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ABSTRACT 24 

Objectives The Society of Thoracic Surgeons (STS), and EuroSCORE II (ES II) risk scores, 25 

are the most commonly used risk prediction models for adult cardiac surgery post-operative 26 

in-hospital mortality. However, they are prone to miscalibration over time, and poor 27 

generalisation across datasets and their use remain controversial. It has been suggested that 28 

using Machine Learning (ML) techniques, a branch of Artificial intelligence (AI), may 29 

improve the accuracy of risk prediction. Despite increased interest, a gap in understanding the 30 

effect of dataset drift on the performance of ML over time remains a barrier to its wider use 31 

in clinical practice. Dataset drift occurs when a machine learning system underperforms 32 

because of a mismatch between the dataset it was developed and the data on which it is 33 

deployed. Here we analyse this potential concern in a large United Kingdom (UK) database. 34 

Methods: A retrospective analyses of prospectively routinely gathered data on adult patients 35 

undergoing cardiac surgery in the UK between 2012-2019. We temporally split the data 36 

70:30 into a training and validation subset. ES II and five ML mortality prediction models 37 

were assessed for relationships between and within variable importance drift, performance 38 

drift and actual dataset drift using temporal and non-temporal invariant consensus scoring, 39 

combining geometric average results of all metrics as the Clinical Effective Metric (CEM). 40 

Results: A total of  227,087 adults underwent cardiac surgery during the study period with a 41 

mortality rate of 2.76%. There was a strong evidence of decrease in overall performance 42 

across all models (p < 0.0001). Xgboost (CEM 0.728 95CI: 0.728-0.729) and Random Forest 43 

(CEM 0.727 95CI 0.727-0.728) were the best overall performing models both temporally and 44 

non-temporally. ES II perfomed worst across all comparisons. Sharp changes in variable 45 

importance and dataset drift between 2017-10 to 2017-12, 2018-06 to 2018-07 and 2018-12 46 

to 2019-02 mirrored effects of performance decrease across models.  47 
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Conclusions: Combining the metrics covering all four aspects of discrimination, calibration, 48 

clinical usefulness and overall accuracy into a single consensus metric improved the 49 

efficiency of cognitive decision-making. All models show a decrease in at least 3 of the 5 50 

individual metrics. CEM and variable importance drift detection demonstrate the limitation 51 

of logistic regression methods used for cardiac surgery risk prediction and the effects of 52 

dataset drift. Future work will be required to determine the interplay between ML and 53 

whether ensemble models could take advantage of their respective performance 54 

advantages.   55 

Key words: cardiac surgery; artificial intelligence; risk prediction; machine learning; 56 

operative mortality; dataset drift; performance drift; national dataset 57 
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 69 

 70 

Abbreviations and Acronyms:  71 

AUC area under receiver operating characteristic curve;  72 

CEM Clinical Effective Metric;  73 

ECE Expected Calibration Error; 74 

ES II Euroscore II;  75 

AI Artificial intelligence; 76 

ML machine learning;  77 

RF random forest;  78 

NN Neural Network (Neuronetwork);  79 

SVM support vector machine;  80 

XGBoost extreme gradient boosted trees 81 

Ensemble using several models to derive a consensus prediction 82 

SHAP (SHapley Additive exPlanations) 83 
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 88 

Central message:  ML performance decreases over time due to dataset drift, but remains 89 

superior to ES II. Therefore regular assessment and modification of ML models may be 90 

preferable. 91 

Prospective message: A gap in understanding the effect of dataset drift on the performance 92 

of ML models over time presents a major barrier to their clinical application. Xgboost and 93 

Random Forest have shown superior performance both temporally and non-temporally 94 

against ES II. However, a decrease in model performance of all models due to dataset drift 95 

suggests the need for regular drift monitoring.  96 

 97 
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 108 

Introduction 109 

Recently, the importance of Machine Learning (ML), a branch of Artificial intelligence (AI) 110 

has been highlighted as a potential alternative to conventional mortality risk stratification 111 

models such as Society of Thoracic Surgeons (STS),[1] and EuroSCORE II (ES II) risk scores,[2] 112 

which are prone to miscalibration overtime and poor generalisation across datasets.[1,3] In 113 

particular, the ES II, which is based on logistic regression using 18 items of information 114 

about the patient, has been shown by numerous studies to display poor discrimination and 115 

calibration across datasets with differing characteristics, including but not limited to age,[4] 116 

ethnicity[5] and procedures groups.[6–10]  117 

Risk scoring models’ performance are challenged by numerous factors, such as 118 

differences in variable definitions, management of incomplete data fields, surgical procedure 119 

selection criteria, and temporal changes in the prevalence of patients' risk factors.[11] ML 120 

approaches are increasingly used for prediction in health care research as they have the 121 

potential to overcome limitations of linear models. By including pairwise and higher-order 122 

interactions and modelling nonlinear effects ML may overcome heterogeneity in procedures 123 

and missing data.[1,12] Whilst ML has been shown to be beneficial over conventional 124 

scoring systems, the magnitude and clinical influence of such improvements remain 125 

uncertain.[2] The ability to counter “performance drift” due to temporal changes in the 126 

prevalence of risk factors has also yet to be fully elucidated.  127 

We envisaged that different Machine learning models may perform better for 128 

different metrics and that providing a panel of metrics would be important for covering the 129 

multifaceted aspects of clinical model performance. The Miller’s law observed that the 130 
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human working memory is limited to holding on to an average of seven items in the short-131 

term memory.[13] This is particularly relevant in a scenario where a clinician would need to 132 

select from a number of ML models based on a panel of performance metrics. The split-133 

attention effect cognition theory indicates that a single integrated source of information 134 

enhances knowledge acquisition better than separated sources of information.[14] 135 

Therefore, we a consensus approach to metric evaluation by combining the five 136 

performance metrics for risk stratification.   137 

We therefore, trained and evaluated 5 supervised ML models to: (1) determine the 138 

best ML model in terms of overall accuracy, discrimination, calibration and clinical 139 

effectiveness, (2) use variable importance drift as a measure for detecting dataset drift and 140 

(3) verify suspected dataset drift by assessing the relationship between and within 141 

performance drift, variable importance drift and dataset drift (e.g. due to changing case-142 

mix[15]) across ML and ES II approaches.[16]  143 

Methods 144 

Dataset and Patient Population 145 

The study was performed using the National Adult Cardiac Surgery Audit (NACSA) dataset, 146 

which comprises data prospectively collected by National Institute for Cardiovascular 147 

Outcome Research on all cardiac procedures performed in all NHS hospitals and some 148 

private hospitals across the UK.[17]  149 

Patients undergoing cardiac surgery between 1 Jan 2012 and 31 Mar 2019 were 150 

included. Missing and erroneously inputted data in the dataset were cleaned according to 151 

the National Adult Cardiac Surgery Audit Registry Data Pre-processing recommendations.[18] 152 

Generally, for any variable data that were missing, it was assumed that the variable was at 153 
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baseline level, i.e., no risk factor was present. Missing patient age at the time of surgery was 154 

imputed as the median patient age for the corresponding year. Data standardization was 155 

performed by subtracting the variable mean and dividing by the standard deviation 156 

values.[19] 157 

The dataset was split into two cohorts: Training/Validation (n = 157196; 2012-2016; 158 

Table S1) and Holdout (n = 69891; 2017-2019; Table S2). The primary outcome of this study 159 

was in-hospital mortality.  160 

The study was part of a research project approved by the Health Research Authority 161 

(HRA) and Health and Care Research Wales. As the study included retrospective 162 

interrogation of the NICOR database, the need for individual patient consent was waived 163 

(HCRW) (IRAS ID: 278171) in accordance with the research guidance. The study was 164 

performed in accordance with the ethical standards as laid down in the 1964 Declaration of 165 

Helsinki and its later amendments. 166 

 167 

Baseline Statistical analysis  168 

Continuous variables are compared using non-parametric Wilcoxon rank-sum tests, whilst 169 

categorical variables are compared using Pearson’s χ
2
 tests or Fisher’s exact tests as 170 

appropriate.   171 

Scikit-learn v0.23.1 and Keras v2.4.0 were used to develop the models and to evaluate their 172 

discrimination, calibration and clinical effectiveness capabilities. Statistical analyses are 173 

conducted using STATA-MP version 17 and R v4.0.2.[20] Anova Assumptions were checked 174 

using R rstatix package. 175 
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Model Development 176 

In our study, we trained five supervised ML risk models based on the ES II preoperative 177 

variable set (Table S3). Those five models included Logistic Regression, Neural Network 178 

(Neuronetwork / NN),[19] Random Forest (RF),[21] Weighted Support Vector Machine 179 

(SVM),[22] and Xgboost[23].[17] ES II score was calculated for baseline comparison. Internal 180 

validation was performed using fivefold cross-validation on the Training/Validation dataset 181 

(2012-2016). External validation was performed on the Holdout dataset (2017-2019).[16] 182 

Each model calculated the probability of surgical mortality for each patient. One thousand 183 

bootstrap samples were taken for all metrics. Further details on model development can be 184 

found in Supplementary Materials, section: Model Specification.  185 

 186 

Assessment of model performance 187 

The Area Under the Curve (AUC) performances of all variant models were evaluated, and 188 

the ROC curves plotted.[24] As a sensitivity analysis, we excluded the True Negative Rate 189 

from the performance evaluation, by calculating the F1 score.[25] This metric adjusts for the 190 

biased effect due to high proportion of alive outcome samples. Decision Curve net benefit 191 

index is used to test clinical benefit.[26] 1 - Expected Calibration Error (ECE) was used to 192 

determine calibration performance, with higher values being better.[27]  The adjusted Brier 193 

score (1 – Brier) was used without the normalization term,[28] but with higher values 194 

indicating better discrimination and calibration performance. 195 

To determine the best model in terms of both discrimination and calibration, we 196 

took the geometric average of AUC, F1,[25] Decision Curve net benefit (Treated + 197 
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Untreated), 1 – ECE and 1 – Brier. Geometric average has previously been found to be 198 

effective for summarising metrics for temporal based model calibration[29]. This metric is 199 

robust to outliers,[30] and is preferable for aggregation compared to the weighted 200 

geometric mean.[31] The arithmetic average was used for Decision Curve net benefit over 201 

all thresholds as a measure of overall net benefit, before geometric averaging, since values 202 

can be negative. We proposed a new metric using the combined geometric average results 203 

of all metrics, named Clinical Effective Metric (CEM). An overview of the model and 204 

evaluation design is shown in Figure 1.  205 

Figure 1. Design overview of the study; non-temporal performance and drift (temporal) analyses are 206 

performed; drift in discrimination, calibration, clinical utility, dataset and variable importance are 207 

assessed; time point assessments are performed for CEM; drifts in component metrics of CEM are 208 

evaluated. 209 

 210 

 211 

Baseline non-temporal performance  212 

Non-temporal comparison of models was conducted as a baseline, using all data across the 213 

Holdout period. Differences across models were tested using repeated measures One-Way 214 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted January 22, 2023. ; https://doi.org/10.1101/2023.01.21.23284795doi: medRxiv preprint 

https://doi.org/10.1101/2023.01.21.23284795
http://creativecommons.org/licenses/by-nc-nd/4.0/


Anova and Bonferroni Corrected multiple pairwise paired t-tests; this was followed by 215 

Dunnett’s Correction for multiple comparisons, with the best overall performing model as 216 

control. ANOVA assumptions for outliers were checked. Normality assumptions were 217 

checked using the Shapiro-Wilk test.[32] 218 

 219 

Drift Analysis 220 

CEM Regression trends 221 

Geometric CEM mean of 1000 bootstraps for each model against month of the year was 222 

calculated as well as 95% CI and the results were plotted to compare trends across models. 223 

The models were compared by fitting multiple linear regression lines across year months for 224 

CEM.  225 

To check for normality assumptions, we plotted the histogram and a QQ plot of 226 

residuals before applying linear regression.[33] We also checked for homogeneity of 227 

residual variance (homoscedasticity) by plotting a scale-location plot i.e. the square root of 228 

standardised residual points against values of the fitted outcome variable.[34] For model 229 

metrics that do not satisfy these assumptions, the Seasonall Kendall Test (non-parametric) 230 

was used instead.   231 

Analysis within first 3 months of 2017 and 2019 232 

Differences in CEM across models at two time-points were independently tested using 233 

Kruskal-Wallis Test and Bonferroni Corrected paired samples Wilcoxon test (Wilcoxon 234 

signed-rank test). The two time-points were the first three months of 2017 and 2019, 235 

respectively. This was followed by the Dunn test for non-parametric multiple comparisons of 236 
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models at each of the two-time points, with the best overall performing model as a baseline. 237 

ANOVA assumptions for outliers were checked. Normality assumptions were checked using 238 

the Shapiro-Wilk test.[32] 239 

Analysis between first 3 months of 2017 and 2019 240 

Differences in models’ CEM across the first three months of 2017 and 2019 were tested 241 

using Kruskal-Wallis Test and paired samples Wilcoxon test (Wilcoxon signed-rank test). 242 

Dunn test was used to determine the magnitude and evidence of change across the two-243 

time points for each model. ANOVA assumptions for outliers were checked. Normality 244 

assumptions were checked using Kolmogorov-Smirnov Test.    245 

Analysis of discrimination, calibration, clinical utility and overall accuracy drift 246 

As a sensitivity analysis, we analysed performance drift in terms of component metrics 247 

within CEM. Discrimination (AUC), positive outcome discrimination (F1 score), calibration (1 248 

- ECE), clinical utility (net benefit), Adjusted Brier score (overall accuracy of prediction 249 

probability) were assessed by fitting multiple (model) linear regression lines across year 250 

month for each metric, respectively.  251 

To check for normality assumptions, we plotted the histogram and a QQ plot of 252 

residuals before applying linear regression.[33] We also checked for homogeneity of 253 

residual variance (homoscedasticity) by plotting a scale-location plot i.e. the square root of 254 

standardised residual points against values of the fitted outcome variable.[34] For model 255 

metrics that do not satisfy these assumptions, the Seasonall Kendall Test (non-parametric) is 256 

used instead.   257 

Analysis of variable importance drift 258 
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Variable importance drift was assessed for the best performing model. For each year month 259 

of the Holdout dataset, 5-fold nested cross-validation was performed to derive importance 260 

of each ES II variable in the model’s decision making. The geometric mean of 5-fold 261 

importance at each time point was plotted along with the importance of each of the 5 folds. 262 

The SHAP mean absolute magnitude of importance was used.[35,36] Loess smoothing was 263 

used to simplify the visual representation. Line plots of the top six important variables were 264 

used as sensitivity analysis.  265 

Dataset drift  266 

Dataset drift across year month was visualised using a stacked bar plot for the top three 267 

variables as identified by SHAP variable importance. Continuous variables were binned into 268 

intervals to enable ease of analysis.  269 

 270 

Results  271 

Baseline patient characteristics 272 

A total of 227,087 procedures of adults from 42 hospitals were included in this analysis. This 273 

followed the removal of 3,930 congenital cases, 1,586 transplant and mechanical support 274 

device insertion cases and 3,395 procedures missing information on mortality (Table 1). 275 

There were 6,258 deaths during the study period (mortality rate of 2.76%).  276 

 277 

Baseline non-temporal performance  278 
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No extreme outliers were found. The CEM scores were normally distributed for all three 279 

models except Xgboost, as assessed by Shapiro-Wilk’s test (p > 0.05). A histogram plot of the 280 

Xgboost CEM values did not show substantial deviation from the normal distribution. There 281 

was strong evidence of a difference across all models p < 0.0001 (Table S4 and Figure S1). 282 

Table 2 shows that Xgboost (CEM 0.728 95CI (95% confidence interval): 0.728-0.729) and RF 283 

(CEM 0.727 95CI 0.727-0.728) are the best overall performing models, with moderate to 284 

strong evidence (non-overlapping CI) of the former outperforming the latter. This was 285 

followed by LR, NN, SVM then ES II. Dunnett’s test showed that there was moderate to 286 

strong evidence that Xgboost was superior to all other models (p < 0.001) (Table 3). Xgboost 287 

performance was least different from RF, but most different from ES II (CEM difference 288 

0.0009 vs. 0.1876).  289 

Sensitivity analysis of CEM component metrics shows that the adjusted Brier score 290 

was unable to distinguish Xgboost, RF, NN and LR (Table 2, all 0.976). AUC performance was 291 

best for Xgboost (0.834) and RF (0.835). F1 score showed that Xgboost performed best 292 

followed by RF (0.279 vs. 0.277). LR and NN (adjusted ECE: both 0.997) showed better 293 

calibration performance than RF and Xgboost (adjusted ECE: both 0.996). Net Benefit overall 294 

was best for Xgboost and RF (both 0.904).   295 

Drift Analysis 296 

Overall CEM 297 

Figure 2. a) Plot of CEM by model and by year month; geometric mean of 1000 bootstraps at each time 298 

point is shown as is 95% CI; horizontal line represents the CEM geometric mean of all models; b) Box plot 299 

of difference in models’ CEM across first three months of 2017 and 2019; Kruskal-Wallis results for CEM 300 

across the time points are shown; c) Paired samples Wilcoxon test (Wilcoxon signed-rank test) for first 3 301 

months of 2019 bootstrap CEM values; p-values are adjusted using the bonferroni method.  302 

 303 
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 304 

 305 

Figure 2a shows that Xgboost and RF were candidates for the best overall CEM performance 306 

across year month. There was minor evidence of LR outperforming NN across time. Seasonal 307 

fluctuations were observed. ES II performed worst across time followed by SVM.  308 

There was strong evidence of a decrease in overall performance across all models (p 309 

< 0.0001). Linear regression plots showed that Xgboost had the best starting CEM (intercept 310 

= 0.755 vs. 0.753 (RF), 0.742 (LR), 0.741 (NN) ), but rate of performance decrease (slope: -311 
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0.000720) was less than NN (slope: -0.00083) and greater than RF (-0.000685) and LR (-312 

0.000696; Figure 3a-c and Figure S2.1).  313 

Figure 3. Plot of CEM by model (a. Xgboost; b. Random Forest; c. Logistic Regression; d. EuroSCORE II) and 314 

by year month; geometric mean of 1000 bootstraps at each time point is shown; red dotted line shows 315 

linear regression; blue line shows Generalised Additive Model fit (GAM); parameters and p-value for 316 

linear regression are shown; e) Discrimination (AUC) performance drift by year month; linear regression 317 

lines are plotted for each model with slope, intercept and p-values displayed in legend; f) Calibration 318 

(adjusted ECE) performance drift by year month; linear regression lines are plotted for each model with 319 

slope, intercept and p-values displayed in legend; SVM and ES II are removed to enable clearer separation 320 

of models with similar performance.   321 

 322 
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 323 

 324 

By March 2019, the overall CEM performance ranking was not changed, with Xgboost 325 

performing best, followed by RF, LR and then NN. ES II (intercept: 0.484, slope:- 0.000847) 326 

performed worst in terms of starting CEM and rate of performance decrease, followed by 327 

SVM (intercept:0.658; slope: -0.000625; Figure 3d and S2.2).  Normality and homogeneity 328 

assumptions were satisfied for all model CEM values as checked by QQ plot of residuals and 329 

scale-location plot (Supplementary Materials, Figure S2.3).  330 

Analysis within first 3 months of 2017 331 

No extreme outliers were found for models’ CEM values in the first three month of 2017. 332 

The CEM scores were non-normally distributed for all models(p < 0.05). There was strong 333 

evidence of a difference across all models (p < 0.0001; Table 2b and Figure S3). Dunn test 334 

showed strong evidence of Xgboost having the best overall performance (Table S6, p < 335 

0.0001), followed by RF, NN and then LR (CEM difference to Xgboost: -0.0076, -0.0124 and -336 

0.0138, p < 0.0001). EuroSCORE II performed worst followed by Weighted SVM (CEM 337 

difference to Xgboost: -0.2739, -0.0961, p < 0.0001).  338 

Analysis within the first 3 months of 2019 339 

No extreme outliers were found for models’ CEM values in the first three month of 2019. 340 

The CEM scores were non-normally distributed for 50% of models(p < 0.05). There was 341 

strong evidence of a difference across all models (p < 0.0001; Table S7 and Figure 2b). Dunn 342 

test showed strong evidence of Xgboost having the best overall performance (Table S8, p < 343 

0.05), followed by RF, LR and then NN (CEM difference to Xgboost: -0.0032, -0.0055 and -344 
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0.0108, p < 0.05). EuroSCORE II performed worst followed by Weighted SVM (CEM 345 

difference to Xgboost: -0.2594, -0.0856, p < 0.0001).    346 

Analysis between first 3 months of 2017 and 2019 347 

No extreme outliers were found for models’ CEM values in the first three months of 2017 348 

and 2019. The CEM scores were non-normally distributed for the first 3 months of 2017 and 349 

2019, as assessed by Kolmogorov-Smirnov Test (p < 0.05). There was strong evidence of an 350 

overall difference across the two-time points (p < 0.0001; Table S9 and Figure S4). There was 351 

strong evidence of a difference across the two-time points for each individual model (p < 352 

0.05; Figure 2c and Table S10). Xgboost retained the best overall performance across the 353 

time points examined. This model showed the largest decrease in CEM performance 354 

(Median difference: 0.0288, p < 0.0001), followed by NN, RF and then LR (Median difference: 355 

0.0272, 0.0244, 0.0205, p < 0.0001). Following a performance decrease from 2017 to 2019, 356 

Xgboost still had the best overall performance with RF being second best (Median CEM 357 

0.716, 0.713) Although NN had better starting performance than LR, the larger performance 358 

drift resulted in NN having a lower overall performance than LR at 2019 (0.705 vs. 0.710). 359 

However, although performance drift was smaller, LR’s CEM performance never exceeded 360 

RF (0.710 vs. 0.713). EuroSCORE II showed the least performance drift followed by Weighted 361 

SVM (Median difference: 0.0142, 0.0183, p < 0.05), but both performed worst in terms of 362 

absolute CEM.  363 

Analysis of discrimination, calibration and clinical effectiveness drift 364 

Discrimination  365 

AUC 366 
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Linear regression plots show that Xgboost has the best starting AUC (intercept = 0.843 vs. 367 

0.839 (RF), 0.831 (LR, NN, SVM)), but rate of performance decrease was greater than RF and 368 

ES II (slope: -0.000678 vs. -0.000381, -0.000604; Figure 3e). By March 2019, Xgboost AUC 369 

had decreased below RF, resulting in RF being the best performing model, followed by 370 

Xgboost, SVM, LR and then NN. NN showed the largest rate of AUC decrease followed by LR 371 

and SVM (slope: -0.0014, -0.00093, -0.000873). ES II performed worst in terms of AUC across 372 

all time points  (intercept: 0.766). There was a strong evidence of decrease in AUC 373 

performance across all models (p < 0.0001). Normality and homogeneity assumptionswere 374 

satisfied for all model AUC values as checked by QQ plot of residuals and scale-location plot 375 

(Figure S5).  376 

F1 score  377 

The best performing model across all Holdout time periods was Xgboost, followed by RF, LR, 378 

NN, SVM and then ES II. There was strong evidence of a decrease in F1 performance across 379 

all models (p < 0.0001). For more details, see Supplementary Materials, section: Positive 380 

outcome discrimination.  381 

Calibration 382 

Linear regression plots showed that NN has the best starting adjusted ECE (intercept = 383 

0.9907 vs. 0.9903 (RF), 0.9902 (Xgboost), 0.9898 (LR) ) but rate of performance decrease 384 

was greater than LR and RF (slope: -5.29e-5 vs. -2.93e-6, -4.58e-5; Figure 3f). By March 2019, 385 

NN adjusted ECE had decreased below LR, resulting in LR being the best performing model, 386 

followed by NN, RF and then Xgboost. While SVM and ES II had lower rates of adjusted ECE 387 

decrease (slope: -0.000251, -0.000479), the calibration performance was much lower at all 388 

time points compared to the other models (Figure S6). There was strong evidence of 389 
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decrease in adjusted ECE performance across all models (p < 0.0001), except LR (p > 0.05). 390 

Normality and homogeneity assumptions were satisfied for all model adjusted ECE values as 391 

checked by QQ plot of residuals and scale-location plot (Figure S7).  392 

Clinical Effectiveness 393 

Linear regression plots showed that Xgboost has the best starting net benefit (intercept = 394 

0.9051 vs. 0.9043 (RF), 0.9035 (NN, LR)) but rate of performance decrease was greater than 395 

RF (slope: -5.68e-5 vs. -2.5e-6; Figure 4a), but slower than LR (-9.38e-5) and even slower 396 

than NN (-0.000145).  397 

Figure 4 a) Clinical effectiveness (net benefit) performance drift by year month; linear regression 398 
lines are plotted for each model with slope, intercept and p-values displayed in legend; SVM and 399 
ES II are removed to enable clearer separation of models with similar performance; b) SHAP 400 
variable importance drift for 27 month of Holdout set; solid dots show geometric mean values of 401 
5 fold cross validation; smoothed loess lines are plotted, with green bands showing 95% 402 
confidence intervals; c) SHAP variable importance drift for 27 month of Holdout set for top six 403 
most important variables; trends are unsmoothed; d) Operative urgency dataset drift across year 404 
month for Holdout set; percentages of each category are shown for each time point.  405 
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 406 

 407 

By March 2019, Xgboost net benefit had decreased below RF, resulting in RF being the best 408 

performing model, followed by Xgboost, LR and NN. ES II showed the largest rate of net 409 

benefit decrease and performed worst across all time points followed by SVM (intercept: 410 

0.314, 0.690; slope: -0.000846, -0.000364; Figure S8). There was strong evidence of a 411 

decrease in net benefit performance across all models (p < 0.0001), except RF (p > 0.05). 412 

Normality and homogeneity assumptions were satisfied for all model net benefit values as 413 

checked by QQ plot of residuals and scale-location plot (Figure S9).  414 
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Accuracy of prediction probability 415 

By March 2019, Xgboost was the best model followed by RF, LR and then NN. ES II 416 

performed worst in terms of Adjusted Brier and rate of decrease, followed by SVM. There 417 

was strong evidence of a decrease in Adjusted Brier performance across all models (p < 418 

0.0001), except Xgboost and RF. For more details, see Supplementary Materials, section: 419 

Accuracy of prediction probability.   420 

Analysis of variable importance drift 421 

SHAP mean absolute magnitude of importance was used to measure variable importance 422 

drift for the best temporal and non-temporal model (Xgboost). Smoothed trend lines 423 

showed substantial drift in numerous variables, including the most important variables: age, 424 

operative urgency, the weight of intervention, NYHA, renal impairment and previous cardiac 425 

surgery (Figure 4b). Sensitivity analysis showed a substantial drift in variable importance 426 

across the Holdout set for all six variables (Figure 4c). When compared with CEM 427 

performance drop between 2017-10 to 2017-12 and between 2018-06 to 2018-07 (Figure 3 428 

GAM line), it could be seen that the CEM decrease was mirrored by decreases in the 429 

importance of the top variables: age and operative urgency at these time periods (Figure 4c). 430 

A decrease in CEM performance in the three months of 2019 was likely to be at least partly 431 

contributed to by the sudden rise in importance of the weight of intervention (Figure 3 and 432 

Figure 4b, 4c).  433 

Dataset drift across time  434 

Dataset drift is observed throughout the Holdout time periods for operative urgency with 435 

sharp drifts observed across all categories between 2017-11 (YYYY-MM) to 2017-12 and 436 

between 2018-06 and 2018-07 (Figure 4d). Dataset drift was observed across the Holdout 437 
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time periods for patient age groups above and below 60 (Figure S15), with marked data 438 

drifts observed between 2017-10 to 2017-11 and between 2018-07 to 2018-08. Dataset drift 439 

was observed across the Holdout time periods for Weight of intervention (Figure S16). Sharp 440 

dataset drifts were observed for the Single non-CABG and 3 procedures category between 441 

2018-12 to 2019-02.  442 

 443 

DISCUSSION 444 

The main finding of the study was that Xgboost performed best followed by RF, LR and then 445 

NN when all metrics are simultaneously considered, both temporally and non-temporally. 446 

Furthermore, EuroSCORE II substantially underperformed against all ML models across all 447 

comparisons and presents an urgent need to replace this score. By first combining all 448 

metrics and then analysing the temporal drift of each metric individually, we were able to 449 

determine the contribution of individual metrics to the overall performance drift of each 450 

model. We found strong evidence that all models showed a decrease in at least 3 of the 5 451 

individual metrics within CEM. This demonstrated the importance for clinicians and ML 452 

governance teams to actively monitor the effects of dataset drift (as explained later) on “Big 453 

Data” models that are prepared for or being clinically used in order to minimise the risk of 454 

harm to patients.   455 

“Big data” refers to large and detailed datasets that are suited to ML analyses rather 456 

than traditional statistical analyses.[37,38] This is increasingly utilised in healthcare. These 457 

analyses can inform, personalise and potentially improve care.[37,39,40] Despite growing 458 

interest[41] in ML and healthcare data linkage initiatives such the Health Informatics 459 

Collaborative (HIC),[42] there have been limited reports of usage within cardiac surgery,[43–460 
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45] with one of the main reasons being a lack of understanding by clinicians of the 461 

underlining processes.[46]  462 

As more countries follow in the steps of the U.S. to deploy ML to the medical 463 

settings,[47] it becomes increasingly critical that clinicians and ML governance teams are 464 

adequately prepared for situations in which ML systems fail to perform their intended 465 

functions.[48] A major factor in ML malfunction is “Dataset Drift”, where ML performance 466 

declines due to a mismatch between the data on which the model was trained and the new 467 

unseen data to which the model is applied.[49] Several factors have been reported to 468 

influence dataset drift, including changes in technology, demographics, and patient or 469 

clinician behaviour.[48]  470 

In our previous systematic review, we found that despite ML models achieving 471 

better discriminatory ability than traditional LR approaches, few cardiac surgery studies 472 

assessed calibration, clinical utility, discrimination and dataset drift collectively; these 473 

aspects should be assessed to determine the clinical implications of ML.[2] While calibration 474 

drift over time is well documented amongst EuroSCORE and logistic regression models for 475 

hospital mortality, the susceptibility of competing ML modelling methods to dataset drift 476 

has not been well studied in cardiac surgery.[50]  477 

This study heeds to the call for additional metrics to address the lack of sensitivity of 478 

the most commonly used C-statistic and calibration slope in capturing the advantage of ML 479 

models,[51] by demonstrating the use of a consensus score[19,52–55] named CEM to take 480 

into account numerous metrics that have been found to be beneficial, covering overall 481 

accuracy,[51] discrimination, calibration and clinical utility. This study showed invariance in 482 
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model ranking for the CEM in both temporal and non-temporal analyses, indicating there is 483 

value for this consensus scoring approach in performance drift evaluation.  484 

The current study also addresses the gap in understanding the effect of dataset drift 485 

on the performance of ML and traditional models over time, which presents a barrier to 486 

their clinical application. The shift in best performing AUC and net benefit model between 487 

Xgboost and RF, and between NN and LR for “adjusted ECE” demonstrates that comparison 488 

of models at a single time point was insufficient to understand the clinical limitations of ML 489 

models and at least two-time points should be considered.  490 

Our study has also found that although RF shows comparable discrimination (AUC) 491 

and clinical utility (net benefit) performance across time, the reason for Xgboost’s superior 492 

overall temporal performance was in its better overall accuracy (Adjusted Brier) and positive 493 

outcome discrimination (F1). F1 score is often overlooked, but is especially important in 494 

cardiac surgery datasets, whereby the incidence for the outcome of interest is typically very 495 

low and introduces bias in the performance evaluation, when AUC is used. We found that RF 496 

performed second best overall. Unlike Xgboost, RF performed better in terms of resistance 497 

to drift in AUC and net benefit, suggesting that further work is required to determine 498 

whether the synergistic (ensemble) effects across models are beneficial for improving 499 

cardiac surgery risk prediction. Although Xgboost is currently the best temporal and non-500 

temporal model for the National Adult Cardiac Surgery Audit dataset, periodic monitoring of 501 

performance drift for each yearly revision of this dataset should be mandated to determine 502 

whether or not performance is overtaken by RF, and if so, at what point in time this 503 

happens.[48] As all models showed strong evidence of decrease in overall performance 504 
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from 2017-01 to 2019-03, further work will be required to develop either better performing 505 

models or models that are less susceptible to performance drift.  506 

 We have demonstrated that by associating relationships between smoothed[56] and 507 

unsmoothed trend lines for CEM performance and ES II variable importance, that it was 508 

possible to detect subtle dataset drifts that could result in model performance drifts. Our 509 

findings of variable importance and dataset drift between 2017-10 to 2017-12, between 510 

2018-06 to 2018-07 and between 2018-12 to 2019-02 are likely to reflect seasonality 511 

changes and mirrored effects of sharp drifts in CEM performance across models. The 512 

detection of dataset drift was verified by checking for actual drifts in the dataset variables. A 513 

non-cardiac surgery study has used actual dataset drift to check for variable importance 514 

detected dataset drift.[50] However, drift in the actual dataset was only analysed across two 515 

data points,[50] without consideration for smoothed and unsmoothed relationships across 516 

performance, variable importance and actual variable incidence. The current study provides 517 

the foundations for which further work analysing ML performance drift are recommended 518 

to analyse relationships between drifts in a consensus score such as CEM and in variable 519 

importance, followed by confirmation of any detected drifts using actual dataset trends.  520 

 521 

Limitations 522 

 Although statistical rigour has been applied to determine whether performance drift is a 523 

barrier to clinical risk modelling and decision-making, further work could be done to apply 524 

more statistically sensitive approaches to comparing the interactions of trends in dataset 525 

drift, performance drift and variable importance drift. While CEM is a consensus score that 526 

enhances clinical evaluation of complex relationships across different aspects of model 527 
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performance, compressing the net benefit measure into a single value would mean that 528 

further decision curve analysis may be required if individual-specific threshold-based 529 

decisions were to be fully considered.  530 

 531 

CONCLUSION  532 

This study addresses the gap in understanding the effect of dataset drift on the performance 533 

of ML and traditional models over time, which presents a barrier to the clinical application 534 

of ML. This was demonstrated by highlighting the importance of using a temporal and non-535 

temporal ranking invariant consensus-based score for evaluating various ML approaches 536 

against traditional models, using smoothed and unsmoothed trend analysis, while 537 

comparatively assessing for relationships between and within variable importance drift, 538 

performance drift and actual dataset drift, for selecting the clinical ML model that minimizes 539 

the risk of patient harm. The strong evidence of all models showing a decrease in at least 3 540 

of the 5 individual metrics within CEM demonstrates the importance of clinicians and ML 541 

governance teams actively monitoring the effects of dataset drift on models that are 542 

prepared for or being used for cardiac surgery risk prediction. Our data suggest that 543 

EuroSCORE II should be replaced with better performing ML models such as Xgboost and RF, 544 

which have demonstrated less drift over time. Future work will be required to determine 545 

the interplay between Xgboost and RF and whether ensemble models could take advantage 546 

of their respective performance advantages.   547 

Acknowledgement:  This work was supported by a grant from the BHF-Turing Institute and 548 

the NIHR Biomedical Research Centre at University Hospitals Bristol and Weston NHS Foundation 549 

Trust and the University of Bristol. 550 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted January 22, 2023. ; https://doi.org/10.1101/2023.01.21.23284795doi: medRxiv preprint 

https://doi.org/10.1101/2023.01.21.23284795
http://creativecommons.org/licenses/by-nc-nd/4.0/


Data availability 551 

All data used in this study are from the National Adult Cardiac Surgery Audit (NACSA) dataset. These 552 

data may be requested from Healthcare Quality Improvement Partnership (HQIP), 553 

https://www.hqip.org.uk/national-programmes/accessing-ncapop-data/#.Ys6gN-zMLdp. 554 
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Figure 1. Design overview of the study; non-temporal performance and drift (temporal) 727 

analyses are performed; drift in discrimination, calibration, clinical utility, dataset and 728 

variable importance are assessed; time point assessments are performed for CEM; drifts in 729 

component metrics of CEM are evaluated.  730 

Figure 2. a) Plot of CEM by model and by year month; geometric mean of 1000 bootstraps at 731 

each time point is shown as is 95% CI; horizontal line represents the CEM geometric mean of 732 

all models; b) Box plot of difference in models’ CEM across first three months of 2017 and 733 

2019; Kruskal-Wallis results for CEM across the time points are shown; c) Paired samples 734 

Wilcoxon test (Wilcoxon signed-rank test) for first 3 months of 2019 bootstrap CEM values; 735 

p-values are adjusted using the bonferroni method.  736 

Figure 3. Plot of CEM by model (a. Xgboost; b. Random Forest; c. Logistic Regression; d. 737 

EuroSCORE II) and by year month; geometric mean of 1000 bootstraps at each time point is 738 

shown; red dotted line shows linear regression; blue line shows Generalised Additive Model 739 

fit (GAM); parameters and p-value for linear regression are shown; e) Discrimination (AUC) 740 

performance drift by year month; linear regression lines are plotted for each model with slope, 741 

intercept and p-values displayed in legend; f) Calibration (adjusted ECE) performance drift 742 

by year month; linear regression lines are plotted for each model with slope, intercept and p-743 

values displayed in legend; SVM and ES II are removed to enable clearer separation of 744 

models with similar performance.     745 

Figure 4 a) Clinical effectiveness (net benefit) performance drift by year month; linear 746 

regression lines are plotted for each model with slope, intercept and p-values displayed in 747 

legend; SVM and ES II are removed to enable clearer separation of models with similar 748 

performance; b) SHAP variable importance drift for 27 month of Holdout set; solid dots show 749 

geometric mean values of 5 fold cross validation; smoothed loess lines are plotted, with green 750 

bands showing 95% confidence intervals; c) SHAP variable importance drift for 27 month of 751 

Holdout set for top six most important variables; trends are unsmoothed; d) Operative 752 

urgency dataset drift across year month for Holdout set; percentages of each category are 753 

shown for each time point. 754 
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 777 

Table 1. Patient Demographics 778 

Table 1. Summary of cleaned Euroscore II Variables. Variables are for the time period 2012 – 2019. 779 

Records with missing mortality status were excluded. 780 

 Mortality Status   

Variable 0, N = 220,8291 1, N = 6,2581 p-value2 

Age (years), mean (SD) 67.53 (11.23) 70.77 (11.42) <0.001 
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 Mortality Status   

Variable 0, N = 220,8291 1, N = 6,2581 p-value2 

NYHA, n (%)   <0.001 

0 – I 48,625 (22%) 1,055 (17%)  

1 – II 96,888 (44%) 1,609 (26%)  

2 – III 64,049 (29%) 2,228 (36%)  

3 – IV 11,267 (5.1%) 1,366 (22%)  

Renal impairment, n (%)   <0.001 

0 - Normal 103,196 (47%) 1,704 (27%)  

1 - Moderate 92,411 (42%) 2,451 (39%)  

2 - On Dialysis 2,187 (1.0%) 330 (5.3%)  

3 - Severe  23,035 (10%) 1,773 (28%)  

Chronic lung disease, n (%) 26,644 (12%) 1,211 (19%) <0.001 

Poor mobility, n (%) 8,305 (3.8%) 514 (8.2%) <0.001 

Previous cardiac surgery, n (%) 12,012 (5.4%) 1,141 (18%) <0.001 

LV function   <0.001 

0 - Good (>50%) 184,721 (84%) 4,706 (75%)  

1 - Moderate (31-50%)   30,608 (14%) 1,089 (17%)  

2 - Poor (21-30%)   4,241 (1.9%) 318 (5.1%)  

3 - Very Poor (≤20%) 1,259 (0.6%) 145 (2.3%)  

Pulmonary hypertension, n (%)   <0.001 

0 – PA Systolic (<31mmHg) 201,643 (91%) 5,000 (80%)  

1 – PA Systolic (31-55 mmHg) 13,126 (5.9%) 705 (11%)  

2 – PA Systolic (>55mmHg) 6,060 (2.7%) 553 (8.8%)  

CCS class 4 angina, n (%) 18,370 (8.3%) 956 (15%) <0.001 

Urgency, n (%)   <0.001 

0 - Elective 141,617 (64%) 2,442 (39%)  

1 - Urgent   72,090 (33%) 2,134 (34%)  

2 - Emergency 6,533 (3.0%) 1,230 (20%)  

3 - Salvage   589 (0.3%) 452 (7.2%)  

Weight of the intervention, n (%)   <0.001 

0 – Isolated CABG 111,243 (50%) 1,546 (25%)  
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 Mortality Status   

Variable 0, N = 220,8291 1, N = 6,2581 p-value2 

1 – Single non-CABG 62,568 (28%) 2,153 (34%)  

2 – 2 Procedures 42,649 (19%) 2,108 (34%)  

3 – 3 Procedures 4,369 (2.0%) 451 (7.2%)  

Diabetes on insulin, n (%) 12,818 (5.8%) 453 (7.2%) <0.001 

Female gender, n (%) 59,467 (27%) 2,328 (37%) <0.001 

Recent myocardial infarct, n (%) 43,316 (20%) 1,594 (25%) <0.001 

Critical preoperative state, n (%) 7,255 (3.3%) 1,382 (22%) <0.001 

Extracardiac arteriopathy, n (%) 22,327 (10%) 1,215 (19%) <0.001 

Active endocarditis, n (%) 5,816 (2.6%) 493 (7.9%) <0.001 

Surgery on thoracic aorta, n (%) 9,070 (4.1%) 896 (14%) <0.001 

Euroscore II, mean (SD) 0.03 (0.04) 0.12 (0.14) <0.001 

1Mean (SD) or Frequency (%) 

2Wilcoxon rank sum test; Pearson's Chi-squared test 
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Table 2. Geometric Mean of Individual metrics for each model in the Holdout set; CEM refers to Clinical 784 

Effective Metric; Standard deviation and 95% CI are shown for CEM. 1000 bootstrap samples were used 785 

to derive geometric mean of each metric; adjusted 1 - ECE and 1 - Brier score values are shown; net 786 

benefit is average absolute overall benefit across all thresholds.  787 

Model Category 1 - ECE AUC 1 - Brier F1 Net Benefit CEM.Mean CEM.sd CEM.n CEM lower CI CEM upper CI 

EuroSCORE II 0.641 0.800 0.814 0.240 0.461 0.541 0.004 1000 0.540 0.541 

LR 0.997 0.819 0.976 0.264 0.902 0.717 0.005 1000 0.717 0.717 

NN 0.997 0.813 0.976 0.259 0.901 0.713 0.006 1000 0.713 0.714 

RF 0.996 0.835 0.976 0.277 0.904 0.727 0.005 1000 0.727 0.728 

Weighted SVM 0.775 0.819 0.916 0.257 0.685 0.634 0.005 1000 0.634 0.634 

Xgboost 0.996 0.834 0.976 0.279 0.904 0.728 0.005 1000 0.728 0.729 
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 804 

 805 

 806 

 807 

 808 

Table 3. Dunnett's test with Xgboost as control and the rest of the models as comparison; 95% family-809 

wise confidence level are shown as well as mean difference in CEM and p-values.   810 

95% CI 

Group 1 Group 2 CEM Difference (1-2) P Value Lower Bound Upper Bound 

EuroSCORE II 

Xgboost 
(Control) 

-0.1876 < 2e-16*** -0.1881 -0.1870 

LR -0.0110 < 2e-16*** -0.0116 -0.0105 

NN -0.0148 < 2e-16*** -0.0154 -0.0142 
RF -0.0009 0.00039*** -0.0015 -0.0003 

Weighted SVM -0.0941 < 2e-16*** -0.0947 -0.0935 

Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' '  811 
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