figure 7A). When evaluating performance averaged across different290

forecasts and forecast targets, relative skill scores of the models change considerably (Figure 7B). The291

correlation between relative skill scores also decreases noticeably with increasing forecast horizon.292
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Figure 7: Correlations of rankings on the natural and logarithmic scale. A: Average Spearman rank correla-
tion of scores for individual forecasts from all models. For every individual target (defined by a combination
of forecast date, target type, horizon, location), one score was obtained per model. Then, the rank corre-
lation was computed between the scores for all models on the natural scale vs. on the log scale. All rank
correlations were averaged across locations, and target types and stratified by horizon and target type. B:
Correlation between relative skill scores. For every forecast horizon and target type, a separate relative skill
score was computed per model using pairwise comparisons. The plot shows the correlation between the
relative skill scores on the natural vs. on the log scale.

Figure Figure 8 shows the changes in the ranking between different forecasting models. Encouragingly for the293

European Forecast Hub, the Hub ensemble, which is the forecast the organisers suggest forecast consumers294

make use of, remains the top model across scoring schemes. For cases, the ILM-EKF model and the Forecast295

Hub baseline model exhibit the largest change in relative skill scores. For the ILM-EKF model the relative296

proportion of the score that is due to overprediction is reduced when applying a log-transformation before297

scoring (see Figure 8E. Instances where the model has overshot are penalised less heavily on the log scale,298

leading to an overall better score. For the Forecast Hub baseline model, the fact that it often puts relevant299

probability mass on zero (see Figure SI.5), leads to worse scores after applying log-transformation due to300

large dispersion penalties. For deaths, the baseline model seems to get similarly penalised for its in relative301

terms highly dispersed forecasts. The performance of other models changes as well, but patterns are less302

discernible on this aggregate level.303

4 Discussion304

In this paper, we proposed the use of transformations, with a particular focus on the natural logarithmic305

transformation, when evaluating forecasts in an epidemiological setting. These transformations can address306

issues that arise when evaluating epidemiological forecasts based on measures of absolute error and their307

probabilistic generalisations (i.e CRPS and WIS). We showed that scores obtained after log-transforming308

both forecasts and observations can be interpreted as a) a measure of relative prediction errors, as well as309

b) a score for a forecast of the exponential growth rate of the target quantity and c) as variance stabilising310

transformation in some settings. When applying this approach to forecasts from the European COVID-19311

Forecast Hub, we found overall scores on the log scale to be more equal across, time, location and target312

type (cases, deaths) than scores on the natural scale. Scores on the log scale were much less influenced by313

the overall incidence level in a country and showed a slight tendency to be higher in locations with very low314

incidences. We found that model rankings changed noticeably.315
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Figure 8: Changes in model ratings as measured by relative skill for two-week-ahead predictions for cases (top
row) and deaths (bottom row). A: Relative skill scores for case forecasts from different models submitted to
the European COVID-19 Forecast Hub computed on the natural scale. B: Change in rankings as determined
by relative skill scores when moving from an evaluation on the natural scale to one on the logarithmic scale.
C: Relative skill scores based on scores on the log scale. D: Difference in relative skill scores computed on
the natural and on the logarithmic scale, ordered as in C. E: Relative contributions of the different WIS
components (overprediction, underprediction, and dispersion) to overall model scores on the natural and the
logarithmic scale. F, G, H, I, J, K: Analogously for deaths.

On the natural scale, missing the peak and overshooting was more severely penalised than missing the nadir316

and the following upswing in numbers. Both failure modes tended to be more equally penalised on the log317

scale (with undershooting receiving slightly higher penalties in our example).318

Applying a log-transformation prior to the WIS means that forecasts are evaluated in terms of relative319

errors and errors on the exponential growth rate, rather than absolute errors. The most important strength320

of this approach is that the evaluation better accommodates the exponential nature of the epidemiological321

process and the types of errors forecasters who accurately model those processes are expected to make. The322

log-transformation also helps avoid issues with scores being strongly influenced by the order of magnitude323

of the forecast quantity, which can be an issue when evaluating forecasts on the natural scale. A potential324

downside is that forecast evaluation is unreliable in situations where observed values are zero or very small.325

Including very small values in prediction intervals (see e.g. Figure SI.5) can lead to excessive dispersion326

values on the log scale. Similarly, locations with lower incidences may get disproportionate weight (i.e. high327

scores) when evaluating forecasts on the log scale. Bracher et al. (2021a) argue that the large weight given to328

forecasts for locations with high incidences is a desirable property, as it reflects performance on the targets329

we should care about most. On the other hand, scoring forecasts on the log scale may be less influenced330

by outliers and better reflect consistent performance across time, space, and forecast targets. It also gives331

higher weight to another type of situation one may care about, namely one in which numbers start to rise332

from a previously low level.333

The log-transformation is only one of many transformations that may be useful and appropriate in an334

epidemiological context. One obvious option is to apply a population standardization to obtain incidence335

forecasts e.g., per 100,000 population (Abbott et al., 2022). If one is interested in multiplicative, rather336
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than exponential growth rates, one could convert forecasts into forecasts for the multiplicative growth rate337

by dividing numbers by the last observed value. We suggested using the natural logarithm as a variance-338

stabilising transformation (VST) or alternatively the square-root transformation in the case of a Poisson339

distributed variable. Other VST like the Box-Cox (Box and Cox, 1964) are conceivable as well. Another340

promising transformation would be to take differences between forecasts on the log scale, or alternatively341

to divide each forecast by the forecast of the previous week (and analogously for observations), in order to342

obtain forecasts for week-to-week growth rates. One could then also ask forecasters to provide estimates of343

the weekly relative change applied to the latest data and subsequent forecast points directly. This would344

be akin to evaluating the shape of the predicted trajectory against the shape of the observed trajectory (for345

a different approach to evaluating the shape of a forecast, see Srivastava et al., 2022). This, unfortunately,346

is not feasible under the current quantile-based format of the Forecast Hubs, as the growth rate of the α-347

quantile may be different from the α-quantile of the growth-rate. However, it may be an interesting approach348

if predictive samples are available or if quantiles for weekwise growth rates have been collected. It is possible349

to go beyond choosing a single transformation by constructing composite scores as a weighted sum of scores350

based on different transformations. This would make it possible to create custom scores and allow forecast351

consumers to assign explicit weights to different qualities of the forecasts they might care about.352

In this work, we focused on the CRPS and WIS, which are widely used in the evaluation of epidemic353

forecasts. We note that for the logarithmic score, which has also been used e.g., in some editions of the354

FluSight challenge Reich et al. (2019), the question of the right scale to evaluate forecasts does not arise. It355

is known that log score differences between different forecasters are invariant to monotonic transformations356

of the outcome variable (see e.g., Diks et al. 2011). This is clearly an advantage of the logarithmic score over357

the CRPS; however, the logarithmic score is known to have other severe downsides, e.g., its low robustness358

to sporadically misguided forecasts; see Bracher et al. (2021a) for a more detailed discussion.359

Exploring transformations is a promising avenue for future work that could help bridge the gap between360

modellers and policymakers by providing scoring rules that better reflect what forecast consumers care361

about. Potentially, the variance stabilising time-series forecasting literature may be a useful source of362

transformations for various forecast settings. We have shown that the natural logarithm transformation can363

lead to significant changes in the relative rankings of models against each other, with potentially important364

implications for decision-makers who rely on the knowledge of past performance to make a judgement about365

which forecasts should inform future decisions. While it is commonly accepted that multiple proper scoring366

rules should usually be considered when comparing forecasts, we think this should be supplemented by367

considering different transformations of the data to obtain a richer picture of model performance. More368

work needs to be done to better understand the effects of applying transformations in different contexts, and369

how they may impact decision-making.370
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A Supplementary information371

A.1 Alternative Formulation of the WIS372

Instead of defining the WIS as an average of scores for individual quantiles, we can define it using an373

average of scores for symmetric predictive intervals. For a single prediction interval, the interval scoren374

(IS) is computed as the sum of three penalty components, dispersion (width of the prediction interval),375

underprediction and overprediction,376

ISα(F, y) = (u− l) +
2

α
· (l − y) · 1(y ≤ l) +

2

α
· (y − u) · 1(y ≥ u)377

= dispersion + underprediction + overprediction,378
379

where 1() is the indicator function, y is the observed value, and l and u are the α
2 and 1 − α

2 quantiles of380

the predictive distribution, i.e. the lower and upper bound of a single central prediction interval. For a set381

of K∗ prediction intervals and the median m, the WIS is computed as a weighted sum,382

WIS =
1

K∗ + 0.5
·

(
w0 · |y −m|+

K∗∑
k=1

wk · ISαk
(F, y)

)
,383

where wk is a weight for every interval. Usually, wk = αk

2 and w0 = 0.5.384

Figure SI.1: Illustration of impropriety of log-transformed CRPS. We assume Y ∼ LogNormal(0, 1) and
evaluate the expected CRPS for predictive distributions LogNormal(0, σ) with varying values of σ ∈ [0.1, 2].
For the regular CRPS (left) and CRPS applied to log-transformed outcomes (middle), the lowest expectation
is achieved for the true value σ = 1. For the log-transformed CRPS, the optimal value is 0.9, i.e. there is an
incentive to report a forecast that is too sharp.
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Figure SI.2: Illustration of the effect of adding a small quantity to a value before taking the natural logarithm.
For increasing x, all lines eventually approach the black line (representing a transformation with no offset
applied). For a given solid line, the dashed line of the same colour marks the x-value that is equal to 5 times
the corresponding offset.

target type quantity measure natural log

Cases Observations mean 61979 9.19
Cases Observations sd 171916 2.10
Cases Observations var 29555122130 4.42
Deaths Observations mean 220 3.89
Deaths Observations sd 435 1.96

Deaths Observations var 189051 3.83
Cases WIS mean 15840 0.27
Cases WIS sd 53117 0.28
Deaths WIS mean 31 0.23
Deaths WIS sd 65 0.28

Table SI.1: Summary statistics for observations and scores for forecasts from the ECDC data set.

True value & Median prediction

> 0 > 100× true value
> 10 > 20× true value
> 50 < 1/50× true value
= 0 > 100

Table SI.2: Criteria for removing forecasts. Any forecast that met one of the listed criteria (represented by
a row in the table), was removed. Those forecasts were removed in order to be better able to illustrate the
effects of the log-transformation on scores and eliminating distortions caused by outlier forecasters. When
evaluating models against each other (rather than illustrating the effect of a transformation), one would
prefer not to condition on the outcome when deciding whether a forecast should be taken into account.
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Figure SI.3: Visualisation of expected CRPS values against approximated scores using the approximation
detailed in Section 2.5 (see also Figure 2). Expected CRPS scores are shown for three different distributions
once on the natural scale (top row) and once scored on the log scale (bottom row).
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Figure SI.4: Number of forecasts available from different models for each forecast date.
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Figure SI.5: Forecasts and scores for two-week-ahead predictions from the EuroCOVIDhub-baseline made
in Germany. The model had zero included in some of its 50 percent intervals (e.g. for case forecasts in July),
leading to excessive dispersion values on the log scale. One could argue that including zero in the prediction
intervals constituted an unreasonable forecast that was rightly penalised, but in general care has to be taken
with small numbers. A, E: 50% and 90% prediction intervals and observed values for cases and deaths on
the natural scale. B, F: Corresponding scores. C, G: Forecasts and observations on the log scale. D, H:
Corresponding scores.
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Figure SI.6: Forecasts and scores for two-week-ahead predictions from the epiforecasts-EpiNow2 model
(Abbott et al., 2020) made in Germany. A, E: 50% and 90% prediction intervals and observed values for
cases and deaths on the natural scale. B, F: Corresponding scores. C, G: Forecasts and observations on the
log scale. D, H: Corresponding scores.
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Figure SI.7: Mean WIS in different locations for different transformations applied before scoring. Shown
are scores for two-week-ahead forecasts of the EuroCOVIDhub-ensemble. On the natural scale (with no
transformation prior applying the WIS), scores correlate strongly with the average number of observed
values in a given location. The same is true for scores obtained after applying a square-root transformation,
or after applying a log-transformation with a large offset a. For illustrative purposes, a was chosen to be
101630 for cases and 530 for deaths, 10 times the respective median observed value. For large values of a,
log(x+ a) grows linearly in x, meaning that we expect to observe the same patterns as in the case with no
transformation. For decreasing values of a, we give more relative weight to scores in small locations.
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Löwe, R., Mikkelsen, P. S., and Madsen, H. (2014). Stochastic rainfall-runoff forecasting: Parameter estima-477

tion, multi-step prediction, and evaluation of overflow risk. Stochastic Environmental Research and Risk478

Assessment, 28(3):505–516.479

Mayr, J. and Ulbricht, D. (2015). Log versus level in VAR forecasting: 42 million empirical answers—Expect480

the unexpected. Economics Letters, 126:40–42.481

Pellis, L., Scarabel, F., Stage, H. B., Overton, C. E., Chappell, L. H. K., Fearon, E., Bennett, E., Lythgoe,482

K. A., House, T. A., Hall, I., and null, n. (2021). Challenges in control of COVID-19: Short doubling time483

and long delay to effect of interventions. Philosophical Transactions of the Royal Society B: Biological484

Sciences, 376(1829):20200264.485

R Core Team (2022). R: A Language and Environment for Statistical Computing. R Foundation for Statistical486

Computing, Vienna, Austria.487

Reich, N. G., Brooks, L. C., Fox, S. J., Kandula, S., McGowan, C. J., Moore, E., Osthus, D., Ray, E. L.,488

Tushar, A., Yamana, T. K., Biggerstaff, M., Johansson, M. A., Rosenfeld, R., and Shaman, J. (2019).489

A collaborative multiyear, multimodel assessment of seasonal influenza forecasting in the United States.490

Proceedings of the National Academy of Sciences, 116(8):3146–3154.491

Reich, N. G., Lessler, J., Funk, S., Viboud, C., Vespignani, A., Tibshirani, R. J., Shea, K., Schienle, M.,492

Runge, M. C., Rosenfeld, R., Ray, E. L., Niehus, R., Johnson, H. C., Johansson, M. A., Hochheiser, H.,493

Gardner, L., Bracher, J., Borchering, R. K., and Biggerstaff, M. (2022). Collaborative hubs: Making the494

most of predictive epidemic modeling. American Journal of Public Health, 112(6):839–842.495

Sherratt, K., Gruson, H., Grah, R., Johnson, H., Niehus, R., Prasse, B., Sandman, F., Deuschel, J., Wolffram,496

D., Abbott, S., Ullrich, A., Gibson, G., Ray, E., Reich, N., Sheldon, D., Wang, Y., Wattanachit, N., Wang,497

L., Trnka, J., Obozinski, G., Sun, T., Thanou, D., Pottier, L., Krymova, E., Barbarossa, M., Leithäuser,498
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