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Abstract4

Forecast evaluation is essential for the development of predictive epidemic models and can inform5

their use for public health decision-making. Common scores to evaluate epidemiological forecasts are6

the Continuous Ranked Probability Score (CRPS) and the Weighted Interval Score (WIS), which can7

be seen as measures of the absolute distance between the forecast distribution and the observation.8

However, applying these scores directly to predicted and observed incidence counts may not be the9

most appropriate due to the exponential nature of epidemic processes and the varying magnitudes of10

observed values across space and time. In this paper, we argue that transforming counts before applying11

scores such as the CRPS or WIS can effectively mitigate these difficulties and yield epidemiologically12

meaningful and easily interpretable results. Using the CRPS on log-transformed values as an example,13

we list three attractive properties: Firstly, it can be interpreted as a probabilistic version of a relative14

error. Secondly, it reflects how well models predicted the time-varying epidemic growth rate. And lastly,15

using arguments on variance-stabilizing transformations, it can be shown that under the assumption of16

a quadratic mean-variance relationship, the logarithmic transformation leads to expected CRPS values17

which are independent of the order of magnitude of the predicted quantity. Applying a transformation18

of log(x + 1) to data and forecasts from the European COVID-19 Forecast Hub, we find that it changes19

model rankings regardless of stratification by forecast date, location or target types. Situations in which20

models missed the beginning of upward swings are more strongly emphasised while failing to predict a21

downturn following a peak is less severely penalised when scoring transformed forecasts as opposed to22

untransformed ones. We conclude that appropriate transformations, of which the natural logarithm is23

only one particularly attractive option, should be considered when assessing the performance of different24

models in the context of infectious disease incidence.25
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1 Introduction27

Probabilistic forecasts (Held et al., 2017) play an important role in decision-making in epidemiology and28

public health (Reich et al., 2022), as well as other areas as diverse as economics (Timmermann, 2018) or29

meteorology (Gneiting and Raftery, 2005). Forecasts based on epidemiological modelling in particular have30

received widespread attention during the COVID-19 pandemic. Evaluations of forecasts can provide feedback31

for researchers to improve their models and train ensembles. They moreover help decision-makers distinguish32

good from bad predictions and choose forecasters and models that are best suited to inform future decisions.33

Probabilistic forecasts are usually evaluated using so-called (strictly) proper scoring rules (Gneiting and34

Raftery, 2007), which return a numerical score as a function of the forecast and the observed data. Proper35

scoring rules are constructed such that they encourage honest forecasting and cannot be ‘gamed’ or ‘cheated’.36

Assuming that the forecaster’s actual best judgement corresponds to a predictive distribution F , a proper37

score is constructed such that if F was the data-generating process, no other distribution G would yield a38

better expected score. A scoring rule is called strictly proper if there is no other distribution that under F39

achieves the same expected score as F , meaning that any deviation from F leads to a worsening of expected40

scores. Forecasters (anyone or anything that issues a forecast) are thus incentivised to report their true41

belief F about the future. Common proper scoring rules are the logarithmic or log score (Good, 1952) and42

the continuous ranked probability score (CRPS, Gneiting and Raftery, 2007). The log score is the predictive43

log density or probability mass evaluated at the observed value. It is supported by the likelihood principle44

(Winkler, 1996) and has many desirable theoretical properties; however, the particularly severe penalties45

it assigns to occasional misguided forecasts make it little robust (Bracher et al., 2021a). Moreover, it is46

not easily applied to forecasts reported as samples or quantiles, as used in many recent disease forecasting47

efforts. It is nonetheless occasionally used in epidemiology (see e.g., Held et al. 2017; Johansson et al. 2019),48

but in recent years the CRPS and the weighted interval score (WIS, Bracher et al., 2021a) have become49

increasingly popular.50

The CRPS measures the distance of the predictive distribution to the observed data as51

CRPS(F, y) =

∫ ∞

−∞
(F (x)− 1(x ≥ y))

2
dx, (1)52

where y is the true observed value, F is the cumulative distribution function (CDF) of the predictive53

distribution, and 1() is the indicator function. The CRPS can be understood as a generalisation of the54

absolute error to predictive distributions, and interpreted on the natural scale of the data. The WIS is an55

approximation of the CRPS for predictive distributions represented by a set of predictive quantiles and is56

currently used to assess forecasts in the so-called COVID-19 Forecast Hubs in the US (Cramer et al., 2020,57

2021), Europe (Sherratt et al., 2022) and Germany and Poland (Bracher et al., 2021b, 2022), as well as the58

US FluSight project on influenza forecasting(CDC, 2022). The WIS is defined as59

WIS(F, y) =
1

K
×

K∑
k=1

2× [1(y ≤ qτk)− τk]× (qτk − y), (2)60

where qτ is the τ quantile of the forecast F , y is the observed outcome andK is the number of (roughly equally61

spaced) predictive quantiles provided. The WIS can be decomposed into three components, dispersion,62

underprediction and overprediction, which reflect the spread of the forecast and whether it was centred63

above or below the observed value. We show an alternative definition based on central prediction intervals64

in Supplement A.1 which illustrates this decomposition.65

The notion of absolute distance encoded by the CRPS andWIS provides a straightforward interpretation, but66

may not always be the most useful perspective in the context of infectious disease spread. Especially in their67

early phase, outbreaks are best conceived as exponential processes, characterized by potentially time varying68

reproduction numbers Rt (Gostic et al., 2020) or epidemic growth rates rt (Dushoff and Park, 2021). If the69

true modelling task revolves around estimating and forecasting these quantities, then evaluating forecasts70
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based on the absolute distance between forecasted and observed incidence values penalises underprediction71

(of the reproduction number or growth rate) less than overprediction by the same amount. For illustration,72

consider an incidence forecast issued at time 0 and referring to time t that misses the correct average growth73

rate r̄t by either −ϵ or +ϵ. Then the ratio of the resulting absolute errors on the scale of observed incidences74

yt is75

|y0 exp[(r̄t − ϵ)× t]− y0 exp(r̄tt)|
|y0 exp[(r̄t + ϵ)× t]− y0 exp(r̄tt)|

= exp(−ϵt) < 1. (3)76

If one is to measure the ability to forecast the underlying infection dynamics, it may thus be more desirable77

to evaluate errors on the scale of the growth rate directly.78

Another argument against using notions of absolute distance between predicted and observed incidence79

values is that forecast consumers may find errors on a relative scale easier to interpret and more useful in80

order to track predictive performance across targets of different orders of magnitude. Bolin and Wallin (2023)81

have proposed the scaled CRPS (SCRPS) which is locally scale invariant; however, it does not correspond82

to a relative error measure and lacks a straightforward interpretation as available for the CRPS.83

Lastly, it may be considered desirable to give all forecast targets similar weight in an overall performance84

evaluation. As the CRPS typically scales with the order of magnitude of the quantity to be predicted, this85

is not the case for the CRPS, which will typically assign higher scores to forecast targets with high expected86

values (e.g., in large locations or around the peak of an epidemic). Bracher et al. (2021a) have argued87

that this is a desirable feature, directing attention to situations of particular public health relevance. An88

evaluation based on absolute errors, however, will assign little weight to other potentially important aspects,89

such as the ability to correctly predict future upswings while observed numbers are still low.90

In many fields, it is common practice to forecast transformed quantities (see e.g. Taylor (1999) in finance,91

Mayr and Ulbricht (2015) in macroeconomics, Löwe et al. (2014) in hydrology or Fuglstad et al. (2015) in92

meteorology). While the goal of the transformations is often to improve the accuracy of the predictions,93

they can also be used to enhance and complement the evaluation process. In this paper, we argue that the94

aforementioned issues with evaluating epidemic forecasts based on measures of absolute error on the natural95

scale can be addressed by transforming the forecasts and observations prior to scoring using some strictly96

monotonic transformation. Strictly monotonic transformations can shift the focus of the evaluation in a97

way that may be more appropriate for epidemiological forecasts, while guaranteeing that the score remains98

proper. Many different transformations may be appropriate and useful, depending on the exact context,99

the desired focus of the evaluation, and specific aspects forecast consumers care most about (see a broader100

discussion in Section 4).101

For conceptual clarity and to allow for a more in-depth discussion, we focus mostly on the natural logarithm102

as a particularly attractive transformation in the context of epidemic phenomena. We refer to this trans-103

formation as ’log-transformation’ and to scores that have been computed from log-transformed forecasts104

and observations as scores ’on the log scale’ (as opposed to scores ’on the natural scale’, which involve no105

transformation). In the theoretical discussion in Section 2, ’log-transformation’ and ’log scale’ generally refer106

to a transformation of loge(x). For practical applications (Section 3) we also use these terms to describe a107

transformation of loge(x+ a) with a small a > 0 in order to keep the terminology and notation simple. For108

a prediction target with strictly positive support, the CRPS after applying a log-transformation is given by109

CRPS(Flog, log y) =

∫ ∞

−∞
(Flog(x)− 1(x ≥ log y))

2
dx. (4)110

Here, y is again the observed outcome and Flog is the predictive CDF of the log-transformed outcome, i.e.,111

Flog(x) = F (exp(x)), (5)112
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with F the CDF on the original scale. Instead of a score representing the magnitude of absolute errors,113

applying a log-transformation prior to the CRPS yields a score which a) measures relative error (see Section114

2.1), b) provides a measure for how well a forecast captures the exponential growth rate of the target quantity115

(see Section 2.2) and c) is less dependent on the expected order of magnitude of the quantity to be predicted116

(see Section 2.3). We therefore argue that such evaluations on the logarithmic scale should complement the117

prevailing evaluations on the natural scale. Other transformations may likewise be of interest. We briefly118

explore the square root transformation as an alternative transformation. Our analysis mostly focuses on119

the CRPS (or WIS) as an evaluation metric for probabilistic forecasts, given its widespread use throughout120

the COVID-19 pandemic. We note that the logarithmic score has scale invariance properties which imply121

that score differences between different forecasts are invariant to strictly monotonic transformations (see122

Lehmann 1950 on corresponding properties of likelihood ratios and Diks et al. 2011). The question of the123

right scale to evaluate forecasts on does therefore not arise for the log score.124

The remainder of the article is structured as follows. In Sections 2.1–2.3 we provide some mathematical125

intuition on applying the log-transformation prior to evaluating the CRPS, highlighting the connections to126

relative error measures, the epidemic growth rate and variance stabilizing transformations. We then discuss127

the effect of the log-transformation on forecast rankings (Section 2.4) as well as practical considerations for128

applying transformations in general and the log-transformation in particular (Section 2.5). To analyse the129

real-world implications of the log-transformation we use forecasts submitted to the European COVID-19130

Forecast Hub (European Covid-19 Forecast Hub, 2021; Sherratt et al., 2022, Section 3). Finally, we provide131

scoring recommendations, discuss alternative transformations that may be useful in different contexts, and132

suggest further research avenues (Section 4).133

2 Logarithmic transformation of forecasts and observations134

2.1 Interpretation as a relative error135

To illustrate the effect of applying the natural logarithm prior to evaluating forecasts we consider the absolute136

error, which the CRPS and WIS generalize to probabilistic forecasts. We assume strictly positive support137

(meaning that no specific handling of zero values is needed), a restriction we will address when applying this138

transformation in practice. When considering a point forecast ŷ for a quantity of interest y, such that139

y = ŷ + ε, (6)140

the absolute error is given by |ε|. When taking the logarithm of the forecast and the observation first, thus141

considering142

log y = log ŷ + ε∗, (7)143

the resulting absolute error |ε∗| can be interpreted as an approximation of various common relative error144

measures. Using that log(a) ≈ a− 1 if a is close to 1, we get145

|ε∗| = | log ŷ − log y| =
∣∣∣∣log( ŷ

y

)∣∣∣∣ if ŷ ≈ y
≈

∣∣∣∣ ŷy − 1

∣∣∣∣ =

∣∣∣∣ ŷ − y

y

∣∣∣∣ . (8)146

The absolute error after log transforming is thus an approximation of the absolute percentage error (APE,147

Gneiting, 2011) as long as forecast and observation are close. As we assumed that ŷ ≈ y, we can also148

interpret it as an approximation of the relative error (RE, Gneiting, 2011)149 ∣∣∣∣ ŷ − y

ŷ

∣∣∣∣ (9)150

and the symmetric absolute percentage error (SAPE; see e.g., Flores 1986)151 ∣∣∣∣ ŷ − y

y/2 + ŷ/2

∣∣∣∣ . (10)152
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As Figure 1 shows, the alignment with the SAPE is in fact the closest and holds quite well even if predicted153

and observed value differ by a factor of two or three. Generalising to probabilistic forecasts, the CRPS154

applied to log-transformed forecasts and outcomes can thus be seen as a probabilistic counterpart to the155

symmetric absolute percentage error, which offers an appealing intuitive interpretation.156

Figure 1: Numerical comparison of different measures of relative error: absolute percentage error (APE),
relative error (RE), symmetric absolute percentage error (SAPE) and the absolute error applied to log-
transformed predictions and observations. We denote the predicted value by ŷ and display errors as a
function of the ratio of observed and predicted value. A: x-axis shown on a linear scale. B: x-axis shown on
a logarithmic scale.

2.2 Interpretation as scoring the exponential growth rate157

Another interpretation for the log-transform is possible if the generative process is framed as exponential158

with a time-varying growth rate r(t) (see, e.g., Wallinga and Lipsitch, 2007), i.e.159

d

dt
y(t) = r(t)y(t) (11)160

which is solved by161

y(t) = y0 exp

(∫ t

0

r(t′)dt′
)

= y0 exp(r̄tt) (12)162

where y0 is an initial data point and r̄t is the mean of the growth rate between the initial time point 0 and163

time t.164

If a forecast ŷ(t) for the value of the time series at time t is issued at time 0 based on the data point y0 then165

the absolute error after log transformation is166

ϵ∗ = |log [ŷ(t)]− log [y(t)]|
=
∣∣log [y0 exp( ˆ̄rtt)]− log [y0 exp(r̄tt)]

∣∣
= t

∣∣ ˆ̄rt − r̄t
∣∣ (13)167

168

where r̄t is the true mean growth rate and ˆ̄rt is the forecast mean growth rate. We thus evaluate the error169

in the mean exponential growth rate, scaled by the length of the time period considered. Again generalising170

this to the CRPS and WIS implies a probabilistic evaluation of forecasts of the epidemic growth rate.171
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2.3 Interpretation as a variance-stabilising transformation172

When evaluating models across sets of forecasting tasks, it may be desirable for each target to have a similar173

impact on the overall results. This could be motivated by the assumption that forecasts from different174

geographical units and time periods provide similar amounts of information about how well a forecaster175

performs. One would then like the resulting scores to be independent of the order of magnitude of the target176

to predict. CRPS values on the natural scale, however, typically scale with the order of magnitude of the177

quantity to be predicted. Average scores are then dominated by the results achieved for targets with high178

expected outcomes in a way that does not necessarily reflect the underlying predictive ability well.179

If the predictive distribution for the quantity Y equals the true data-generating process F (an ideal forecast),180

the expected CRPS is given by (Gneiting and Raftery, 2007)181

E[CRPS(F, y)] = 0.5× E|Y − Y ′|, (14)182

where Y and Y ′ are independent samples from F . This corresponds to half the mean absolute difference,183

which is a measure of dispersion. If F is well-approximated by a normal distribution N(µ, σ2), the approxi-184

mation185

EF [CRPS(F, y)] ≈
σ√
π

(15)186

can be used. This means that the expected CRPS scales roughly with the standard deviation, which in187

turn typically increases with the mean in epidemiological forecasting. In order to make the expected CRPS188

independent of the expected outcome, a variance-stabilising transformation (VST, Bartlett, 1936; Dunn and189

Smyth, 2018) can be employed. The choice of this transformation depends on the mean-variance relationship190

of the underlying process.191

If the mean-variance relationship of the data-generating distribution is quadratic with σ2 = c × µ2, the192

natural logarithm can serve as the VST. Denoting by Flog the predictive distribution for log(Y ), we can use193

the delta method (a first-order Taylor approximation, see e.g., Dunn and Smyth 2018), to show that194

EF [CRPS{Flog, log(y)}] ≈
σ/µ√
π

=

√
c√
π
. (16)195

As σ and µ are linked through the quadratic mean-variance relationship (or linear mean-standard deviation196

relationship, σ =
√
c × µ), the expected CRPS thus stays constant regardless of the expected value of the197

data-generating distribution µ. The assumption of a quadratic mean-variance relationship is closely linked198

to the aspects discussed in Sections 2.1 and 2.2. It implies that relative errors have constant variance and199

can thus be meaningfully compared across different targets. Also, it arises naturally if we assume that our200

capacity to predict the epidemic growth rate does not depend on the expected outcome, i.e. does not depend201

on the current phase of the epidemic or the order of magnitude of current observations.202

If the mean-variance relationship is linear with σ2 = c×µ, as with a Poisson-distributed variable, the square203

root is known to be a VST (Dunn and Smyth, 2018). Denoting by F√ the predictive distribution for
√
Y ,204

the delta method can again be used to show that205

EF [CRPS{F√ ,
√
y}] ≈

σ/
√
µ

2
√
π

=

√
c

2
√
π
. (17)206

We note that while standard in the derivation of variance-stabilizing transformations, the application of the207

delta method in equations (16) and (17) requires the probability mass of F to be tightly distributed. If this208

is not the case, the approximation and thus the variance stabilization may be less accurate.209

To strengthen our intuition on how transforming outcomes prior to applying the CRPS shifts the emphasis210

between targets with high and low expected outcomes, Figure 2 shows the expected CRPS of ideal forecasters211
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under different mean-variance relationships and transformations. We consider a Poisson distribution where212

σ2 = µ, a negative binomial distribution with size parameter θ = 10 and thus σ2 = µ + µ2/10, and a213

truncated normal distribution with practically constant variance. We see that when applying the CRPS214

on the natural scale, the expected CRPS grows monotonically as the variance of the predictive distribution215

(which is equal to the data-generating distribution for the ideal forecaster) increases. The expected CRPS is216

constant only for the distribution with constant variance, and grows in µ for the other two. When applying a217

log-transformation first, the expected CRPS is almost independent of µ for the negative binomial distribution218

and large µ, while smaller targets have higher expected CRPS in case of the Poisson distribution and the219

normal distribution with constant variance. When applying a square-root-transformation, the expected220

CRPS is independent of the mean for the Poisson-distribution, but not for the other two (with a positive221

relationship in the normal case and a negative one for the negative binomial). As can be seen in Figures 2222

and SI.3, the approximations presented in equations (16) and (17) work quite well for our simulated example.223

Figure 2: Expected CRPS scores as a function of the mean and variance of the forecast quantity. We
computed expected CRPS values for three different distributions, assuming an ideal forecaster with predictive
distribution equal to the true underlying (data-generating) distribution. These expected CRPS values were
computed for different predictive means based on 10,000 samples each and are represented by dots. Solid
lines show the corresponding approximations of the expected CRPS from equations (16) and (17). Figure
SI.3 shows the quality of the approximation in more detail. The first distribution (red) is a truncated normal
distribution with constant variance (we chose σ = 1 in order to only obtain positive samples). The second
(green) is a negative binomial distribution with variance θ = 10 and variance σ2 = µ + 0.1µ2. The third
(blue) is a Poisson distribution with σ2 = µ. To make the scores for the different distributions comparable,
scores were normalised to one, meaning that the mean score for every distribution (red, green, blue) is one.
A: Normalised expected CRPS for ideal forecasts with increasing means for three distribution with different
relationships between mean and variance. Expected CRPS was computed on the natural scale (left), after
applying a square-root transformation (middle), and after adding one and applying a log-transformation to
the data (right). B: A but with x and y axes on the log scale.
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2.4 Effects on model rankings224

Rankings between different forecasters based on the CRPS may change when making use of a transformation,225

both in terms of aggregate and individual scores. We illustrate this in Figure 3 with two forecasters, A and B,226

issuing two different distributions with different dispersion. When showing the obtained CRPS as a function227

of the observed value, it can be seen that the ranking between the two forecasters may change when scoring228

the forecast on the logarithmic, rather than the natural scale. In particular, on the natural scale, forecaster229

A, who issues a more uncertain distribution, receives a better score than forecaster B for observed values230

far away from the centre of the respective predictive distribution. On the log scale, however, forecaster A231

receives a lower score for large observed values, being more heavily penalised for assigning large probability232

to small values (which, in relative terms, are far away from the actual observation). We note that the chosen233

example involving a geometric forecast distribution is somewhat constructed; as shown in Section 3.4 and234

Figure 8A, rankings between models in practice stay quite stable for a single forecast.235

Figure 3: Illustration of the effect of the log-transformation of the ranking for a single forecast. Shown are
CRPS (or WIS, respectively) values as a function of the observed value for two forecasters. Model A issues
a geometric distribution (a negative binomial distribution with size parameter θ = 1) with mean µ = 10 and
variance σ2 = µ+ µ2 = 110), while Model B issues a Poisson distribution with mean and variance equal to
10. Zeroes in this illustrative example were handled by adding one before applying the natural logarithm.

Overall model rankings would be expected to differ more when scores are averaged across multiple forecasts236

or targets. The change in rankings of aggregate scores usually is mainly driven by the order of magnitude of237

scores for different forecast targets across time, location and target type and less so by the kind of changes in238

model rankings for single forecasts discussed above (see Figure 8 for a practical example). Large observations239

will dominate average CRPS values when evaluation is done on the natural scale, but much less so after log240

transformation. Depending on how different models perform across targets of different orders of magnitude,241

rankings in terms of average scores may change when applying a transformation.242

2.5 Practical considerations and other transformations243

In practice, one issue with the log transform is that it is not readily applicable to negative or zero values,244

which need to be removed or otherwise handled. One common approach to this end is to add a small positive245

quantity, such as a = 1, to all observations and predictions before taking the logarithm (Bellégo et al., 2022).246

This still represents a strictly monotonic transformation, but the choice of a does influence scores and247
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rankings (measures of relative errors shrink the larger the chosen value a). As a rule of thumb, if if x > 5a,248

the difference between log (x+ a) and log (x) is small, and it becomes negligible if x > 50a. Choosing a249

suitable offset a thus balances two competing concerns: on the one hand, choosing a small a makes sure that250

the transformation is as close to a natural logarithm as possible and scores can be interpreted as outlined251

in the previous sections. On the other hand, choosing a larger a can help stabilise scores for forecasts and252

observations close to zero, avoiding giving excessive weight to forecasts of small quantities. For increasing253

a, less relative weight is given to smaller forecast targets. For very large values of a, log(x + a) is roughly254

linear in x, so that using a very large a implies similar relative weighting as applying no transformation at255

all. In practice, a user could explore the effect of different values of a graphically and choose a such that256

the relative weightings of times and regions with high and low incidence correspond to their preferences (see257

Figure 6 in our example application, Section 3).258

A related issue occurs when the predictive distribution has a large probability mass on zero (or on very small259

values), as this can translate into an excessively wide forecast in relative terms. In our applied example this260

is illustrated in Figure SI.7. In such instances, the dispersion component of the WIS is inflated for scores261

obtained after applying the natural logarithm because forecasts contained zero in its prediction intervals.262

To deal with this issue one could choose to use a higher a value when applying a transformation log(x+ a),263

for example a = 10 instead of the a = 1 that we chose to use.264

A natural question is which other transformations could be applied and whether resulting scores remain265

(strictly) proper. In principle, any transformation function can be applied simultaneously to forecasts and266

observations as long as the definition of the transformation is independent of the forecasts and any quantities267

unknown at the time of forecasting, including the observed value. This simply corresponds to a re-definition268

of the forecasting target. However, applying non-invertible transformations leads to a loss in information269

conveyed by forecasts, which we consider undesirable. The resulting score will be proper, but it may not be270

strictly proper anymore (as forecasts differing from the forecaster’s true belief on the original scale may be271

identical on the transformed scale). When using the CRPS or the WIS, it seems most appropriate to use272

only strictly monotonic transformations such as the natural logarithm or the square root as otherwise the273

encoded notion of distance may become meaningless.274

Some other strictly monotonic transformations that can be applied are scaling by the population size or275

scaling by past observations. The latter, as discussed in Section 4, is similar to applying a log-transformation,276

but corresponds to evaluating a forecast of multiplicative, rather than exponential growth rates. The arising277

issue of dividing by zero can again be solved by adding a small offset a. Scaling a forecast by the later278

observed value (as opposed to scaling by past observations) is generally not permissible as it can result in279

improper scores (see Lerch et al. 2015 on the closely related topic of weighting scores with a function of the280

observed value). Similarly, scaling forecasts and observations by a function of the predictive distribution281

(like the predictive mean) may lead to improper scores; however, we are unaware of existing theoretical282

arguments on this.283

When applying a transformation, the order of the operations matters, and applying a transformation after284

scores have been computed generally does not guarantee that the score remains proper. In the case of log285

transforms, taking the logarithm of the CRPS values, rather than scoring the log-transformed forecasts and286

data, results in an improper score. We illustrate this point using simulated data in Figure SI.1, where it287

can be seen that in the example overconfident models perform best in terms of the log WIS. We note that288

strictly speaking, re-scaling average scores by the average score of a baseline model or average scores across289

different models to obtain skill scores likewise leads to improper scores (Gneiting and Raftery, 2007). The290

application of such skill scores, however, is established practice and considered largely unproblematic.291

We note that in the practical evaluation of operational forecasting systems several additional challenges292

arise, which we do not study in detail. These concern e.g., the removal of outlying observations and forecasts293

and the handling of missing forecasts. The solutions we employed in practice are provided in Section 3.1.294
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3 Empirical example: the European Forecast Hub295

3.1 Setting296

As an empirical comparison of evaluating forecasts on the natural and on the log scale, we use forecasts from297

the European Forecast Hub (European Covid-19 Forecast Hub, 2021; Sherratt et al., 2022). The European298

COVID-19 Forecast Hub is one of several COVID-19 Forecast Hubs (Cramer et al., 2021; Bracher et al.,299

2021b) which have been systematically collecting, aggregating and evaluating forecasts of several COVID-19300

targets created by different teams every week. Forecasts are made one to four weeks ahead into the future301

and follow a quantile-based format with a set of 23 quantiles (0.01, 0.025, 0.05, ..., 0.5, ...0.95, 0.975, 0.99).302

The forecasts used for the purpose of this illustration are forecasts submitted between the 8th of March303

2021 and the 5th of December 2022 for reported cases and deaths from COVID-19. Target dates range from304

the 13th of March 2021 to the 10th of December 2022, for a total of 92 weeks. See Sherratt et al. (2022)305

for a more thorough description of the data. We filtered all forecasts submitted to the Hub to only include306

the seven models which have submitted forecasts for both deaths and cases for 4 horizons in 32 locations307

on at least 46 forecast dates (see Figure SI.4). We removed all observations marked as data anomalies by308

the European Forecast Hub (Sherratt et al., 2022) as well as all remaining negative observed values. These309

anomalies made up a relevant fraction of all observations. On average across locations, 12.1 out of 92 (13.2%)310

observations were removed for cases and 12.4 out of 92 (13.5%) for deaths. Figure SI.5 displays the number311

of anomalies removed for each location. In addition, we filtered out a small number of erroneous forecasts312

that were in extremely poor agreement with the observed data, as defined by any of the conditions listed in313

Table SI.2. Figure SI.6 shows the percentage of forecasts removed for each model. Those few (less than 0.2%314

of forecasts for each model) erroneous outlier forecasts had excessive influence on average scores and relative315

skill scores in a way that was not representative of normal model behaviour. We removed them here in order316

to better illustrate the effects of the log-transformation on scores that one would expect in a well-behaved317

scenario. In a regular forecast evaluation such erroneous forecasts should usually not be removed and would318

count towards overall model scores.319

All predictive quantiles were truncated at 0. We applied the log-transformation after adding a constant320

a = 1 to all predictions and observed values. The choice of a = 1 in part reflects convention, but also321

represents a suitable choice as it avoids giving excessive weight to forecasts close to zero, while at the same322

time ensuring that scores for observations > 5 can be interpreted reasonably. The analysis was conducted323

in R (R Core Team, 2022), using the scoringutils package (Bosse et al., 2022) for forecast evaluation. All324

code is available on GitHub (https://github.com/epiforecasts/transformation-forecast-evaluation). Where325

not otherwise stated, we report results for a two-week-ahead forecast horizon.326

In addition to the WIS we use pairwise comparisons (Cramer et al., 2021) to evaluate the relative performance327

of models across countries in the presence of missing forecasts. In the first step, score ratios are computed328

for all pairs of models by taking the set of overlapping forecasts between the two models and dividing the329

score of one model by the score achieved by the other model. The relative skill for a given model compared330

to others is then obtained by taking the geometric mean of all score ratios which involve that model. Low331

values are better, and the “average” model receives a relative skill score of 1.332

3.2 Illustration and qualitative observations333

When comparing examples of forecasts on the natural scale with those on the log scale (see Figures 4, SI.7,334

SI.8) a few interesting patterns emerge. Missing the peak, i.e. predicting increasing numbers while actual335

observations are already falling, tends to contribute a lot to overall scores on the natural scale (see forecasts336

during the peak in May 2022 in Figure 4A, B). On the log scale, these have less of an influence, as errors are337
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Figure 4: Forecasts and scores for two-week-ahead predictions from the EuroCOVIDhub-ensemble made
in Germany. Missing values are due to data anomalies that were removed (see section 3.1. A, E: 50% and
90% prediction intervals and observed values for cases and deaths on the natural scale. B, F: Corresponding
scores. C, G: Forecasts and observations on the log scale. D, H: Corresponding scores.

smaller in relative terms (see 4C, D). Conversely, failure to predict an upswing while numbers are still low,338

is less severely penalised on the natural scale (see forecasts in July 2021 and to a lesser extent in July 2022339

in Figure 4 A, B), as overall absolute errors are low. On the log scale, missing lower inflection points tends340

to lead to more severe penalties (see Figure 4C, D). One can also observe that on the natural scale, scores341

tend to track the overall level of the target quantity (compare for example forecasts for March-July with342

forecasts for September-October in Figure 4E, F). On the log scale, scores do not exhibit this behaviour and343

rather increase whenever forecasts are far away from the truth in relative terms, regardless of the overall344

level of observations.345

Across the dataset, the average number of observed cases and deaths varied considerably by location and346

target type (see Figure 5A and B). On the natural scale, scores show a pattern quite similar to the ob-347

servations across targets (see Figure5D) and locations (see Figure5C). On the log scale, scores were more348

evenly distributed between targets (see Figure5D) and locations (see Figure5C). Both on the natural scale349

as well on the log scale, scores increased considerably with increasing forecast horizon (see Figure 5E). This350
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Figure 5: Observations and scores across locations and forecast horizons for the European COVID-19 Forecast
Hub data. Locations are sorted according to the mean observed value in that location. A: Average (across
all time points) of observed cases and deaths for different locations. B: Corresponding boxplot (y-axis
on log-scale) of all cases and deaths. C: Scores for two-week-ahead forecasts from the EuroCOVIDhub-
ensemble (averaged across all forecast dates) for different locations, evaluated on the natural scale as well
as after transforming counts by adding one and applying the natural logarithm. D: Corresponding boxplots
of all individual scores of the EuroCOVIDhub-ensemble for two-week-ahead predictions. E: Boxplots for the
relative change of scores for the EuroCOVIDhub-ensemble across forecast horizons. For any given forecast
date and location, forecasts were made for four different forecast horizons, resulting in four scores. All scores
were divided by the score for forecast horizon one. To enhance interpretability, the range of visible relative
changes in scores (relative to horizon = 1) was restricted to [0.1, 10].

reflects the increasing difficulty of forecasts further into the future and, for the log scale, corresponds with351
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our expectations from Section 2.2.352

To assess the impact of the choice of offset value a we extend the display from Figure 5C by results obtained353

under different specifications. Results are shown in Figure 6, where for completeness we also added the354

square root transformation. As discussed in Section 2.5, smaller values of a increase the relative weight of355

smaller locations in the overall evaluation. In the most extreme considered case a = 0.001, the smallest356

locations in fact receive the largest weight both for deaths and cases. For very large values (see the third357

row of Figure 6), the relative weights strongly resemble those of the evaluation on the natural scale. We358

recommend using displays of this type to get an intuition for the role different locations may play for overall359

evaluation results.360

3.3 Regression analysis to determine the variance-stabilizing transformation361

As argued in Section 2.3, the mean-variance, or mean-CRPS, relationship determines which transformation362

can serve as a VST. We can analyse this relationship empirically by running a regression that explains the363

WIS (which approximates the CRPS) as a function of the central estimate of the predictive distribution.364

We ran the regression365

log[WIS(F, y)] = α+ β × log[median(F )], (18)366

where the predictive distribution F and the observation y are on the natural scale. This is equivalent to367

WIS(F, y) = exp(α)×median(F )β , (19)368

meaning that we estimate a polynomial relationship between the predictive median and achieved WIS. Note369

that we are using predictive medians rather than means as only the former are available in the European370

COVID-19 Forecast Hub. As (under the simplifying assumption of normality; see Section 2.3) the WIS/CRPS371

of an ideal forecaster scales with the standard deviation, a value of β = 1 would imply a quadratic median-372

variance relationship; the natural logarithm could then serve as a VST. A value of β = 0.5 would imply373

a linear median-variance relationship, suggesting the square root as a VST. We applied the regression to374

case and death forecasts, stratified for one through four-week-ahead forecasts. Results are provided in Table375

1. It can be seen that the estimates of β always take a value somewhat below 1, implying a slightly sub-376

quadratic mean-variance relationship. The logarithmic transformation should thus approximately stabilize377

the variance (and WIS), possibly leading to somewhat higher scores for smaller forecast targets. The square-378

root transformation, on the other hand, can be expected to still lead to higher WIS values for targets of379

higher orders of magnitude.380

To check the relationship after the transformation, we ran the regressions381

WIS(Flog, log y) = αlog + βlog · log (median(F )), (20)

where Flog is the predictive distribution for log(y), and382

WIS(F√ ,
√
y) = α√ + β√ ·

√
median(F ), (21)

where F√ is the predictive distribution on the square-root scale. A value of βlog = 0 (or β√ = 0, respec-383

tively) would imply that scores are linearly independent of the median prediction after the transformation.384

A value smaller (larger) than 0 would imply that smaller (larger) targets lead to higher scores. As can be385

seen from Table 1, the results indeed indicate that small targets lead to larger average WIS when using the386

log transform (βlog < 0), while the opposite is true for the square-root transform (β√ > 0). The results of387

the three regressions are also displayed in Figure 7. In this empirical example, the log transformation thus388

helps (albeit not perfectly), to stabilise WIS values, and it does so more successfully than the square-root389

transformation. As can be seen from Figure 7, the expected WIS scores for case targets with medians of390

10 and 100,000 differ by more then a factor of ten for the square root transformation, but only a factor of391

around 2 for the logarithm.392
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Figure 6: Mean WIS in different locations for different transformations applied before scoring. Locations are
sorted according to the mean observed value in that location. Shown are scores for two-week-ahead forecasts
of the EuroCOVIDhub-ensemble. On the natural scale (with no transformation prior to applying the WIS),
scores correlate strongly with the average number of observed values in a given location. The same is true
for scores obtained after applying a square-root transformation, or after applying a log-transformation with
a large offset a. For illustrative purposes, a was chosen to be 101630 for cases and 530 for deaths, 10 times
the respective median observed value. For large values of a, log(x+ a) grows roughly linearly in x, meaning
that we expect to observe the same patterns as in the case with no transformation. For decreasing values of
a, we give more relative weight to scores in small locations.

3.4 Impact of logarithmic transformation on model rankings393

For individual forecasts, rankings between models for single forecasts are mostly preserved, with differences394

increasing across forecast horizons (see Figure 8A). While rankings between forecasters remain similar for395

a single forecast, this is not true anymore when looking at rankings obtained after averaging scores across396

14

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 28, 2023. ; https://doi.org/10.1101/2023.01.23.23284722doi: medRxiv preprint 

https://doi.org/10.1101/2023.01.23.23284722
http://creativecommons.org/licenses/by/4.0/


Figure 7: Relationship between median forecasts and scores. Black dots represent WIS values for two-week
ahead predictions of the EuroCOVIDhub-ensemble. Shown in red are the regression lines discussed in Section
3.3 shown in Table 1. A: WIS for two-week-ahead predictions of the EuroCOVIDhub-ensemble against
median predicted values. B: Same as A, with scores obtained after applying a square-root-transformation to
the data. C: Same as A, with scores obtained after applying a log-transformation to the data.

multiple forecasts made at different times or in different locations. As discussed earlier, scores on the397

natural and on the log scale penalise errors very differently, e.g. when looking at performance during peaks398

or troughs. When evaluating performance averaged across different forecasts and forecast targets, relative399

skill scores of the models therefore change considerably (Figure 8B). The correlation between relative skill400

scores also decreases noticeably with increasing forecast horizon.401

Figure 9 shows the changes in the ranking between different forecasting models. Encouragingly for the402

European Forecast Hub, the Hub ensemble, which is the forecast the organisers suggest forecast consumers403

make use of, remains the top model across scoring schemes. For cases, the ILM-EKF model and the Forecast404

Hub baseline model exhibit the largest change in relative skill scores. For the ILM-EKF model the relative405

proportion of the score that is due to overprediction is reduced when applying a log-transformation before406
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Horizon Target α β α√ β√ αlog βlog

1 Cases -0.862 0.876 0.790 0.087 0.433 -0.024
2 Cases -0.243 0.877 0.959 0.162 0.660 -0.031
3 Cases 0.372 0.855 1.109 0.238 0.882 -0.037
4 Cases 0.816 0.837 1.645 0.296 1.009 -0.036

1 Deaths -1.146 0.832 0.457 0.048 0.376 -0.035
2 Deaths -0.981 0.867 0.443 0.084 0.416 -0.028
3 Deaths -0.807 0.885 0.349 0.131 0.453 -0.019
4 Deaths -0.602 0.891 0.125 0.194 0.501 -0.011

Table 1: Coefficients of three regressions for the effect of the magnitude of the median forecast on expected
scores. The first regression was log[WIS(F, y)] = α+β×log[median(F )], where F is the predictive distribution
and y the observed value. The second one was WIS(Flog, log y) = αlog + βlog · log (median(F )), where Flog is

the predictive distribution for log y. The third one was WIS(F√ ,
√
y) = α√ + β√ ·

√
(median(F )), where

F√ is the predictive distribution for
√
y.

Figure 8: Correlations of rankings on the natural and logarithmic scale. A: Average Spearman rank corre-
lation of scores for individual forecasts. For every individual target (defined by a combination of forecast
date, target type, horizon, location), one score was obtained per model. Then, for every forecast target, the
Spearman rank correlation was computed between scores on the natural scale and on the log scale for all
the models that had made a forecast for that specific target. These individual rank correlations were then
averaged across locations and time and are displayed stratified by horizon and target types, representing
average accordance of model ranks for a single forecast target on the natural and on the log scale. B: Cor-
relation between relative skill scores. For every forecast horizon and target type, a separate relative skill
score was computed per model using pairwise comparisons, which is a measure of performance of a model
relative to the others for a given horizon and target type that accounts for missing values. The plot shows
the correlation between the relative skill scores on the natural vs. on the log scale, representing accordance
of overall model performance as judged by scores on the natural and on the log scale.

scoring (see Figure 9E. Instances where the model has overshot are penalised less heavily on the log scale,407

leading to an overall better score. For the Forecast Hub baseline model, the fact that it often puts relevant408

probability mass on zero (see Figure SI.7), leads to worse scores after applying log-transformation due to409

large dispersion penalties. For deaths, the baseline model seems to get similarly penalised for its in relative410

terms highly dispersed forecasts. The performance of other models changes as well, but patterns are less411

discernible on this aggregate level.412
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Figure 9: Changes in model ratings as measured by relative skill for two-week-ahead predictions for cases (top
row) and deaths (bottom row). A: Relative skill scores for case forecasts from different models submitted to
the European COVID-19 Forecast Hub computed on the natural scale. B: Change in rankings as determined
by relative skill scores when moving from an evaluation on the natural scale to one on the logarithmic scale.
Red arrows indicate that the relative skill score deteriorated when moving from the natural to the log scale,
green arrows indicate they improved. C: Relative skill scores based on scores on the log scale. D: Difference
in relative skill scores computed on the natural and on the logarithmic scale, ordered as in C. E: Relative
contributions of the different WIS components (overprediction, underprediction, and dispersion) to overall
model scores on the natural and the logarithmic scale. F, G, H, I, J, K: Analogously for deaths.

4 Discussion413

In this paper, we proposed the use of transformations, with a particular focus on the natural logarithmic414

transformation, when evaluating forecasts in an epidemiological setting. These transformations can address415

issues that arise when evaluating epidemiological forecasts based on measures of absolute error and their416

probabilistic generalisations (i.e CRPS and WIS). We showed that scores obtained after log-transforming417

both forecasts and observations can be interpreted as a) a measure of relative prediction errors, as well as418

b) a score for a forecast of the exponential growth rate of the target quantity and c) as variance stabilising419

transformation in some settings. When applying this approach to forecasts from the European COVID-19420

Forecast Hub, we found overall scores on the log scale to be more equal across, time, location and target421

type (cases, deaths) than scores on the natural scale. Scores on the log scale were much less influenced by422

the overall incidence level in a country and showed a slight tendency to be higher in locations with very low423

incidences. We found that model rankings changed noticeably.424

On the natural scale, missing the peak and overshooting was more severely penalised than missing the nadir425

and the following upswing in numbers. Both failure modes tended to be more equally penalised on the log426

scale (with undershooting receiving slightly higher penalties in our example).427

Applying a log-transformation prior to the WIS means that forecasts are evaluated in terms of relative428

errors and errors on the exponential growth rate, rather than absolute errors. The most important strength429

of this approach is that the evaluation better accommodates the exponential nature of the epidemiological430
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process and the types of errors forecasters who accurately model those processes are expected to make. The431

log-transformation also helps avoid issues with scores being strongly influenced by the order of magnitude432

of the forecast quantity, which can be an issue when evaluating forecasts on the natural scale. A potential433

downside is that forecast evaluation is unreliable in situations where observed values are zero or very small.434

One could argue that this correctly reflect inherent uncertainty about the future course of an epidemic when435

numbers are small. Users nevertheless need to be aware that this can pose issues in practice. Including very436

small values in prediction intervals (see e.g. Figure SI.7) can lead to excessive dispersion values on the log437

scale. Similarly, locations with lower incidences may get disproportionate weight (i.e. high scores) when438

evaluating forecasts on the log scale. Bracher et al. (2021a) argue that it is desirable to give large weight to439

forecasts for locations with high incidences, as this reflects performance on the targets we should care about440

most. On the other hand, scoring forecasts on the log scale may be less influenced by outliers and better441

reflect consistent performance across time, space, and forecast targets. Furthermore, decision makers may442

specifically care about situations in which numbers start to rise from a previously low level.443

The log-transformation is only one of many transformations that may be useful and appropriate in an444

epidemiological context. One obvious option is to apply a population standardization to obtain incidence445

forecasts e.g., per 100,000 population (Abbott et al., 2022). We suggested using the natural logarithm as a446

variance-stabilising transformation (VST). This is appropriate for variables that are approximately normally447

distributed and have a quadratic mean-variance relationship with σ2 = c × µ2 (this is e.g. approximately448

true for the negative binomoial distribution and large µ). Alternatively, the square-root transformation449

can be appropriate in the case of a Poisson distributed variable (Dunn and Smyth, 2018). Other VST like450

the Box-Cox (Box and Cox, 1964) are conceivable as well. If one is interested in multiplicative, rather than451

exponential growth rates, one could, instead of applying a log transformation, convert forecasts into forecasts452

for the multiplicative growth rate by dividing numbers by the last value that was observed at the time the453

forecast was made. Forecasters would then implicitly predict a separate multiplicative growth rate from454

today to horizon 1, 2, etc. Instead of dividing by the last observed value, another promising transformation455

would be to divide each forecast by the forecast of the previous week (and analogously for observations), in456

order to obtain forecasts for week-to-week growth rates. Alternatively, one could also take first differences457

of values on the log scale. This approach would be akin to evaluating the shape of the predicted trajectory458

against the shape of the observed trajectory (for a different approach to evaluating the shape of a forecast,459

see Srivastava et al., 2022). Dividing values by the previous value, unfortunately, is not feasible under the460

current quantile-based format of the Forecast Hubs, as the growth rate of the α-quantile may be different461

from the α-quantile of the growth-rate. However, it may be an interesting approach if predictive samples are462

available or if quantiles for weekwise growth rates have been collected. Potentially, the variance stabilising463

time-series forecasting literature may be a useful source of other transformations for various forecast settings.464

It is possible to go beyond choosing a single transformation by constructing composite scores as a weighted465

sum of scores based on different transformations. This would make it possible to create custom scores and466

allow forecast consumers to choose and assign explicit weights to different qualities of the forecasts they467

might care about.468

Exploring transformations is a promising avenue for future work that could help bridge the gap between469

modellers and policymakers by providing scoring rules that better reflect what forecast consumers care about.470

In this paper, we did not make any particular assumptions about policy makers’ priorities and preferences.471

Rather, we aimed to enable users to make an informed choice by showing how different transformations lead472

to different relative weights for the kinds of prediction errors forecast consumers may care about, such as473

absolute vs. relative errors or the size of penalties for over- vs. underprediction. In practice, engagement474

with decision makers is important to determine what their priorities are and how different ways to measure475

predictive importance should be weighed.476

We have shown that the natural logarithm transformation can lead to significant changes in the relative477

rankings of models against each other, with potentially important implications for decision-makers who rely478

on the knowledge of past performance to make a judgement about which forecasts should inform future479

decisions. While it is commonly accepted that multiple proper scoring rules should usually be considered480
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when comparing forecasts, we think this should be supplemented by considering different transformations of481

the data to obtain a richer picture of model performance. More work needs to be done to better understand482

the effects of applying transformations in different contexts, and how they may impact decision-making.483
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A Supplementary information484

A.1 Alternative Formulation of the WIS485

Instead of defining the WIS as an average of scores for individual quantiles, we can define it using an average of486

scores for symmetric predictive intervals. For a single prediction interval, the interval score (IS) is computed487

as the sum of three penalty components, dispersion (width of the prediction interval), underprediction and488

overprediction,489

ISα(F, y) = (u− l) +
2

α
· (l − y) · 1(y ≤ l) +

2

α
· (y − u) · 1(y ≥ u) (22)490

= dispersion + underprediction + overprediction, (23)491
492

where 1() is the indicator function, y is the observed value, and l and u are the α
2 and 1 − α

2 quantiles of493

the predictive distribution, i.e. the lower and upper bound of a single central prediction interval. For a set494

of K∗ prediction intervals and the median m, the WIS is computed as a weighted sum,495

WIS =
1

K∗ + 0.5
·

(
w0 · |y −m|+

K∗∑
k=1

wk · ISαk
(F, y)

)
, (24)496

where wk is a weight for every interval. Usually, wk = αk

2 and w0 = 0.5.497

Figure SI.1: Illustration of the effect of applying a transformation after scoring. We assume Y ∼
LogNormal(0, 1) and evaluate the expected CRPS for predictive distributions LogNormal(0, σ) with varying
values of σ ∈ [0.1, 2]. For the regular CRPS (left) and CRPS applied to log-transformed outcomes (middle),
the lowest expectation is achieved for the true value σ = 1. For the log-transformed CRPS, the optimal
value is 0.9, i.e. there is an incentive to report a forecast that is too sharp. The score is therefore no longer
proper.
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Figure SI.2: Illustration of the effect of adding a small quantity to a value before taking the natural logarithm.
For increasing x, all lines eventually approach the black line (representing a transformation with no offset
applied). For a given solid line, the dashed line of the same colour marks the x-value that is equal to 5 times
the corresponding offset. It can be seen that for a values smaller than one fifth of the transformed quantity,
the effect of adding an offset is generally small. When choosing a suitable a, the trade-off is between staying
close to the interpretation of a pure log-transformation (choosing a small a) and not giving excessive weights
to small observations (by choosing a larger a, see Figure 6).

target type quantity measure natural log

Cases Observations mean 61979 9.19
Cases Observations sd 171916 2.10
Cases Observations var 29555122130 4.42
Deaths Observations mean 220 3.89
Deaths Observations sd 435 1.96

Deaths Observations var 189051 3.83
Cases WIS mean 15840 0.27
Cases WIS sd 53117 0.28
Deaths WIS mean 31 0.23
Deaths WIS sd 65 0.28

Table SI.1: Summary statistics for observations and scores for forecasts from the ECDC data set.

True value & Median prediction

> 0 > 100× true value
> 10 > 20× true value
> 50 < 1/50× true value
= 0 > 100

Table SI.2: Criteria for removing forecasts. Any forecast that met one of the listed criteria (represented by
a row in the table), was removed. Those forecasts were removed in order to be better able to illustrate the
effects of the log-transformation on scores and eliminating distortions caused by outlier forecasters. When
evaluating models against each other (rather than illustrating the effect of a transformation), one would
prefer not to condition on the outcome when deciding whether a forecast should be taken into account.
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Figure SI.3: Visualisation of expected CRPS values against approximated scores using the approximation
detailed in Section 2.4 (see also Figure 2). Expected CRPS scores are shown for three different distributions
once on the natural scale (top row) and once scored on the log scale (bottom row).
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Figure SI.4: Number of forecasts available from different models for each forecast date.

Figure SI.5: Number of observed values that were removed as anomalous. The values were marked as
anomalous by the European Forecast Hub team.
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Figure SI.6: Number of forecasts marked as erroneous and removed. Forecasts that were in extremely poor
agreement with the observed values were removed from the analysis according to the criteria shown in Table
SI.2.
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Figure SI.7: Forecasts and scores for two-week-ahead predictions from the EuroCOVIDhub-baseline made
in Germany. The model had zero included in some of its 50 percent intervals (e.g. for case forecasts in
July 2021), leading to excessive dispersion values on the log scale. One could argue that including zero in
the prediction intervals constituted an unreasonable forecast that was rightly penalised, but in general care
has to be taken with small numbers. One potential way to do deal with this could be to use a higher a
value when applying a transformation log(x + a), for example a = 10 instead of a = 1. A, E: 50% and
90% prediction intervals and observed values for cases and deaths on the natural scale. B, F: Corresponding
scores. C, G: Forecasts and observations on the log scale. D, H: Corresponding scores.
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Figure SI.8: Forecasts and scores for two-week-ahead predictions from the epiforecasts-EpiNow2 model
(Abbott et al., 2020) made in Germany. A, E: 50% and 90% prediction intervals and observed values for
cases and deaths on the natural scale. B, F: Corresponding scores. C, G: Forecasts and observations on the
log scale. D, H: Corresponding scores.
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Löwe, R., Mikkelsen, P. S., and Madsen, H. (2014). Stochastic rainfall-runoff forecasting: Parameter estima-608

tion, multi-step prediction, and evaluation of overflow risk. Stochastic Environmental Research and Risk609

Assessment, 28(3):505–516.610

Mayr, J. and Ulbricht, D. (2015). Log versus level in VAR forecasting: 42 million empirical answers—Expect611

the unexpected. Economics Letters, 126:40–42.612

R Core Team (2022). R: A Language and Environment for Statistical Computing. R Foundation for Statistical613

Computing, Vienna, Austria.614

Reich, N. G., Lessler, J., Funk, S., Viboud, C., Vespignani, A., Tibshirani, R. J., Shea, K., Schienle, M.,615

Runge, M. C., Rosenfeld, R., Ray, E. L., Niehus, R., Johnson, H. C., Johansson, M. A., Hochheiser, H.,616

Gardner, L., Bracher, J., Borchering, R. K., and Biggerstaff, M. (2022). Collaborative hubs: Making the617

most of predictive epidemic modeling. American Journal of Public Health, 112(6):839–842.618

Sherratt, K., Gruson, H., Grah, R., Johnson, H., Niehus, R., Prasse, B., Sandman, F., Deuschel, J., Wolffram,619

D., Abbott, S., Ullrich, A., Gibson, G., Ray, EL., Reich, NG., Sheldon, D., Wang, Y., Wattanachit, N.,620

Wang, L., Trnka, J., Obozinski, G., Sun, T., Thanou, D., Pottier, L., Krymova, E., Barbarossa, MV.,621
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