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Abstract 
 
Human plasma lipidome captures risk for cardio-metabolic diseases. To discover new lipid-associated 
variants and understand link between lipid species and cardiometabolic disorders, we performed 
univariate and multivariate genome-wide analyses of 179 lipid species in 7,174 Finnish individuals. 
We further fine-mapped the associated loci, prioritized genes, and examined their disease links in 
377,277 FinnGen participants. We identified 495 genome-trait associations in 56 genetic loci 
including 9 novel loci, with a considerable boost provided by multivariate analysis. For 26 loci, fine-
mapping identified variants with a high causal probability, including 14 coding variants indicating 
likely causal genes. Phenome-wide analysis across 953 disease endpoints in FinnGen revealed disease 
associations for 40 lipid loci. For 11 known coronary artery disease risk variants, we detected strong 
associations with lipid species. Our study demonstrates the power of multivariate genetic analysis in 
correlated lipidomics data and reveals genetic links between diseases and detailed lipid measures 
beyond standard lipids. 
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Introduction 
 
Cardiovascular disease (CVD) is the leading cause of mortality and morbidity worldwide [1] with an 
estimated heritability of about 50% [2]. Plasma lipids, routinely measured via high-density lipoprotein 
cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C), triglycerides (TG), and total 
cholesterol (TC), are established risk factors for CVD [3]. The modern efficient lipidomics 
technologies  have extended considerably our understanding of the variability and width of circulating 
lipids.  Lipid species including, for example, Cholesterol esters (CE), Ceramides (CER), 
Diacylglycerols (DAG), Lysophosphatidylcholines (LPC), Phosphatidylcholines (PC),  
Phosphatidylcholine-ether (PCO), Phosphatidylethanolamines (PE), Phosphatidylethanolamine-ethers 
(PEO), Sphingomyelins (SM) and Triacylglycerols (TAG) potentially improve CVD risk assessment 
over standard lipids [4]–[14]. Eventually, a better understanding of biological factors underlying lipid 
metabolism and its connection to CVD pathophysiology may also provide new treatment options for 
CVD. 
 
Genome-wide association studies (GWAS) have revolutionized our understanding of genetic variation 
behind lipid levels [15]–[35]. With growing sample sizes, more efficient genetic fine-mapping 
methods, and the use of population isolates like Finland, several likely causal coding variants and 
genes have been identified. For example, recently reported stop-gained variants in CD36, ANGPTL8, 
and PDE3B provide potential targets for the next generation of lipid-lowering medications [20], [36]. 
 
Very large genetic studies have already been conducted for the standard lipids. For example, the 
multi-ethnic meta-analysis from the Million Veteran Program study, with a sample size of > 600,000 
participants, identified 306 loci associated with the standard lipids [19] and a multi-ethnic meta-
analysis in 1.65 million individuals identified 941 loci [20]. Despite much smaller sample sizes of 
lipidome GWAS, they have identified new lipid-associated genetic variants and provided insights into 
the genetic architecture of lipid metabolism and cardiometabolic diseases. Additionally, the high-
dimensional and correlated structure of the lipidome [27] can be utilized in a multivariate framework 
[28] to increase statistical power to identify new genetic associations but, to our knowledge, such 
analyses have not been reported so far. 
 
Here we report univariate and multivariate GWAS of 179 lipid species from 13 lipid classes in 7,174 
Finnish individuals from the GeneRISK cohort, followed by a phenome-wide association study 
(PheWAS) of the identified lipid-associated genetic loci in 377,277 biobank participants of the 
FinnGen study. Altogether, we identified 56 lipid-associated loci including 9 new loci, 2 of which 
were identified in univariate GWAS (AGPAT2, SGPL1), and 7 were only revealed through 
multivariate GWAS (DTL, STK39, CDS1, KCNJ12, YPEL2, SPHK2, AGPAT3) demonstrating the 
gain in statistical power provided by multivariate techniques. Fine-mapping identified variants with 
high causal probabilities for 26 loci. We also present detailed lipidomic profiles of known CAD-
associated variants. Through the large genome-wide investigation of lipidomic measurements and a 
new multivariate approach, we provide new lipid-associated loci and new insights into lipid 
metabolism. 
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Results 
 
Using shotgun lipidomics, we detected 179 lipid species belonging to 13 lipid classes covering 4 
major lipid categories: glycerolipids, glycerophospholipids, sphingolipids, and sterols (Figure 1, 
Supplementary Table 2). Hierarchical clustering based on absolute pairwise Pearson correlations of 
plasma levels of lipids revealed 11 clusters of correlated lipids (Figure 1, Supplementary Figures 10-
11), which were used for multivariate GWAS. Lipid species included in each cluster are listed in 
Supplementary Table 1, and the pairwise correlations between lipid species in each cluster are 
provided in Supplementary Figure 12 and Supplementary Table 18. 
 
Heritability of lipid species 
 
We estimated the SNP-based heritability of all 179 lipid species using >849k  high-quality 
independent genetic variants. The heritability estimates ranged from 0.0 to 0.45 (Figure 2 and 
Supplementary Table 2). Sphingomyelins (SMs) had the highest estimated median heritability 
(median=0.35, range=0.18-0.40) followed by Ceramides (Cer) (median=0.34, range=0.05-0.36). 
Phosphatidylcholine-ethers (PCO) showed the smallest median heritability (median�=�0.12, 
range�=�0–0.32) preceded by Phosphatidylethanolamines (PEO) (median�=�0.13, 
range�=�0.08–0.14). Lipids containing long-chain polyunsaturated fatty acids (PUFA) (C20:4, 
C20:5, and C22:6 acyl chains) had slightly higher median heritability (median=0.27, range=0-0.45) 
compared with other lipid species (median=0.23, range=0-0.40). PC 18:0;0_20:4;0 had the highest 
heritability (0.45, SE=0.05) of all lipid species followed by CE 20:4;0 (0.44, SE=0.05). The 
heritability estimates for lipid species grouped by lipid classes, lipid categories, and PUFA acyl chains 
are shown in box plots in Supplementary Figure 1. 
 
Univariate and multivariate GWAS 
 
We performed univariate GWAS for 179 lipid species and multivariate GWAS for 11 clusters using 
~11.3M  high-quality genetic variants with minor-allele frequency (MAF) > 0.002. In the univariate 
GWAS of 179 lipid species, we identified 26,969 variant-lipid associations at the Bonferroni-
corrected significance (BFS) threshold (P<7.35e-10) after correction for 68 principal components 
explaining 90% of the variance in lipidome. The multivariate GWAS of 11 clusters revealed 13,157 
variant-cluster associations at BFS (P<4.55e-9). Genomic inflation factors for univariate and 
multivariate GWAS ranged between 0.99 and 1.14 (Supplementary Table 5). Manhattan plots for lipid 
classes and multivariate analyses are shown in Supplementary Data 1. 
  
To define independent loci across the lipid species and clusters, we first identified lead variants, 
individually for each univariate (N=179) and multivariate (N=11) trait, iteratively as the variant with 
the lowest P-value. Then the ±1.5Mb regions around the lead variants were defined as lipid-associated 
genomic regions (GWAS regions). A total of 495 BFS GWAS regions (357 and 138 from univariate 
and multivariate GWAS respectively) were identified. We identified a set of most probable causal 
variants in each GWAS region through fine-mapping and considered each of them as representing a 
single association signal. We merged the identified signals that were in linkage disequilibrium (LD; 
r2 � 0.1) and combined the overlapping regions across all 190 GWAS to form a non-overlapping set 
of lipid-associated loci. Through this process, described in detail in Methods, Supplementary Figure 3, 
and Supplementary Figure 4 for the locus LPL, we identified 98 signals (Supplementary Data 2) 
located in 56 independent loci across all 190 GWAS traits (Supplementary Figure 2, Table 1). The 
number of associated loci per lipid species correlated positively with estimated heritability (adjusted 
r2=0.3125, P=2.5e-16), (Supplementary Figure 5). We identified 29 additional loci that were 
associated with lipid species or lipid clusters at genome-wide significance (GWS) but did not reach 
BFS (Supplementary Table 3). 
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Table 1. Loci reaching the Bonferroni-corrected significance level for univariate (uv) or 
multivariate (mv) GWAS. Cluster number is given as mv trait and lipid species name as uv trait. 
Loci found by previous studies for standard lipids or lipid species (LS) are marked with an X. minP = 
minimum of P-values of multivariate GWAS or univariate GWAS. Novel loci are bolded. Variants 
are named by chromosome:base pair position (GRCh38). 
 
Locus 

Mv 
trait 

Mv lead 
variant 

Mv 
minP 

Uv trait Uv lead 
variant 

Uv 
minP 

HDL LDL TC TG LS 

RF00019 4 1:39937698 1e-12 LPE 18:0;0 1:39937698 4e-13    X X 
PCSK9 7 1:55039974 3e-23 SM 34:1;2 1:55039974 2e-19  X X  X 
DOCK7 2 1:62455915 4e-28 PI 18:0;0_20:4;0 1:62662654 6e-25 X X X X X 
AC105942.1 5 1:94928979 1e-25 PC 18:0;0_18:2;0 1:95232272 7e-13     X 
DTL 5 1:212081294 4e-11 PC 18:0;0_18:2;0 1:212081294 3e-5      
MARC1 1 1:220800221 4e-8 TAG 54:4;0 1:220800221 5e-11 X X X X  
GALNT2 10 1:230167766 2e-9 PC O-16:1;0/18:1;0 1:230167766 4e-10 X   X X 
APOB 7 2:21041028 4e-11 CE 16:0;0 2:21041028 3e-9 X X X X X 
GCKR 3 2:27508073 1e-17 TAG 50:4;0 2:27508073 4e-22 X X X X X 
ABCG8 9 2:43847292 3e-32 CE 20:2;0 2:43847292 9e-32  X X X X 
STK39 8 2:168292271 3e-10 SM 34:2;2 2:168292271 1e-5      
AC021074.3 2 3:142936448 1e-39 PI 18:0;0_18:1;0 3:142936448 5e-20  X X X X 
ANKRD17 8 4:73167847 4e-15 SM 40:1;2 4:73167847 3e-17 X X X X  
CDS1 2 4:84647685 2e-9 PI 16:0;0_18:2;0 4:84647685 3e-5      
ELOVL6 3 4:110207431 5e-33 CE 16:1;0 4:110207431 3e-7 X   X  
SMIM13 6 6:11089522 6e-20 CE 22:6;0 6:11089522 2e-5     X 
AGPAT1 3 6:32168770 4e-31 TAG 50:1;0 6:32168770 4e-9 X X X X X 
PEX6 6 6:42979275 5e-13 PC 18:0;0_22:6;0 6:42963486 3e-9 X X  X  
NPC1L1 8 7:44541277 9e-11 CE 18:0;0 7:44542387 4e-8  X X   
MLXIPL 8 7:73606007 9e-12 DAG 18:1;0_18:2;0 7:73599571 9e-11 X  X X X 
AC022784.1 3 8:9326154 4e-13 PC 18:0;0_18:2;0 8:9326154 9e-8 X X X X  
LPL 1 8:19967357 2e-10 TAG 56:6;0 8:19970337 2e-12 X   X X 
ERMP1 8 9:5612441 1e-20 SM 32:1;2 9:5811257 1e-8  X X   
ABO 8 9:133266456 2e-10 CE 18:0;0 9:133273983 7e-14 X X X  X 
AGPAT2 3 9:136677616 2e-12 PC 16:0;0_22:5;0 9:136677616 4e-12      
JMJD1C 8 10:63364338 4e-9 Cer 42:2;2 10:63364338 4e-6 X   X X 
SGPL1 8 10:70843134 6e-17 Cer 42:2;2 10:70843134 2e-10      
PKD2L1 3 10:100315722 4e-26 PC 16:1;0_18:1;0 10:100315722 1e-11  X   X 
GPAM 2 10:112190660 1e-13 PI 18:0;0_20:4;0 10:112190660 1e-5 X X X X  
PNLIPRP2 3 10:116638373 9e-12 PC 16:0;0_18:2;0 10:116638373 1e-6 X    X 
MYRF 7 11:61776027 <5e-324 PC 18:0;0_20:4;0 11:61785208 <5e-324 X X X X X 
CPT1A 3 11:68794860 9e-18 CE 20:4;0 11:68794860 7e-11 X   X  
RN7SL786P 3 11:75745010 2e-14 PC 18:1;0_20:2;0 11:75734293 4e-9 X  X  X 
ZPR1 3 11:116778201 3e-42 TAG 54:4;0 11:116778201 9e-39 X X X X X 
SOAT2 8 12:53112581 7e-35 CE 18:0;0 12:53118972 4e-24     X 
HNF1A 8 12:121000508 6e-22 SM 38:2;2 12:121000508 4e-12 X X X  X 
AL161670.1 8 14:63768838 2e-197 SM 32:1;2 14:63768838 3e-95  X X X X 
LIPC 2 15:58386313 2e-126 PE 16:0;0_20:4;0 15:58388755 4e-104 X X X X X 
NTAN1 3 16:15038117 1e-52 CE 20:3;0 16:15038105 2e-36 X   X X 
CETP 3 16:56960616 1e-33 PC 16:0;0_18:2;0 16:56960616 8e-15 X X X X X 
LCAT 7 16:67942417 1e-16 CE 20:4;0 16:67942417 2e-4 X  X   
GLTPD2 8 17:4789345 1e-79 SM 40:1;2 17:4789345 4e-60   X X X 
KCNJ12 7 17:21386711 2e-9 PC 16:1;0_20:4;0 17:21386711 2e-6      
YPEL2 11 17:59341010 2e-9 PC O-16:0;0/20:4;0 17:59341010 7e-8      
ABHD3 2 18:21651694 5e-38 PC 14:0;0_18:2;0 18:21651694 7e-20     X 
SMUG1P1 2 18:49656294 1e-15 PI 18:1;0_18:1;0 18:49656294 8e-17 X X X  X 
CERS4 8 19:8209156 2e-189 SM 38:2;2 19:8209156 6e-53 X X X X X 
TM6SF2 8 19:19141970 3e-24 TAG 56:6;0 19:19485324 2e-15  X X X X 
APOE 8 19:44908822 2e-65 CE 18:2;0 19:44908822 8e-36 X X X X X 
SPHK2 8 19:48629610 6e-16 SM 34:2;2 19:48629610 1e-7      
TMC4 2 19:54173495 2e-301 PI 18:0;0_18:2;0 19:54173495 5e-107  X   X 
LINC01722 8 20:12978039 1e-135 Cer 42:2;2 20:12982070 7e-52  X X  X 
NINL 3 20:25482746 6e-12 CE 20:3;0 20:25482746 2e-6     X 
HNF4A 2 20:44413724 1e-10 CE 18:3;0 20:44413724 1e-10 X X X   
AGPAT3 3 21:43971391 7e-17 PC 16:0;0_22:5;0 21:43971391 5e-9      
PNPLA3 1 22:43945024 3e-9 TAG 56:6;0 22:43928847 6e-19 X X X X X 
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Further, for each of the multivariate associations, MetaPhat [37] was applied to identify the traits 
driving the multivariate association. For 61 of all 138 multivariate BFS GWAS regions, a single trait 
was identified to be driving the association and for 47 of the regions, 2 to 3 driver traits were 
identified. The driver traits and other MetaPhat results for associations reaching GWS in the 
multivariate analysis are listed in Supplementary Table 4. 
  
Next, we compared the findings of the univariate GWAS and multivariate GWAS. Of the 138 BFS 
GWAS regions identified in multivariate analysis, 55 regions did not reach BFS in any univariate 
analysis of the traits included in that multivariate analysis, for any variant in LD with the lead variant 
(r2 > 0.1) of the multivariate analysis. The multivariate analysis identified 21 loci not found by the 
univariate analysis. A comparison of the P-values of the lead variants in the 56 loci in the univariate 
and multivariate GWAS showed that all the loci identified by univariate GWAS reached BFS in the 
multivariate GWAS, except MARC1 which only reached GWS (Figure 3). We observed much lower 
P-values in univariate compared to multivariate analysis for PNPLA3 (6e-19 and 3e-9 for TAG 56:6;0 
and cluster 1, respectively). TAG 56:6;0 is not contained in any multivariate cluster, which explains 
the higher P-value in the multivariate analysis.  
 
New lipid-associated loci  
 
Altogether, the univariate and multivariate GWAS identified 56 lipid-associated loci including 9 
novel lipid loci (Table 2) in or near the following genes: DTL, STK39, CDS1, AGPAT2, SGPL1, 
YPEL2, KCNJ12, SPHK2,  and AGPAT3. All these loci were identified by the multivariate GWAS but 
only two were also identified in the univariate GWAS (AGPAT2 and SGPL1). The novel lead variants 
included missense variants for genes AGPAT3 and SPHK2. AGPAT2 and AGPAT3 encode enzymes in 
the 1-acylglycerol-3-phosphate O-acyltransferase family, whose another member AGPAT1 is known 
to be associated with standard lipids [17]–[20] and lipid species (PC, TAG) [26], [35]. AGPAT1/2/3 
catalyze the conversion of lysophosphatidic acid to phosphatidic acid in the phospholipid and 
triacylglycerol synthesis. In our data, these regions were associated with PC and TAG species as well 
as cluster 3. MetaPhat analysis identified PC species to be driving the associations between cluster 3 
and AGPAT1/2/3 regions. SPHK2, associated with SM species and cluster 8, encodes a sphingosine 
kinase isozyme involved in sphingolipid metabolism. Three of the novel lead variants (CDS1, SPHK2 
and STK39) were > 2-fold enriched in Finland. The highest enrichment was 69-fold at the CDS1 locus 
associated with cluster 2, with PI species as drivers of the association. Of note, CDS1 encodes an 
enzyme that regulates the synthesis of PI. 
We also report novel associations with lipid species for 11 loci which were previously identified in 
GWAS of standard lipids. These loci include AC022784.1, ANKRD17, CPT1A, ELOVL6, ERMP1, 
GPAM, HNF4A, LCAT, MARC1, NPC1L1 and PEX6 (Table 1, Supplementary Data 2). 
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Table 2. Novel loci reaching the Bonferroni corrected significance level for univariate or 
multivariate GWAS. Driver traits from metaPhat analysis are listed in parentheses after the cluster 
number for multivariate associations. Finnish enrichment is calculated as the ratio of minor allele 
frequencies (MAF) between our Finnish data and non-Finnish-non-Swedish-non-Estonian European 
samples in gnomAD v2.1 Enrichment values > 2 are bolded. The variant function is annotated by 
Variant Effect Predictor (VEP) and the gene naming the locus is identical to the gene annotated by 
VEP. 
 
Locus 
 

Trait Lead variant P-value Function 
 

MAF Finnish  
enrichm. 

DTL 
 

cluster 5 (PC 18:0;0_18:2;0) 1:212081294:G:A 4e-11 intron 0.04 0.87 

STK39 cluster 8 (SM 34:2;2) 2:168292271:A:G 3e-10 intergenic 0.03 2.94 
CDS1 cluster 2 (PI 16:0;0_18:2;0) 4:84647685:C:T 2e-9 intron 0.07 68.87 
AGPAT2 
 

PC16:0;0_22:5;0 
cluster 3 (PC 16:0;0_22:5;0,  
PC 16:0;0_22:4;0, 
PC 18:0;0_22:5;0) 

9:136677616:C:G 
 

4e-12 
2e-12 

intron 0.35 
 

1.00 
 

SGPL1 
 

Cer42:2;2 
cluster 8 (Cer 42:2;2,SM 34:2;2) 

10:70843134:T:C 
 

2e-10 
6e-17 

intron 0.21 0.86 
 

KCNJ12 cluster 7 (PC 16:1;0_20:4;0) 17:21386711:C:T 2e-9 intron 0.38 0.99 
YPEL2 cluster 11 (PC O-16:0;0/20:4;0) 17:59341010:C:T 2e-9 intron 0.06 1.42 
SPHK2 cluster 8 (SM 34:2;2,SM 38:2;2) 19:48629610:G:C 6e-16 missense 0.03 2.45 
AGPAT3 cluster 3 (PC 16:0;0_22:5;0, 

PC 18:0;0_22:5;0) 
21:43971391:C:T 7e-17 missense 0.04 1.44 

 
Fine-mapping of loci 
 
To identify the most probable causal variants in the associated loci, we performed fine-mapping for 
both univariate and multivariate GWAS regions. Of the 56 loci, 26 loci had at least one variant with a 
high (> 0.9) posterior inclusion probability (PIP) in an informative 95% credible set either in 
univariate or multivariate GWAS (Supplementary Table 7). Altogether, 50 high PIP variants were 
identified. Variants with a high PIP were found from 13 loci in both univariate and multivariate 
analyses (ABHD3, AGPAT2, APOE, CERS4, GCKR, GLTPD2, HNF4A, LINC01722, LIPC, PCSK9, 
PKD2L1, SMUG1P1, and ZPR1), from 1 locus (LPL) only in univariate analysis and from 12 loci 
only in multivariate analysis (AGPAT3, CPT1A, DOCK7, ELOVL6, LCAT, MYRF, NPC1L1, SGPL1, 
SMIM13, SPHK2, STK39, TM6SF2). Of the 50 variants, 18 variants that reached a PIP > 0.9 in the 
multivariate analysis had a low PIP (< 0.1) in univariate analyses. In Supplementary Data 3 the full 
FINEMAP results are listed and the results for novel loci are summarized in Supplementary Table 6. 
Representative variants of informative credible sets of BFS univariate and multivariate GWAS 
regions are plotted by credible set size against top posterior inclusion probability (PIP) in 
Supplementary Figure 6. 
 
In total, we found 53 variants that affect the molecular function of a protein among the representative 
variants of credible sets or in high LD (r2 > 0.95) with them (Supplementary Data 3). These 53 
functional variants were distributed among 32 of our 56 loci. For univariate analyses, 34 missense 
variants and 2 splice region variants were found across 24 loci. For multivariate analyses, 1 splice 
acceptor variant (PNLIPRP2), 2 splice donor variants (LILRB3, ABHD12), 1 frameshift variant 
(ABHD12), 1 inframe deletion variant (NINL), 38 missense variants and 2 splice region variants were 
found, distributed across 27 loci. Among the 18 functional variants with PIP > 0.5 in univariate or 
multivariate fine-mapping, 9 variants were predicted to be among the top 1% of most deleterious 
substitutions (CADD score > 20 [38]) and are reaching the GWS threshold in at least one GWAS. 
These are missense variants for genes ABHD3, APOE, APOB, G6PC1, HNF4A, LCAT, LIPC, LPL, 
and SPHK2. 
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Fine-mapping revealed multiple independent signals (Supplementary Data 2) at 24 of the 56 loci 
including novel signals for well-known lipid genes.  For example, for LIPC, we found 5 signals 
represented by variants:  rs6493996, rs2043085, rs1077834,  rs113298164, and rs201563586, of 
which the last one is a highly Finnish-enriched missense variant, not in LD with any of the previously 
reported signals [20], [35], [39], [40].  
 
A comparison to fine-mapping results of standard lipids in UKB was performed for 45 of our high PIP 
variants that were directly or through an LD-neighbor (r2 > 0.1) contained in the UKB fine-mapping 
results (Supplementary Table 8). Of the 45 variants, 15 variants have a CADD score > 10, indicating 
that the variant is predicted to be among the 10 % of the most deleterious substitutions [38] (Table 3). 
Of these 15 variants, 8 variants reach a PIP > 0.1 in UKB for at least one standard lipid. The other 7 
variants had a PIP < 0.001 for all standard lipids and were not contained in any 95 % credible set in 
UKB. Of the 7 variants, 3 variants were rare and only reached a PIP > 0.9 in our multivariate analysis. 
Detailed quality control assessment of these variants is in Supplementary Note. Of the 30 variants 
with a CADD score � 10, 17 variants (or their LD neighbors) reach a PIP > 0.1 in UKB for at least 
one standard lipid. We observed a lower Pearson correlation between the standard lipids and lipid 
species or LCP-phenotypes associated with the variants that had only low PIP in UKB 
(Supplementary Table 8, Supplementary Note). 
 
 
Table 3. Fine-mapping results. The table includes variants with a CADD score > 10 and a high PIP         
(> 0.9) in GeneRISK. Variants reaching only low PIP (< 0.1) in UKBB are marked with an asterisk. 
Function and gene are from VEP. Finnish enrichment is calculated as the ratio of minor allele 
frequencies (MAF)  between Finnish samples and non-Finnish-non-Swedish-non-Estonian European 
samples in gnomAD v2.1 and listed if the variant is contained in gnomAD. Enrichment values > 2 are 
bolded. Traits for which the variant reaches a high PIP are listed and, in the case of multiple species of 
a lipid class, the number of species and the species for which the variant reaches the lowest P-value 
are given. 
 
Locus Variant Function Gene CADD Finnish  

enrichm. 
MAF Traits (P-value) 

PCSK9 1:55039974:G:T missense PCSK9 10.4 3.10 0.033 CE 18:2;0 (2e-14), 
3 SMs: SM 34:1;2 (2e-19), c3 (1e-14), 
c8 (2e-13) 

GCKR 2:27508073:T:C missense GCKR 13.2 1.07 0.349 2 DAGs: DAG 18:1;0_18:2;0 (1e-12), 
16 TAGs: TAG 50:4;0 (4e-22), 
c2 (4e-13), c3 (1e-17) 

SMIM13 6:10995002:C:T* splice_region ELOVL2 22.9 Inf 0.004 c6 (2e-7) 
LPL 8:19956018:A:G missense LPL 21.3 1.01 0.023 3 TAGs: TAG 54:4;0 (1e-9) 

LIPC 15:58541944:G:A* missense LIPC 24.9  Inf 0.002 c2 (8e-8) 
15:58563549:C:T missense LIPC 24.1 4.41 0.017 5 PCs: PC 18:0;0_18:2;0 (1e-12), 

PC O-16:2;0/18:0;0 (3e-12), 
5 PEs: PE 16:0;0_20:4;0 (4e-47), 
c2 (3e-62), c3 (2e-7), c4 (2e-10), 
c5 (4e-15), c7 (2e-7), c10 (1e-10) 

LCAT 16:67942417:A:T missense LCAT 23.2 0.83 0.028 c7 (1e-16) 
ABHD3 18:15528072:A:G* intergenic  11.8  0.017 c2 (3e-6) 

18:21657147:C:T* missense ABHD3 23.7 29.64 0.004 c2 (4e-19), c3 (5e-12) 
APOE 19:44908822:C:T missense APOE 26.0 0.56 0.053 5 CEs: CE 18:2;0 (2e-14), c3 (3e-23), 

c6 (2e-18), c7 (2e-53), c8 (2e-65), c11 
(4e-14) 

19:44908684:T:C missense APOE 16.7 1.29 0.189 2 CEs: CE 20:2;0 (9e-12), c7 (1e-29), 
c9 (8e-12) 

SPHK2 19:48629610:G:C* missense SPHK2 22.1 2.45 0.031 c8 (6e-16) 
LINC01722 20:13160073:G:A* missense SPTLC3 18.0 2.24 0.086 3 Cers: Cer 42:2;2 (3e-17), c8 (7e-19) 

HNF4A 20:44413724:C:T missense HNF4A 21.4 1.41 0.052 2 CEs: CE 18:3;0 (1e-10), c2 (1e-10) 

AGPAT3 21:43971391:C:T* missense AGPAT3 16.3 1.44 0.039 c3 (7e-17) 
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Gene prioritization 
 
Next, we prioritized genes in the 98 identified GWS loci first by using functional variants and second 
by using FOCUS [41], which together prioritized 49 genes (Supplementary Tables 9-11). First, we 
prioritized genes based on functional variants that had PIP > 0.5 or that were in high LD (r2>0.95) 
with such variants. Of the 20 prioritized genes, 11 were found both in univariate and multivariate 
analysis (AGPAT3, APOE, CERS4, CPT1A, GCKR, HNF4A, LIPC, PCSK9, SOAT2, SPTLC3, 
TM6SF2), 3 only in univariate analysis (G6PC1, LPL, TMC4) and 6 only in multivariate analysis 
(ABHD3, APOB, ELOVL2, ERMP1, LCAT, SPHK2). FOCUS prioritized, at PIP > 0.5,  32 genes of 
which 17 were found both in univariate and multivariate analysis (APOA5, AQP9, BFAR, CETP, 
CNOT3, DHX33, DOCK7, FNDC4, GRAMD4, LIPG, MIB1, NOMO1, PLEKHH1, PNPLA3, 
PPP6R1, SCGB2A2, SYNE2), 4 only in univariate analysis (APOB, APOA1, NLRP1, SCARB1) and 11 
only in multivariate analysis (CCDC86, CERS4, CNN3, DDX49, ERMP1, GPAM, HNRNPM, MLEC, 
PRPF19, PYGB, ZNF506). 
We further assessed gene expression of the prioritized genes in 54 tissues using FUMA [42]. We 
observed high expression levels in liver for a majority of prioritized genes for both prioritization 
methods  (Supplementary Figure 7). To assess tissue specificity of prioritized genes FUMA identifies 
differentially expressed genes (DEG) sets, defined as gene sets that are more (or less) expressed in a 
specific tissue compared to all other tissues. Up-regulated DEG sets were significantly enriched (P � 
0.05 corrected for multiple testing) for liver tissue for both gene prioritization methods 
(Supplementary Figure 8). The top two enriched gene sets from Gene Ontology biological processes 
are ‘lipid metabolic process’ (adjusted P=3e-17) and ‘cellular lipid metabolic process’ (adjusted P=1e-
15) for the functional variant approach, and ‘protein containing complex remodeling’ (adjusted P=1e-
9) and ‘lipid homeostasis’ (adjusted P=2e-9) for FOCUS. The gene set enrichment results for the 
prioritized genes are in Supplementary Tables 12 and 13. 
 
We assessed whether the prioritized genes were included in any gene set from FUMA with the name 
containing the term “lipid”. For the functional approach, 3 out of 20 genes were not among the lipid 
gene sets (ERMP1, G6PC1, TMC4), and for FOCUS, the numbers were 20 out of 32 (e.g. ZNF506, 
CNOT3, GRAMD4). In total, of the 49 genes, 22 genes were not among FUMA’s lipid gene sets. 
 
Phenome-wide association study (PheWAS) 
 
To explore the disease relevance of the identified lipid-associated loci, we used data for 953 disease 
endpoints from 377,277 participants from the FinnGen study. We performed PheWAS for the 264 
GWAS lead variants and 287 representative variants of credible sets which were not among the lead 
variants. We identified 2,937 variant-disease associations for variants in 46 GWS loci reaching the P-
value threshold of P < 5.25e-5 (corresponding to 0.05 corrected for the number of endpoints (953) 
included in the PheWAS; Supplementary Data 4). Amongst the 9 novel lipid-associated loci, 
PheWAS revealed an association at the locus YPEL2 of the cluster 11 associated intronic variant 
17:59341010:C:T with hypertension endpoints (minimum P=2e-7). 
 
Figure 4 shows the connection between 9 selected PheWAS endpoints (representing cardiovascular 
disease, hyperlipidemia, diabetes, metabolic disorders, and neurological disease) and lipid species and 
multivariate clusters through common associated variants. Only the associations reaching the GWS 
threshold corrected for the number of endpoints (P < 5.25e-11 = 5e-8/953) are illustrated. Of the 179 
lipid species, 137 species are included in Figure 4. We have listed the PheWAS associations of all 
endpoints and a list of endpoints included in each disease group in Supplementary Data 4. 
Supplementary Figure 9 shows the connection of all 45 BFS endpoints, ordered by disease groups, 
connected with  > 3 lipid species. 
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Coronary artery disease loci associations 
 
Of the 236 conditionally independent coronary artery disease (CAD) GWS variants at 196 loci [43], 
11 reach the BFS threshold P < 7.35e-10 for univariate analysis and 1 additional variant reaches the 
BFS threshold P < 4.55e-9 for multivariate analyses (Figure 5). The most widely-associated variant is 
near ZNF259, located in the BUD13-ZNF259-APOA5-APOA1-SIK3 gene-cluster, which increases the 
levels of DAGs, PCs, PE 18:0;0_18:2;0, PIs, and TAGs and decreases the level of PC O-
16:1;0/18:1;0. This variant is also associated with statin medication (P=8e-130, Beta=+0.19) and 
disorders of lipoprotein metabolism and other lipidemias (P=9e-58, Beta=+0.18) in FinnGen R9. We 
summarized these associations and the 71 associations reaching the significance threshold corrected 
for multiple testing (P < 7.35e-4 for univariate and P < 4.55e-3 for multivariate analyses) in 
Supplementary Table 14. Of the 15 CAD variants that were GWS associated with a lipid species or 
clusters of lipid species, 4 variants with the nearest genes NAT2 (rs4646249), LPL (rs268, rs894211), 
and MYH11 (rs12691049) were not located within +/- 1.5 Mb of lipid variants reported by Cadby et 
al. [35] to be nominally associated with coronary atherosclerosis. 

Discussion 
 
We present a genetic study of plasma lipidome with 7,174 participants and 179 lipid species followed 
by a large-scale PheWAS analysis to reveal new lipid-associated variants and the relationship between 
lipid species and cardiometabolic disorders. Our study provided several advantages in gaining new 
information on the genetics of lipid metabolism due to (1) the large sample size of 7,174 individuals, 
(2) the unique genetic background of the Finnish population, (3) high resolution lipidomic 
measurements, and (4) the multivariate approach. We demonstrate a considerable gain of power from 
multivariate analysis of correlated lipid species compared to commonly used univariate analysis, and 
expand current knowledge in the field through the analysis of lipidome compared to the standard 
lipids. We identified variants that were highly associated with both lipid species and disease 
endpoints, including cardiovascular disease, liver disease, cholelithiasis, diabetes, and lipid disorders.  
 
Our sample size is over 3-fold compared to the most recent GWAS on the same lipidome measures 
(2,181 individuals) (Tabassum et al. 2019 [21]). This increase is reflected in the number of univariate 
GWS findings (68 in our study vs. 35 in Tabassum et al.). Two other recent lipidome studies have 
been carried out with 5,662 Pakistani individuals plus 13,814 British individuals (Harshfield et al. 
2021 [34]), and 4,492 Australian individuals predominantly of European ancestry (Cadby et al. 2022 
[35]). Even though, the sample sizes in lipidome studies are still small compared to the existing 
GWAS on standard lipids ([19], [20]), high-dimensional lipidome phenotypes complement the 
standard lipid analyses by identifying new lipid-associated loci, providing a refined picture of the 
genetic associations and allowing multivariate analyses. Here, we have identified 15 lipid-associated 
loci that were not captured even by the largest GWAS of standard lipids with >1.65 million 
participants. The lipid species associated with these loci are less correlated with standard lipids than 
the remaining of the lipid species, reiterating that standard lipids do not completely capture the 
complex lipid metabolism. 
 
The Finnish genetic background of our study population provides a unique opportunity to discover 
variants that are enriched in the Finnish population but extremely rare outside of Finland, and to 
identify new independent signals in known lipid loci. We identified three new lipid-associated loci 
that are enriched in the Finnish population, including a missense variant in SPHK2 associated with 
SMs. SPHK2 encodes sphingosine kinase 2 which plays an important role in sphingolipid metabolism.  
The unique LD pattern of the Finnish population also facilitated identification of additional 
independent variants associated with lipids in the known lipid loci through fine-mapping. For 
example, the LIPC region has been reported to contain three independent signals for standard lipids 
[20] and in addition to these a fourth independent signal has been reported to be associated with lipid 
species [35]. In addition to these four signals, our study identifies a new independent signal at a 
missense variant (rs201563586), not in LD with any of the previously reported signals. This variant 
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has a high PIP (> 0.90) in our fine-mapping analysis and is highly enriched in the Finnish population, 
indicating the benefits of studying population-isolates in genetic studies. 
 
Another advantage of our study is the multivariate approach that showed a considerable gain in power 
in the discovery of new loci over the standard univariate GWAS. The multivariate GWAS identified 
36% more BFS loci compared to univariate GWAS (55 vs. 35; Figure 3) and discovered 7 new loci 
(DTL, STK39, CDS1, YPEL2, KCNJ12, SPHK2, and AGPAT3), not detected by the univariate GWAS. 
The interpretation of a multivariate association is often not straightforward in terms of the original 
traits. Here we applied a recent statistical method [37] that decomposes the multivariate association 
into a smaller set of driver traits. Informative decompositions with only 2 or 3 driver traits were 
observed for 32% of the BFS GWAS regions (47 of 138) found by multivariate analysis. These 
regions represented eight such loci that did not reach BFS in any univariate analysis. Two examples 
are the association between cluster 7 and APOB locus driven by CE 16:0;0 and CE 20:4;0, and the 
novel association between cluster 8 and a missense variant in SPHK2 driven by SM 34:2;2 and SM 
38:2;2. 
 
Individual lipid species have been shown to predict cardiovascular disease risk more accurately than 
standard lipids [21]. We observed disease associations with lipidome-associated variants for various 
disease groups (Figure 4). For statin medication, we observed a shared genetic association with 58% 
of the lipid species and all multivariate clusters. Another widely lipidome-associated endpoint was 
cholelithiasis (47%). The multivariate clusters and CE species are sharing genetic associations with all 
disease groups. Species of the classes SM, TAG, DAG, and a few species of the classes PC, PCO, PE, 
and PI show similar patterns for most disease groups, except for Alzheimer’s disease, vascular 
dementia, or diabetic retinopathy. While these shared associations could point to interesting 
connections between lipid levels and diseases, there are two limitations with such observations. First, 
a shared association does not automatically mean that the potential causal variant in the region is the 
same for the lipid trait and the disease. Second, different disease endpoints in Figure 4 have varying 
effective sample sizes and therefore some differences between the observed associations across the 
diseases could simply reflect the differences in statistical power.  
 
We also examined the lipidomic profiles of 11 known CAD variants (Figure 5). The CAD locus 
ZNF259 showed the widest set of associations with 46 lipid species and 9 clusters of lipid species. 
The effect of the ZNF259 polymorphism was previously only reported for standard lipids, with the 
first report [44] stating that individuals carrying the risk-increasing G allele showed increased TG 
levels and decreased LDL-C levels. We analyzed the effect of the polymorphism on lipid species: 
individuals with the G allele showed increased levels of DAGs, PCs, PE 18:0;0_18:2;0, PIs, and 
TAGs and decreased levels of PC O-16:1;0/18:1;0. Our list of marginal lipid associations of CAD-
associated variants contained three such CAD loci associated at GWS with lipid species or clusters 
that were not included in the previous report [35] of CAD-associated lipid variants. 
 
To summarize, our study identifies novel genetic loci with a role in lipid metabolism, points towards 
functional effects on detailed circulating lipid measures, and shows connections to cardio-metabolic 
and related diseases. We also highlight the benefits of utilizing multivariate methods for association 
testing in multiple correlated phenotypes. Our comprehensive catalog of detailed lipid associations 
provides new opportunities for studying the role of lipids in disease-associated loci. 

 
  

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted January 23, 2023. ; https://doi.org/10.1101/2023.01.21.23284765doi: medRxiv preprint 

https://doi.org/10.1101/2023.01.21.23284765
http://creativecommons.org/licenses/by-nc/4.0/


 

 

Methods  
 
Study participants 
  
We use data from the prospective GeneRISK cohort whose principal aim is to assess the impact of 
communication of genetic risk information of CVD to study participants. The cohort includes 7,292 
participants (4,642 women, 2,624 men), who were recruited from Southern Finland during 2015-2017 
at age of 45-66 years. The sample collection and recruitment process are described in [45]. The basic 
study characteristics are presented in Supplementary Table 16. Participants were instructed to fast 
overnight for 10 hours before the collection of blood samples for plasma, serum, and DNA extraction. 
The biological samples (DNA, blood, serum, plasma) and the participants’ demographic information 
and health data are stored in the THL Biobank (https://www.thl.fi/en/web/thlfien/topics/information-
packages/thl-biobank). The GeneRISK study was carried out according to the principles of the 
Helsinki declaration and the Council of Europe’s (COE) Convention of Human Rights and 
Biomedicine. All study participants gave their informed consent to participate in the study. The study 
protocols were approved by The Hospital District of Helsinki and Uusimaa Coordinating Ethics 
committees (approval No. 281/13/03/00/14 (GeneRISK)). 
 
Ethics statement for FinnGen is listed in Supplementary Note. 
 
Lipidomics 
 
Mass spectrometry-based lipid analysis was performed for 7,302 individuals from the GeneRISK 
cohort by shotgun lipidomic analysis at Lipotype GmbH (Dresden, Germany). The analysis was 
performed by direct infusion in a QExactive mass spectrometer from Thermo Scientific with a 
TriVersa NanoMate ion source from Advion Biosciences [46]. The lipidomics data were analyzed 
using lipid identification software and a data management system developed in-house by Lipotype 
GmbH [47], [48]. Lipids with a high signal-to-noise ratio (> 5) and amounts at least 5-fold higher than 
corresponding blank samples were included. By including 8 reference samples per 96-well plate 
batch, reproducibility was assessed and lipid amounts were corrected for batch variations and 
analytical drift if the P-value of the slope was < 0.05 with an R2 > 0.75 and the relative drift > 5%. 
Lipid species detected in more than 70% of the samples were included (179 lipid species from 13 lipid 
classes). After excluding samples with very low total lipid content and with > 30% of 179 lipids 
missing were excluded (N=26), data from 7,276 individuals remained. 
Lipid molecules were identified at the species or subspecies level. Lipid species are named in the 
following notation: class name <sum of carbon atoms>:<sum of double bonds>;<sum of hydroxyl 
groups>. The annotation of lipid subspecies includes information on their acyl moieties and, if 
available, on their sn-position. The acyl chains are separated either by ”_” if the sn-position on the 
glycerol cannot be resolved or else by ”/”. Further explanation is given by Gerl et al. [49].  Lipid 
identifiers of the SwissLipids database [50] (http://www.swisslipids.org) and the shorthand notation 
[51] are provided in Supplementary Table 2. 
 
Genotyping and imputation 
 
Genotyping was performed using the HumanCoreExome BeadChip from Illumina Inc. (San Diego, 
CA, USA) and genotype calling was done with GenomeStudio and zCall at the Institute for Molecular 
Medicine Finland (FIMM). Genotype data was lifted over to human genome build version 38 
(GRCh38/hg38) according to the protocol described in dx.doi.org/10.17504/protocols.io.nqtddwn. In 
pre-imputation quality control (QC), potential outliers based on genetic ancestry were removed. We 
performed a principal component analysis (PCA) using 61,106 good quality (minor allele frequency 
(MAF) � 0.05, Hardy-Weinberg equilibrium P-value (HWE) > 1e-6 and missingness < 10%) and 
approximately independent (LD pruning with PLINK v1.9: r2 threshold of 0.2, window size 50 kb, 
step size 5) genetic variants. Based on the PCA and place of birth information from the questionnaire, 
individuals with non-Finnish ancestry or birthplace were removed. However, samples born in Estonia, 
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Russia, and Sweden, but clustered with the samples of Finnish ancestry in PCA, were retained in the 
analysis. Samples (N=30) with extreme heterozygosity (beyond ± 4 s.d) were excluded. After quality 
control filtering, 7,174 samples, consisting of 4,579 females and 2,595 males, with both genotype and 
lipidome data were considered for subsequent analyses.  
 
Genotype data pre-phasing was done with Eagle 2.3.5 [52] with the number of conditioning 
haplotypes set to 20,000. Genotypes were imputed with Beagle 4.1 [53] (procedure described in 
https://doi.org/10.17504/protocols.io.nmndc5e) using population-specific Sequencing Initiative Suomi 
(SISu) v3 reference panel based on high-coverage (25–30x) whole-genome sequences for 3,775 
Finnish individuals. In post-imputation QC, variants with imputation INFO score < 0.70 and MAF < 
0.01 were excluded and 12,776,997 variants remained.  The measured levels of the lipid species were 
adjusted for age, sex, collection site (clinic), lipid medication, first 10 genetic PCs, and ancestry 
(separate indicator variables for individuals born in Russia, Estonia, and Sweden) using linear 
regression. After adjusting for the above-mentioned covariates, the residuals were inverse-normal 
transformed and were used as outcome variables in the association analyses. 
 
Hierarchical clustering of lipid species 
 
Hierarchical clustering was performed using absolute pairwise Pearson correlations of plasma levels 
of lipids to identify clusters of correlated lipids for multivariate GWAS. The clustering analysis was 
performed separately for glycerolipids (44 lipid species from TAGs and DAGs) and the remaining 
lipid species (135 species belonging to glycerophospholipid, sphingolipid, and sterol). As highly 
correlated traits cause instability in multivariate association analyses, we iteratively excluded one 
member from each pair of lipid species with a correlation > 0.8 until no pair with a correlation > 0.8 
remained. The hierarchical clustering was performed on the remaining lipid species using an average 
Euclidean distance metric on the pairwise correlations and clusters were identified by visually 
inspecting the dendrogram. 
We then calculated Variance inflation factors (VIF) within each cluster for each cluster member using 
the R package ‘car’. (Technically, to apply the ‘car’ package, the cluster members were considered 
independent variables in a regression model where the outcome variable was a randomly generated 
variable whose exact value made no difference to the calculation of VIFs.) Through this approach, we 
identified cluster members that were highly correlated with some linear combination of the other 
members of the cluster. We iteratively removed the cluster member with the largest VIF until the 
maximum VIF within the cluster was below 5.  
 
Hierarchical clustering of absolute pairwise Pearson correlations led to 11 clusters of correlated lipid 
species (Supplementary Figures 10 and 11). Based on the VIFs, one trait was removed from clusters 1 
and 5 and two traits were removed from clusters 3 and 8. A heatmap of correlations for species 
included in the clusters is shown in Figure 1. A list of lipid species included in each cluster before and 
after removing traits is given in Supplementary Tables 17 and 1. Separate heatmaps of the correlations 
within each cluster are included in Supplementary Figure 12 and correlation values between lipid 
species are listed in Supplementary Table 18. 
 
We computed pairwise Pearson correlations between the 179 lipid species and the standard lipids 
(HDL-C, LDL-C, TC, and TG). The correlation values are shown in Supplementary Figures 13 and 14 
for lipid species and lipid classes, respectively. The correlation values between lipid species and 
standard lipids are listed in Supplementary Table 18. We obtained the maximum absolute correlation 
maxCor with any standard lipid for each lipid species and then calculated the mean(maxCor) for lipid 
species associated with loci not previously reported by standard lipids and for other species, to assess 
if lipid species associated with loci not reported by standard lipids are less correlated with standard 
lipids compared to other lipid species. 
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SNP-based heritability estimates  
 
SNP-based heritability estimates for each lipid species were calculated using biMM [54]. The genetic 
relationship matrix (GRM) used for heritability estimates was calculated using 849,501 LD-pruned 
autosomal SNPs with imputation INFO score > 0.95, MAF > 0.01, and missingness < 3%. LD-
pruning was done with PLINK v1.9 using a window size of 1000 kb, step size of 1, and pairwise r2 
threshold of 0.7. Additionally, high LD regions were excluded [55]. 
 
Univariate GWAS for 179 lipid species 
 
Inverse-normal transformed residuals adjusted for the covariates mentioned above were used in the 
association analysis performed with the linear mixed model software MMM [56]. The number of 
samples per GWAS ranged between 5,287 and 7,174 because samples with missing values for a 
specific lipid species were excluded in the GWAS for that lipid species. After excluding very rare 
variants (MAF < 0.002) and variants with low imputation quality (INFO < 0.8), 11,318,730 variants 
were included in the GWAS. To account for multiple tests, the Bonferroni-corrected significance 
(BFS) threshold was set as P-value < 7.35e-10 (5e-8/68) as 68 principal components of the mean 
imputed lipidome data were required to explain > 90% of the phenotypic variance. All P-values 
reported in this study are two-sided. 
 
Multivariate GWAS for 11 lipid clusters 
 
Multivariate analysis of the 11 clusters identified through hierarchical clustering was performed with 
metaCCA [57]. 
Phenotypic correlations needed for the analysis were estimated from the GWAS summary statistics 
using metaCCA. Beta coefficients of the univariate GWAS were standardized using the formula 

suggested by metaCCA: ������ �
�

√� �	
 , where N denotes the sample size of the respective univariate 

GWAS and se denotes the standard error. MetaCCA P-values were calculated from chi-square 
distribution using the mean GWAS sample size as parameter N. The BFS threshold for the 
multivariate GWAS was set to P-value < 4.55e-9 (5e-8/11) as the multivariate analysis was performed 
for 11 clusters. 
 
The dataset used by Cichonska et al. [57] to test metaCCA consisted of variants with INFO > 0.8 and 
MAF > 0.05. To assess the robustness of the multivariate analysis for rare (MAF < 0.01) and low-
frequency variants (0.01 � MAF < 0.05) we simulated data under the null hypothesis for four SNPs 
with different MAFs covering range (0.005 – 0.042). In the simulation, the genotypes were permuted 
100,000 times and then univariate GWAS were done with MMM and multivariate GWAS with 
metaCCA. The results of the simulation are described in detail in the Supplementary Note. We 
observed slightly inflated multivariate P-values for rare and low-frequency variants and are therefore 
correcting multivariate P-values of such variants using the genomic inflation factor (�) [58] 
determined through this simulation approach. The simulation was performed for each rare or low-
frequency variant that reached genome-wide significance level (P < 5e-8) in the multivariate analysis 
but not in any of the univariate analyses. 
 
Further, for each of the clusters, MetaPhat [37] was applied to identify the traits driving the 
multivariate association at each lead variant of the multivariate analysis. The software determines sets 
of central traits for multivariate associations using Bayesian Information Criterion and P-value 
statistics. For each multivariate association, we report the driver traits and the optimal set of traits as 
defined by MetaPhat.  
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Defining lead variants in the GWAS regions 
 
For both the univariate and multivariate GWAS, a lead variant in a GWAS was defined iteratively as 
the variant with the lowest P-value. After each new lead variant was identified, a 1.5 Mb region on 
each side of the variant defined the GWAS region of the lead variant, and other variants in that region 
were excluded from the further search for lead variants. For each GWAS, overlapping GWAS regions 
were combined into a single combined GWAS region, for which the lead variant is defined as the 
variant with the lowest P-value among the lead variants of the overlapping regions, and the other lead 
variants are listed as secondary lead variants. The maximum region width was set to 6 Mb, and for 
overlapping regions exceeding this threshold the original window size of +/- 1.5 Mb was iteratively 
shrunk by 10% until the width of the combined GWAS region was below 6 Mb (or the shrunk regions 
did not overlap anymore). The process was stopped after no variant outside the GWAS regions had 
reached genome-wide significance (GWS) of P-value < 5e-8. Similarly, we also defined the lead 
variants that reached Bonferroni-corrected significance (BFS). 
To determine which of the lead variants from the multivariate analysis were also identified by the 
univariate analyses, we checked whether there were such variants that reached BFS or GWS in the 
univariate GWAS of any trait included in the multivariate analysis and had r2 > 0.1 with the lead 
variant of the multivariate analysis. 
 
A lead variant was considered “novel” if the lead variant was not in LD (r2 <0.1) with any of the 
known variants identified in previous GWAS that included standard lipids or lipid species (listed in 
Supplementary Data 5). LD-proxies for previously reported variants that were not included in our 
GWAS were obtained using LDproxy from LDlink release 5.3.3 [59]. In LDproxy, we used the data 
on the 1000 Genomes project’s Finnish population for LD calculation. For variants that were mono-
allelic in the Finnish reference panel, we did the LD calculation with the combined European 
population. From the SNPs with r2 > 0.8 and within 500 kb of the target variant, the one with the 
highest r2 was chosen as LD-proxy. For 448 variants no proxy was found, of which 151 variants were 
monoallelic in both the Finnish and the European populations or were not biallelic variants, or were 
not contained in dbSNP build 155. For the remaining 297 of the 448 variants, none of the proxies 
were contained in our GWAS, no proxies with r2 > 0.8 were found or the variants were not included in 
the 1000G reference panel. For these 297 previously reported variants, we additionally checked if any 
of our lead variants were located within +/- 1.5 Mb.  
 
We report the closest gene for all lead variants using SNP-nexus [60]–[64] (overlapped gene if 
available or nearest upstream or downstream gene). The variant’s function was predicted with Variant 
Effect Predictor (McLaren et al., 2016) and the most severe function was annotated to the variant. 
Possible functions were ordered by severity according to the ranking from Ensembl 
(https://m.ensembl.org/info/genome/variation/prediction/predicted_data.html). We defined functional 
variants as having at least one of the following functions (ordered by severity from more severe to less 
severe): transcript_ablation, splice_acceptor_variant, splice_donor_variant, stop_gained, 
frameshift_variant, stop_lost, start_lost, transcript_amplification, inframe_insertion, inframe_deletion 
missense_variant, protein_altering_variant, splice_region_variant. 
 
 
GWAS of linear combination phenotypes (LCP-GWAS) 
 
To enable fine-mapping of multivariate associations, linear combination phenotypes (LCP) were 
constructed as a weighted sum of the traits where the weights corresponded to the optimal 
combination phenotype reported by metaCCA for the lead variant [65]. GWAS region-specific LCP-
GWAS were performed with fastGWA-mlm [66], with the same covariates as were used in the 
univariate GWAS.  
 
We calculated pairwise Pearson correlations between the LCP phenotypes and the standard lipids. 
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(Supplementary Data 2). 
 
Fine-mapping  
 
Fine-mapping was performed with FINEMAP [67] for each GWAS region. For each fine-mapped 
region, the in-sample linkage disequilibrium (LD) matrix was computed using LDstore2 [68] from 
genotype dosages. The maximum number of causal variants in a locus was set to 10. The number of 
independent association signals for each fine-mapped GWAS region was determined by the number 
of informative credible sets (CS) among those CS for which FINEMAP gave the highest posterior 
probability. CS was considered informative if the minimum r2 among its variants was � 0.1. We 
chose the top variant from each CS to represent the association signal except if the CS contained 
functional variants in high LD (r2 > 0.95) with the top variant, in which case the functional variant 
having the largest r2 with the top variant was chosen as the representative variant [65]. The GWAS 
lead variant was chosen as the representative variant if no informative CS was obtained. The MHC 
region (chr 6: 25 Mb - 34 Mb) was excluded from the fine-mapping and there the GWAS lead variant 
was defined as the representative variant. 
 
Defining independent signals and physical loci across all traits  
 
Earlier we defined GWAS regions separately in each univariate or multivariate GWAS and these 
regions were used in fine-mapping.   Next, we used the representative variants from the fine-mapping 
results to determine the set of independent signals across all traits. We merged the signals across the 
traits if their representative variants were in LD (r2 � 0.1). For each signal, we took the union of the 
corresponding GWAS regions to define physical boundaries for the signal and finally we combined 
the overlapping signal regions to form a single set of physical loci across all traits. The locus 
definition process is summarized in a flow chart and visualized for the locus LPL in Supplementary 
Figures 3 and 4, respectively. Locus names were defined by the closest gene to the top variant with 
the lowest P-value across the associated traits except if there was a missense variant among the top 
variants, in which case the locus was named by the gene corresponding to the missense variant. Novel 
loci are defined as loci containing only GWAS regions whose lead variants were all novel.  
 
Comparison of fine-mapping results to fine-mapping results of standard lipids 
 
We checked how the variants that got a high posterior inclusion probability (PIP) > 0.9 in the 
GeneRISK data, or other variants in the same locus in LD with them (r2 > 0.1 in GeneRISK), were 
fine-mapped across the standard lipids (HDL-C, LDL-C, TG, TC)  in the UK Biobank (UKB) data by 
Finucane lab (https://www.finucanelab.org/data). For this, the chromosomal positions of the UKB 
data were lifted over to human genome build version 38 (GRCh38/hg38) with liftOver [69]. We 
considered only the variants included in both data sets. We acknowledge that the UKB variants that 
were not present in GeneRISK, but that were in LD with a GeneRISK variant with a high PIP, could 
explain why some high PIP variants in GeneRISK may have lower PIP in UKB.  
 
Gene prioritization and pathway enrichment analysis 
 
We prioritized genes for which we found functional variants with PIP > 0.5 in fine-mapping of the 
univariate or multivariate GWAS. For the functional variants, we obtained functional variant scores 
from Variant Annotation Integrator [70] and CADD scores from CADD v1.6 [38]. 
 
Additionally, we performed a gene prioritization analysis using FOCUS [41], which computes 
credible sets of genes based on a posterior inclusion probability (PIP). We performed Transcriptome-
wide association studies (TWAS) and tissue-agnostic fine-mapping with FOCUS using GTEx v8 
eQTL reference panel weight database and in-sample LD. We used MASHR-based GTEx v8 eQTL 
databases from PrediXcan [71]–[73] to create the weight database. As input, we used univariate 
GWAS and multivariate LCP-GWAS filtered for INFO > 0.8 and MAF > 0.002 and cleaned data with 
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the munge command from FOCUS. We classified the GTEx tissues into two categories, category 1 
containing subcutaneous adipose tissue, visceral adipose tissue, liver, and whole blood, which were 
deemed most relevant for lipid-related phenotypes in a previous study [34], and category 2 containing 
the remaining tissues. 
 
We utilized FUMA software’s GENE2FUNC tool [42] to obtain information on the expression of the 
prioritized genes and identify pathways enriched for the prioritized genes. 
 
Phenome-wide association analyses 
 
Phenome-wide association analyses (PheWAS) were performed for the GWAS lead variants and the 
representative variants of credible sets in 377,277 participants from the FinnGen biobank (FinnGen 
release 9) [74]. From FinnGen, all 953 endpoints of the following categories (ICD-10 Chapter listed 
in parentheses if available) were included: ‘cardiometabolic endpoints’, ‘diabetes endpoints’, 
’diseases marked as autoimmune origin’, ‘drug purchase endpoints’, ‘gastrointestinal endpoints’, 
‘neoplasms from hospital discharge’ (II), ‘neoplasms from cancer register’ (II), ‘diseases of the blood 
and blood-forming organs and certain disorders involving the immune mechanism’ (III), ‘endocrine 
nutritional and metabolic diseases’ (IV), ‘diseases of the nervous system’ (VI), ‘diseases of the 
circulatory system’ (IX), ‘neurological endpoints’, ‘diseases of the digestive system’ (XI). These ICD-
10 chapters were chosen because diseases within these chapters have been previously reported to be 
associated with changes in lipid metabolism, such as II: breast cancer [75], III: Systemic Lupus 
Erythematosus [76], IV: lipid metabolism disorders and diabetes mellitus [77], VI: Alzheimer’s 
disease [78], IX: Coronary artery disease [35], XI: Nonalcoholic Fatty Liver Disease [79]. For all 
endpoints at least 50 cases exist. The included endpoints for each data source are listed in 
Supplementary Data 4. We report associated endpoints reaching the threshold P < 0.05 corrected for 
the number of included endpoints (P < 0.05/953 = 5.25e-5) for each lead variant and representative 
variants of credible sets. Additionally, we identified endpoints reaching the GWS threshold corrected 
for the number of included endpoints (P < 5e-8/953 = 5.25e-11). Due to the high correlation between 
many endpoints these thresholds might be too stringent. 
We focused on PheWAS endpoints connected with � 3 lipid species or multivariate clusters and then 
assigned disease groups to endpoints. We selected 11 endpoints of 5 disease groups to be included in 
a heatmap. The selected endpoints were chosen by selecting the endpoint with the largest effective 
sample size Neff among endpoints of the same disease and by selecting endpoints with the most 
specific diagnoses based on expert medical knowledge. Neff was defined as 	 
�1 
 
�, with 
 being 
the proportion of cases. We provide a list of the endpoints and their disease groups and effective 
sample size in Supplementary Data 4, where the selected endpoints are highlighted. 
 
Association of coronary artery disease loci with lipidome 
 
We assessed associations of the coronary artery disease (CAD) variants identified by a recent study 
[43] with lipid species and clusters of lipid species in our study. Of the 241 conditionally independent 
GWS associations with CAD at 198 loci, 236 variants at 196 loci were either included in our GWAS, 
or their LD-proxies were found in our GWAS (LD proxies were defined using the same approach as 
with the lead variants). We summarized the associations at three levels of significance: (1) P < 0.05 
corrected for multiple testing by the number of PCs explaining 90% of the variance (univariate 
analyses) or the number of clusters (multivariate analyses) (P < 0.05/68 = 7.35e-4 for univariate and P 
< 0.05/11 = 4.55e-3 for multivariate analyses),   (2) the GWS threshold P < 5e-8 and (3) the GWS 
threshold corrected for multiple testing (P < 5e-8/68 = 7.35e-10 for univariate and P < 5e-8/11 = 
4.55e-9 for multivariate analyses).  
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Data availability 
 
Univariate GWAS summary statistics will be available on GWAS catalog 
(https://www.ebi.ac.uk/gwas/) upon publication. 
DNA, blood, serum, and plasma samples of GeneRISK study participants, in addition to their 
demographic information and health data, are stored in the THL Biobank (https://thl.fi/en/web/thl-
biobank/). 
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Figure 1. Details of lipid species measured in the GeneRISK cohort. (A) The 179 lipid species belong to 13 
lipid classes and 4 categories. Lipid class colors are identical to those used in other figures. (B) Heatmap of 
absolute pairwise Pearson correlations between lipid species included in the 11 clusters of the multivariate 
GWAS. Clusters are marked by black squares and labeled by lipid classes. The members of each cluster are listed in 
Supplementary Table 1. 

Figure 2. Heritability estimates of lipid species. Panel A shows Glycerophospholipids and panel B shows 
Glycerolipids, Sphingolipids, and Sterols. Error bars represent 95% confidence intervals. Lipid species are presented 
in the descending order of the heritability estimates.
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Figure 3. Comparison of the univariate and multivariate P-values for 56 lipid-associated loci. Loci are 
colored by lipid class in univariate analysis and labeled by cluster number from multivariate analysis. X-axis 
shows the P-values of the top associated univariate lead variant of the loci. Y-axis shows the P-values of the top 
associated multivariate lead variant of the loci. If no variant reached P < 5e-8 for the locus in univariate analysis, 
the minimum univariate P-value of the lead variant of the multivariate analysis is shown. Known loci and novel 
loci are annotated by locus name in black and red, respectively. Dashed lines represent the genome-wide 
significance level (P < 5e-8) and dotted lines represent the Bonferroni-corrected significance level (uv: 7.35e-10, 
mv: 4.55e-9). Lipid class names are listed in Figure 1. Axes are capped at 300.
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Figure 4. Heatmap of PheWAS associations for selected disease endpoints. Each entry in the heatmap 
represents a possible association between a disease group (row) and a lipidome trait (column). Red color 
indicates that at least one variant among the lead variants or representative variants of the lipidome trait is also 
associated with the disease at P < 5.25e-11. Gray denotes that no such association is observed. Columns are split 
by lipid classes. The effective sample size Neff (see Methods) and the number of loci are given beneath each 
disease endpoint.

Figure 5. Effect estimates of 11 CAD risk-increasing alleles on lipid species. Variant ids are defined as 
Chromosome:Position:risk-decreasing allele:risk-increasing allele. Included are species that reach the BFS 
threshold of 7.35e-10 for at least one of the variants. Associations reaching GWS (P < 5e-8) or BFS are indicated 
by one or two asterisks, respectively. Colored effect estimates are shown for associations reaching nominal 
significance corrected for the number of PCs explaining 90% of the variance (P < 7.35e-4). 
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