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Abstract16

We present an analysis of epidemiological compartment models that explicitly capture the dynamics of asymp-17

tomatic but infectious individuals. Our models can be viewed as an extension to classic SIR models, to which a18

distinct Asymptomatic compartment is added. We discuss both a group compartment model capturing a Susceptible-19

Asymptomatic-Infected-Recovered-Susceptible (SAIRS) epidemic process, and also introduce and evaluate SAIRS20

dynamics evolving over networks. We investigate equilibria and stability properties that include both disease-free21

and endemic equilibria states for these models, providing sufficient conditions for convergence to these equilibria.22

Model parameter estimation results based on local test-site and Peoria county clinic data are given, and a number of23

simulations illustrating the effects of asymptomatic-infected individuals and network structure on the spread and/or24

persistence of the disease are presented.25

Keywords: Epidemic dynamics, networks, data-informed modeling, stability analysis, parameter estimation26

1 Introduction27

Modeling, analysis and control of epidemic spread processes over networks have been of interest in multiple com-28

munities over the past two decades, owing not only to the COVID-19 pandemic, but also to outbreaks of the related29

SARS and MERS viruses, Zika, Ebola, and more generally, computer network viruses and propogating opinions over30

social media networks. Conducting experiments to analyze infectious disease spread processes and response policies31

are prohibitive for many reasons, including not only costs, but more importantly ethics. As a result, mathematical32

modeling and simulation approaches provide essential alternatives for estimating and predicting when and how an epi-33

demic might spread over a contact network [1]. Further, simulations of strategic control policies for validated epidemic34

models can provide insights into approaches for mitigating virus spread over networks [2].35

The mathematical models for most epidemiological studies today derive from the compartment models first pro-36

posed by Kermack and McKendrick [3], although mathematical models for epidemics, or spread processes more37

generally, have been analyzed and studied for over 200 years, with one of the earliest known studies in the literature38

being that by D. Bernoulli on the analysis of the small-pox virus [4]. The now widely used compartment models39

assume every subject lies in a specific segment or compartment of the population at any given time, with these com-40

partments including susceptible (S), infected (I), exposed (E) and/or recovered (R) population groups, leading to the41
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classical epidemiological models: SI (susceptible-infected), SIS (susceptible-infected-susceptible), SIR (susceptible-42

infected-recovered) and SEIR (susceptible-exposed-infected-recovered) models. As one example, the Kermack and43

McKendrick SIS model is given by44

Ṡ(t) = −βS(t)I(t)+δ I(t)

İ(t) = βS(t)I(t)−δ I(t),
(1)45

where S(t) is the susceptible (non-infected) segment of the population at time t, I(t) is the infected segment of the46

population at time t, β represents the rate of infection or contact amongst infected and susceptible subgroups, and δ47

represents the healing rate. This foundational model assumes: (1) a homogeneous population with no vital dynamics,48

that is birth and death processes are not included, meaning that infection and healing are assumed to occur at faster49

rates than vital dynamics and the population size is assumed to remain constant; and (2) the population mixes over a50

trivial network, or in other words, over a complete graph structure. These assumptions have led to errors in previous51

epidemic forecasts [5].52

We note that similar models to that given in (1) have been derived for SI, SIR(S) and SEIR(S) processes; SI53

models simply have δ = 0; SIR(S) models include a recovered segment of the population and a recovery rate γ;54

and SEIR(S) models include an exposed segment of the population and a corresponding parameter σ capturing the55

rate at which an exposed individual transitions to the infected state; the exposed segment is typically assumed to be56

non-infectious with the accompanying rate parameter capturing the disease incubation period. There are numerous57

variants of these models, including recent models in which human awareness is taken into account [6–9], and in which58

multiple epidemic processes or epidemic processes with heterogeneous or non-static parameters may be propagating59

simultaneously [10–13].60

Over the past two decades, both to address the discrepancies found in prior epidemic forecasts, and to better model61

spreading processes of computer viruses over communication networks, there has been an increased focus on the62

study of epidemic processes evolving over arbitrary network, or graph, structures; see for example [14–18], and from63

a controls perspective [19–21] (as the literature in this area is vast this list is not exhaustive). These networks represent64

the variation in interactions among members of a population, where the nodes in the network may represent either65

individuals or subgroups in the larger population, and the edges between nodes in the network represent the strength66

of the interaction between the nodes.67
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Over a network of n total nodes, epidemic or spread process dynamics can be described by Markov process models,68

for example, of dimension 2n for SIS models and 3n for SIR models. These models describe the probability of69

each node transitioning from susceptible to infected, and/or to recovered states, and back, where the probabilities are70

determined by the model rate parameters (infection, healing, etc.) and the network interconnection structure, and71

reflect the stochastic evolution of such epidemic processes. Clearly, as the number n of nodes in the network increase,72

analysis of these models becomes intractable. As an alternative, mean-field approximation (MFA) models have been73

derived and shown to be appropriate under certain assumptions; these models are derived by taking expectations over74

infection transition rates of the agents and rely on the fundamental work of Feller [22] and Kurtz [23].75

When individuals or population subgroups are assumed to be interconnected via a graph with adjacency matrix76

W = [Wi j],where element Wi j defines the strength of the connection from node i to node j, and further making as-77

sumptions of large and constant agent population size and probabilistic independence assumptions, the deterministic78

networked MFA dynamic models are now considered standard models; these models have been analyzed in detail and79

shown to provide upper bounds on the probability of infection of a given agent at any given time (see [24] and [25]80

for discussions and perspectives). Again considering an SIS process example, denoting the probability of node i being81

infected at time t by pi(t) ∈ [0,1], the following differential equation provides a MFA model of the evolution of the82

probabilities of infection of the nodes:83

ṗi(t) = (1− pi(t))β
N

∑
j=1

Wi j p j(t)−δ pi(t). (2)84

This model provides a lower complexity deterministic approximation to the full dimension Markov process model of85

a SIS spread process evolving over a static network. Further details can be found in [19,26,27]. Discrete time versions86

of these approximation models have also been proposed and studied, see for example [28, 29].87

The main objectives in most analyses of epidemic process dynamics include computing the system equilibria, and88

determining the convergence behavior of these processes near the equilibria. In particular, conditions for the existence89

of and convergence to “disease-free” or “endemic” equilibria are sought. For (2), it is straightforward to see that90

the disease-free state, p∗i = 0 for all i ∈ {1, . . . ,N}, is a trivial equilibrium of the dynamics. It has been shown that91

this equilibrium is globally asymptotically stable if and only if β

δ
≤ 1

λmax(W ) , where λmax(W ) represents the largest92

real-valued part of the eigenvalues of the matrix W . It has further been shown, however, that if β

δ
> 1

λmax(W ) , then93
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there exists another equilibrium that is (almost) globally asymptotically stable, with p∗i ∈ (0,1) for all i ∈ {1,2, . . . ,n},94

implying the system converges asymptotically to an endemic state [28, 30–32].95

In this paper we consider a compartment model structure that specifically accounts for infectious but asymptomatic96

subgroups or individuals, namely a SAIRS model structure, incorporating Susceptible(S), Asymptomatic-infected(A),97

Infected-symptomatic(I), and Recovered(R) subsets of the population. We note that the asymptomatic subset we98

consider may include those individuals who do not experience symptoms through the course of their infection, as99

well as pre-symptomatic individuals. This structure may be used to directly capture the dynamics of COVID-19100

and the role asymptomatic individuals play in the disease spread process; this model was first introduced in public101

online seminars and panel discussions in [33,34], and in the literature in [20,35]. Compartment models with different102

structures but including explicit asymptomatic population segments were previously proposed for dengue fever [36]103

and rumor spreading over online social networks [37]. Relevant work on alternative SAIRS model structures has been104

reported in [38–41]. In [38], the authors derive mean-field approximations of the exact state evolution for SAIRS105

models, and also present a game-theoretic model where nodes choose their activation probabilities in a strategic (e.g.,106

selfish) manner using current state information as feedback. The author in [39] introduces a compartmental model107

including a group of individuals with pure asymptomatic infection (i.e., having no symptoms throughout the course108

of infection), with permanent immunity upon recovery, and provides estimations of the asymptomatic populations in109

California, Florida, New York, and Texas. The authors in [40] present a more complex data-informed model including110

pre-symptomatic, asymptomatic, and hospitalized subgroups of the population, and provide forecasts for the epidemic111

over homogeneous populations. In [41] the authors provide H∞ based (i.e., worst-case) stability analyses for an SAIR112

model structure, and provide more focused simulations for SAIR spread processes over small-world networks; there113

is no explicit loss of immunity included in their model under which to study endemicity behavior. Herein we provide114

more thorough stability analyses and simulations of the endemic equilibria for SAIRS models (as well as for the115

disease free equilibria), than have been presented in prior work. Our analysis approach is based on classic Lyapunov116

methods for dynamical systems. We further take the contact network into consideration and discuss the impact of the117

network structure and potentially heterogeneous epidemic parameters on the spread process.118

In the remainder of the paper, we first present the specific SAIRS group and networked models we will consider119

throughout, and discuss the equilibria and stability properties of these models in Section 2. In Section 3, we dis-120
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cuss a simple least squares estimation approach to compute the SAIRS model parameters from data, which relies on121

knowledge of the proportion, q, of the infections that are asymptomatic. We therefore also discuss methods for es-122

timating this proportion, and use local COVID test-site data (Champaign County Public Health District) to evaluate123

the results. These initial estimation results are compared to data recorded at Peoria County clinics from April 2020124

to July 2020, which explicitly includes symptoms of all sample individuals. We then discuss a series of simulation125

studies in Section 4, which illustrate our stability results as well as highlighting the role the asymptomatic subgroup126

and the contact network play in disease spread under various quarantine policies made with and without awareness127

of asymptomatic status. We further present a longer-term forecast for the epidemic process with both pharmaceutical128

and non-pharmaceutical mitigation approaches. To conclude, we discuss the challenges the currently available data129

present and our ongoing and future work in Section 5.130

2 The SAIRS model131

In order to investigate the effects of asymptomatic individuals on the spread of the epidemic, we consider the effects of132

a proportion of the infected subgroup being asymptomatic and potentially unaware of their carrier status. We evaluate133

both single group models as well as networked models, providing equilibria and stability analyses.134

2.1 Single-Group and Networked Models135

Let S(t),A(t), I(t),R(t), respectively, represent the proportion of susceptible, asymptomatic-infected, symptomatic-136

infected, and recovered individuals at time t. The Group SAIR(S) model we consider is characterized as:137

Ṡ(t) =−βS(t)(A(t)+ I(t))+δR(t)

Ȧ(t) = qβS(t)(A(t)+ I(t))−σA(t)−κA(t)

İ(t) = (1−q)βS(t)(A(t)+ I(t))+σA(t)− γI(t)

Ṙ(t) = κA(t)+ γI(t)−δR(t).

(3)138

Here again β is the transmission rate amongst susceptible and infected groups, the latter of which includes both asymp-139

tomatic and symptomatic; κ and γ , respectively, are the recovery rates for asymptomatic-infected and symptomatic-140
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infected groups. The proportion of infections that are asymptomatic (and/or pre-symptomatic) is denoted by q, after141

which the newly infected individuals show no symptom but are still infectious; correspondingly, (1−q) represents the142

proportion of symptomatic infections. Further, σ is the progression rate from asymptomatic (and/or pre-symptomatic)143

to symptomatic, and δ represents the rate at which immunity recedes. When δ = 0, individuals gain permanent144

immunity to the infection upon recovery. We assume these relations hold for all t ≥ 0.145

We also study the SAIRS model dynamics of n agents (individuals or subpopulations) interconnected over an146

arbitrary network structure, with adjacency matrix denoted by W . Defining si,ai, pi,ri, respectively, as the proportion147

of the subpopulation i that is susceptible (or healthy), asymptomatic-infected, symptomatic-infected, or recovered, the148

Networked SAIRS (N-SAIRS) dynamics over an arbitrary interconnection network is given by149

ṡi(t) =−βisi(t)∑
j

Wi j(a j(t)+ p j(t))+δiri(t)

ȧi(t) = qβisi(t)∑
j

Wi j(a j(t)+ p j(t))−σiai(t)−κiai(t)

ṗi(t) = (1−q)βisi(t)∑
j

Wi j(a j(t)+ p j(t))+σiai(t)− γi pi(t)

ṙi(t) = κiai(t)+ γi pi(t)−δiri(t),

(4)150

where, similar to the Group Model (3), for a subpopulation i, βi is the agent-to-agent transmission rate; κi and γi,151

respectively, are the recovery rates for asymptomatic-infected and symptomatic-infected subsets; again, σi represents152

the transition rate from asymptomatic to symptomatic infected; and δi represents the rate at which individuals may be153

susceptible to reinfection again after recovery. Since all individuals in a subgroup i will reside in one of these subsets,154

we have si(t)+ ai(t)+ pi(t)+ ri(t) = 1, over all i ∈ [n]. This proportion is relative to the subpopulation size, Ni of155

group i; recall the total population N = ∑i Ni.156

Remark: In the case where we have homogeneous spread parameters and the underlying network topology is com-157

plete with evenly distributed interconnection weights, that is, when Wi j = 1/n for all i, j ∈ [n], and (βi,κi,γi,σi,δi) =158

(β ,κ,γ,σ ,δ ) for all i ∈ [n], the Group Model (3) and the Networked Model (4) are equivalent.159

Prior to discussing the analysis of equilibria and stability for these models, we note the following result which160

establishes that the N-SAIRS model is well-defined. This result was first presented in [20] for the discrete-time case161

using an induction argument; it is straightforward to adapt this result to the continuous-time model given in (4). We162

6

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted January 22, 2023. ; https://doi.org/10.1101/2023.01.20.23284824doi: medRxiv preprint 

https://doi.org/10.1101/2023.01.20.23284824
http://creativecommons.org/licenses/by/4.0/


first state our assumption on the model parameters.163

Assumption 1. For all i, j ∈ [n], we have βi, γi, δi, σi, δi, Wi j ≥ 0, 0≤ q≤ 1.164

Lemma 1. Consider the model in (4) under Assumption 1. Suppose si(0),ai(0), pi(0),ri(0) ∈ [0,1], si(0)+ ai(0)+165

pi(0)+ ri(0) = 1, ∀i ∈ [n]. Then, for all t ≥ 0 and i ∈ [n], we have si(t),ai(t), pi(t),ri(t) ∈ [0,1] and si(t)+ ai(t)+166

pi(t)+ ri(t) = 1.167

Proof: We show that for all i ∈ [n] and t ≥ 0, when si(t) = 0, ai(t) = 0, pi(t) = 0, ri(t) = 0, respectively, we168

have ṡi(t)≥ 0, ȧi(t)≥ 0, ṗi(t)≥ 0, ṙi(t)≥ 0; and when si(t) = 1, ai(t) = 1, pi(t) = 1, ri(t) = 1, respectively, we have169

ṡi(t)≤ 0, ȧi(t)≤ 0, ṗi(t)≤ 0, ṙi(t)≤ 0.170

Firstly, from si(0)+ai(0)+ pi(0)+ ri(0) = 1, and ṡi(t)+ ȧi(t)+ ṗi(t)+ ṙi(t) = 0, we have si(t)+ai(t)+ pi(t)+171

ri(t) = 1,∀i ∈ [n],∀t ≥ 0.172

By Assumption 1 and (4), for all i ∈ [n], if si(0) = 0, we have ṡi(0) = δiri(0) ≥ 0. By the continuity of si(t),173

there exists Tsi ≥ 0, such that, si(t) ≥ 0, ∀t ∈ [0,Tsi ]. Similarly, if ai(0) = 0, we have ȧi(0) = qβisi(0)∑ j Wi j(a j(0)+174

p j(0)) ≥ 0; if pi(0) = 0, we have ṗi(0) = (1− q)βisi(0)∑ j Wi j(a j(0)+ p j(0))+σiai(0) ≥ 0; and if ri(0) = 0, we175

have ṙi(0) = κiai(0)+ γi pi(0) ≥ 0. Thus, there also exist Tai ≥ 0,Tpi ≥ 0,Tri ≥ 0, respectively, such that ai(t) ≥ 0,176

∀t ∈ [0,Tai ]; pi(t)≥ 0, ∀t ∈ [0,Tsi ]; pi(t)≥ 0, ∀t ∈ [0,Tri ].177

Define T := mini∈[n] min(Tsi ,Tai ,Tpi ,Tri) for i ∈ [n]. Then by definition, si(T ) ≥ 0,ai(T ) ≥ 0, pi(T ) ≥ 0,ri(T ) ≥178

0,∀i∈ [n]. Similarly, we have ṡi(T ) = δiri(T )≥ 0 if si(T ) = 0; ȧi(T ) = qβisi(T )∑ j Wi j(a j(T )+ p j(T ))≥ 0 if ai(T ) =179

0; ṗi(T )= (1−q)βisi(T )∑ j Wi j(a j(T )+ p j(T ))+σiai(T )≥ 0 if pi(T )= 0; ṙi(T )= κiai(T )+γi pi(T )≥ 0 if ri(T )= 0.180

Thus, for all t ≥ 0 such that si(t)= 0, ai(t)= 0, pi(t)= 0 or ri(t)= 0, respectively, we have ṡi(t)≥ 0, ȧi(t)≥ 0, ṗi(t)≥181

0, ṙi(t)≥ 0. This further suggests that, si(t)≥ 0, ai(t)≥ 0, pi(t)≥ 0, ri(t)≥ 0, ∀i ∈ [n], ∀t ≥ 0.182

Next, we prove that if si(t) = 1, ai(t) = 1, pi(t) = 1, or ri(t) = 1, respectively, we have ṡi(t)≤ 0, ȧi(t)≤ 0, ṗi(t)≤183

0, ṙi(t) ≤ 0. Given in Lemma 1, si(t)+ ai(t)+ pi(t)+ ri(t) = 1, and si(t),ai(t), pi(t),ri(t) ≥ 0,∀i ∈ [n]. Hence, if184

si(t) = 1, we have ai(t) = 0, pi(t) = 0,ri(t) = 0, which leads to ṡi(t) = −βi ∑ j Wi j(a j(t)+ p j(t)) ≤ 0. Similarly, if185

ai(t) = 1, we have ȧi(t) =−σi−κi ≤ 0; if pi(t) = 1, ṗi(t) =−γi ≤ 0; and if ri(t) = 1, ṙi(t) =−δi ≤ 0. Similar to the186

preceding argument, we have si(t)≤ 1, ai(t)≤ 1, pi(t)≤ 1, ri(t)≤ 1,∀i ∈ [n],∀t ≥ 0.187
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2.2 Equilibria and stability188

To quantitatively and qualitatively evaluate the propagation of the virus, a critical threshold quantity, denoted by R0189

and referred to as the basic reproduction number, is used extensively in epidemiological studies. This number indicates190

how rapidly infected individuals transmit the virus to healthy individuals. In this section, we evaluate the SAIRS model191

equilibria and conduct stability analyses around the equilibria, leading to conditions on R0 which provide quantitative192

criteria for convergence to the disease-free state, or to an endemic state. We first consider the group model.193

2.2.1 Group Model SAIRS194

195

Noting that S(t) = 1−A(t)− I(t)−R(t), the nonlinear system dynamics (3) can be written as196

Ȧ(t) = qβ (1−A(t)− I(t)−R(t))(A(t)+ I(t))−σA(t)−κA(t)

İ(t) = (1−q)β (1−A(t)− I(t)−R(t))(A(t)+ I(t))+σA(t)− γI(t)

Ṙ(t) = κA(t)+ γI(t)−δR(t).

197

By setting Ȧ(t), İ(t), Ṙ(t) to 0, we can see immediately that an equilibrium state of system (5) is given by (Ae, Ie,Re) =198

(0,0,0) with Se = 1. This is the disease-free equlibrium (DFE) in the case of non-permanent immunity. Linearizing199

system (5) around (Ae, Ie,Re), we obtain the system Jacobian matrix,200

Je =


qβ −κ−σ qβ 0

(1−q)β +σ (1−q)β − γ 0

κ γ −δ

 . (5)201

The system described by (5) is globally asymptotically stable around the DFE if all eigenvalues of Je have negative real202

parts; see Theorem 4.7 from [42]. Computing the characteristic polynomial for Je, we have after some straightforward203

manipulations,204

det(λ I− Je) = (λ +δ ) ·
[
(λ −qβ +κ +σ)(λ − (1−q)β + γ)−q(1−q)β 2−qβσ

]
(6)205
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Applying the Routh-Hurwitz criterion to (6) gives us the following.206

Proposition 1. Given the system dynamics defined by (5), the DFE (Se,Ae, Ie,Re) = (1,0,0,0) is globally asymptoti-207

cally stable (GAS) when δ > 0 and208

R0 := max
(

β

κ + γ +σ
,

β (qγ +(1−q)κ +σ)

γ(κ +σ)

)
< 1. (7)209

In the case where δ = 0, that is when immunity following recovery from infection is permanent, the disease-free210

equilibria will be the subspace of points (Se,Ae, Ie,Re) = (cS,0,0,cR), where constants cR,cS satisfy cS + cR = 1. An-211

alyzing the Jacobian for (5) in this case gives us that the equilibria (Se,Ae, Ie,Re) = (cS,0,0,cR) are also globally212

asymptotically stable (GAS) when (7) is satisfied. That is, this basic reproduction number expression provides an ap-213

propriate threshold for determining when the spread process for the SAIRS model will or will not spread exponentially214

in either of the scenarios of permanent or non-permanent immunity.215

We may also consider the case where the asymptomatic-infected and symptomatic-infected individuals have dif-216

ferent infection transmission rates. In the case of COVID-19, this difference could be partly due to the inability to217

conduct frequent large-scale population testing, for example allowing efficient identification and isolation of Asymp-218

tomatic individuals. Thus, we would have different quarantine control effectiveness over these two subpopulations. In219

this case, we denote the infection transmission rates for agent-to-agent contact between the susceptible subgroup and220

the two infectious groups, respectively, as βA,βI . As in the preceding analysis, we compute the Jacobian around the221

disease-free equilibrium (Se,Ae, Ie,Re) = (1,0,0,0), as222

Je =


qβA−κ−σ qβI 0

(1−q)βA +σ (1−q)βI− γ 0

κ γ −δ

 . (8)223

Following a similar approach as before yields224

R0 := max
(

qβA +(1−q)βI

κ + γ +σ
,

qβAγ +βI((1−q)κ +σ)

γ(κ +σ)

)
. (9)225

For GAS, using a similar argument, we can again show it is required that R0 < 1.226
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Of perhaps greater interest is the endemic equilibria for (5). If we again assume non-permanent immunity, that is,227

δ > 0, setting Ȧ(t), İ(t), Ṙ(t) to 0, we can compute the unique endemic equilibrium for (5):228



Se

Ae

Ie

Re


=



γ(κ+σ)
β (qγ+(1−q)κ+σ)

qδγ

(
β (qγ+(1−q)κ+σ)−γ(κ+σ)

)
β (qγ+(1−q)κ+σ)

(
γ(κ+σ)+δ (qγ+(1−q)κ+σ)

)
δ ((1−q)κ+σ)

(
β (qγ+(1−q)κ+σ)−γ(κ+σ)

)
β (qγ+(1−q)κ+σ)

(
γ(κ+σ)+δ (qγ+(1−q)κ+σ)

)
γ(κ+σ)

(
β (qγ+(1−q)κ+σ)−γ(κ+σ)

)
β (qγ+(1−q)κ+σ)

(
γ(κ+σ)+δ (qγ+(1−q)κ+σ)

)


. (10)229

Denoting Ψ = γ(κ +σ) and Φ = qγ +(1−q)κ +σ , and noting that both Ψ > 0 and Φ > 0, we further define230

C = βΦ−Ψ = β (qγ +(1−q)κ +σ)− γ(κ +σ),

D = δΦ+Ψ = δ (qγ +(1−q)κ +σ)+ γ(κ +σ)> 0.
(11)231

The endemic equilibrium now can be written more compactly as232



Se

Ae

Ie

Re


=



Ψ

βΦ

qδγC
βΦD

δ ((1−q)κ+σ)C
βΦD

ΨC
βΦD


. (12)233

Using the relationship S(t) = 1−A(t)− I(t)−R(t) and the expression for the endemic equilibrium point in (12), we234
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compute the Jacobian around this equilibrium point as235

Je =


J1 J2 J3

J4 J5 J6

J7 J8 J9

=



− (κ+σ)
(
(1−q)κ+σ)

)
Φ

− qδC
D

qΨ

Φ
− qδC

D − qδC
D

(γ+σ)
(
(1−q)κ+σ)

)
Φ

− (1−q)δC
D − qγ(γ+σ)

Φ
− (1−q)δC

D − (1−q)δC
D

κ γ −δ


. (13)236

We can then show the following stability result using the Routh-Hurwitz criterion and algebraic manipulations.237

Proposition 2. Given the system with dynamics defined by (5), with endemic equilibrium (12), and C and D as defined238

in (11) and (13) respectively, if both C > 0 and239

(CD+D2)(δ +F)Φ(FΦ−Ψ)−D2Ψ(FΦ−Ψ)+δ (δ +F)(C2 +CD)Φ2 +δCDΦ(FΦ−Φ2−Ψ)

CDΨΦ2 > 1, (14)240

where F = γ +κ +σ , then the system asymptotically converges to the endemic equilibrium.241

Proof: Note that the characteristic polynomial for Je is given by242

det(λ I− Je) = (λ − J1)(λ − J5)(λ − J9)− J3J7(λ − J5)− J2J4(λ − J9)− J6J8(λ − J1)− (J2J6J7 + J3J4J8)

= λ
3 +a1λ

2 +a2λ +a3.

(15)243

Applying the Routh-Hurwitz criteria to (15), for all roots of the polynomial to have negative real parts, we require244

a1,a3 > 0, and a1a2 > a3. Assuming245

C = βΦ−Ψ > 0, (16)246
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we have, J1,J5 < 0, J3,J6,J9 ≤ 0, and J7,J8 ≥ 0. Consequently,247

a1 =−(J1 + J5 + J9)> 0,

a2 = J9(J1 + J5)+(J1J5− J2J4)− (J3J7 + J6J8)> 0

a3 = J7(J3J5− J2J6)+ J8(J1J6− J3J4)+ J9(J2J4− J1J5)

= J7
qδγC

D
+ J8

δC ((1−q)k+σ)

D
− J9

δCΦ

D
> 0.

(17)248

To satisfy the condition a1a2 > a3, we equivalently require249

a1a2−a3

=(J1 + J5)[J3J7 + J6J8 + J2J4− J1J5− J9(J1 + J5)− J2
9 ]+ J7(J2J6− J3J5)+ J8(J3J4− J1J6)+ J9(J3J7 + J6J8)> 0.

(18)

250

After many tedious algebraic manipulations we can show that satisfying (18) is equivalent to satisfying the condition251

(CD+D2)(δ +F)Φ(FΦ−Ψ)−D2Ψ(FΦ−Ψ)+δ (δ +F)(C2 +CD)Φ2 +δCDΦ(FΦ−Φ2−Ψ)

CDΨΦ2 > 1. (19)252

253

Inequalities (16) and (19) provide a sufficient condition for asymptotic stability of the endemic equilibrium. Simu-254

lations illustrating the behavior of the SAIRS model dynamics when conditions for asymptotic stability to the endemic255

equilibrium are met are given in Section 4.256

2.2.2 Networked Model N-SAIRS257

258

We now evaluate equilibria and their stability properties for the networked SAIRS models. Given si(t) = 1−ai(t)−259
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pi(t)− ri(t) for all t ≥ 0, i ∈ [n], system (4) can be represented in matrix form as260

ȧ(t) = [q(I−A(t)−P(t)−R(t))BW −Σ−K]a(t)+q[I−A(t)−P(t)−R(t)]BW p(t)

ṗ(t) = [(1−q)(I−A(t)−P(t)−R(t))BW +Σ]a(t)+ [(1−q)(I−A(t)−P(t)−R(t))BW −Γ]p(t)

ṙ(t) = Ka(t)+Γp(t)−∆r(t).

(20)261

Here,262

a(t) =


a1(t)

...

an(t)

 , p(t) =


p1(t)

...

pn(t)

 , r(t) =


r1(t)

...

rn(t)

 , (21)263

with n× n matrices A(t) = diag(ai(t)), P(t) = diag(pi(t)), R(t) = diag(ri(t)), B = diag(βi), K = diag(κi), Γ =264

diag(γi), Σ = diag(σi), ∆ = diag(δi), and adjacency matrix W .265

We first consider the case with permanent immunity, i.e., δi = 0. Setting ȧ(t), ṗ(t), ṙ(t) to 0, we can compute266

the equilibrium state where ae = pe = 0,re = rc, where rc is a non-negative constant vector with elements rci < 1.267

Linearizing the system (20) at the equilibrium (ae, pe,re), we obtain the 3n×3n system Jacobian Matrix given by268

Je =


q(I−Rc)BW −Σ−K q(I−Rc)BW 0

(1−q)(I−Rc)BW +σ (1−q)(I−Rc)BW −Γ 0

K Γ −∆

 . (22)269

Analysis of this Jacobian matrix will lead to a constraint on the spectrum of the weighting matrix W , which if met270

guarantees the system is at least locally asymptotically stable at the DFE. An alternative is to consider a Lyapunov271

stability analysis approach, which may provide global results. Specifically, if we consider a quadratic Lyapunov272

function, we can show the following.273

Theorem 1. For the system given by (20), under Assumption 1, the DFE (ae, pe,re) = (0,0,rc) is globally asymptoti-274

cally stable (GAS) if275  qW 1
2W

1
2W (1−q)W

≺
 B−1(Σ+K) − 1

2 B−1Σ

− 1
2 B−1Σ B−1Γ

 , (23)276

where ≺ denotes relative definiteness of the matrices.277
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Proof: We now consider non-permanent immunity (∆ > 0), thus rc = 0. Consider the Lyapunov function278

V (a, p,r) =
1

2α
(aT B−1a+ pT B−1 p)+

1
2

rT r. (24)279

Clearly, V > 0 for all (a, p,r) 6= 0 and280

∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣


a

p

r


∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣
−→ ∞ =⇒ V (a, p,r)−→ ∞. (25)281

Computing the derivative, we have282

V̇ = 1
α
(aT B−1ȧ+ pT B−1 ṗ)+ rT ṙ

= 1
α

aT B−1q{([I−A−P−R]BW −Σ−K)a+[I−A−P−R]BW p}

+ 1
α

pT B−1(1−q){([I−A−P−R]BW +Σ)a+([I−A−P−R]BW −Γ)p}

+rT {Ka+Γp−∆r} .

(26)283

Since A, P and R are diagonal matrices with 0 ≤ ai ≤ 1, 0 ≤ p j ≤ 1, and 0 ≤ rk ≤ 1 for all i, j,k = 1, . . . ,n, and we

know all elements of Σ, K, Γ and ∆ are non-negative, then it is straightforward to see

V̇ ≤ 1
α

aT [qW −B−1(Σ+K)a+qW p]+
1
α

pT [((1−q)W −B−1
Σ)a+((1−q)W −B−1

Γ)p]+rT [Ka+Γp−∆r]. (27)

For GAS, we require V̇ < 0 for all t ≥ 0. We note that the first two terms on the right hand side of (27) have no284

dependence on r; thus if these two terms together are negative, then by an appropriate selection of α we can always285

make V̇ negative. We therefore can simplify the analysis by considering286

˙̂V = aT [qW −B−1(Σ+K)a+qW p]+ pT [((1−q)W −B−1
Σ)a+((1−q)W −B−1

Γ)p]. (28)287

Applying a completion of squares and algebraic simplifications we can show the condition ˙̂V < 0 to be equivalent to288
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the inequality289

[
aT pT

] qW 1
2W

1
2W (1−q)W


 a

p

<

[
aT pT

] B−1(Σ+K) − 1
2 B−1Σ

− 1
2 B−1Σ B−1Γ


 a

p

 . (29)290

In the case where 1≥ rc > 0, we can apply a basic translation. The result then follows from Theorem 4.2 in [42]. Note291

that directly from (27), the condition in (20) is also sufficient for GAS in cases with permanent immunity (∆ = 0).292

Summarizing, (23) provides a test that bounds the maximum eigenvalue of the q-scaled adjacency matrix W in293

terms of the minimum eigenvalue of a matrix consisting of diagonal block entries of ratios of healing and transition294

rates (κi, γi and σi) to infection rates (βi). This condition generalizes the usual R0 threshold to allow for heterogeneous295

infection parameters over multiple infection compartments in the N-SAIRS model form.296

Remark 1. Note that in the case of a slightly simpler spread process model, for example for a networked SIRS model,297

a sufficient condition for convergence to the DFE would be λmax(W )< λmin(B−1Γ) = mini(γi/βi) = mini(1/ROi).298

3 Parameter estimation299

In this section we discuss a simple least-squares approach for model parameter estimation for a discrete-time N-SAIRS300

model, given below in (30), and present some of our initial estimation results from local data for COVID-19. We also301

provide an overview of the approach we have used to estimate asymptomatic proportions of the subpopulations of302

interest.303

The data sets we consider result from sampling on a daily basis, thus a discrete-time model is better suited for es-304

timating and evaluating model parameters. We first apply a forward Euler’s method to the continuous-time networked305

model in (20), and appropriately scale the model by Ni for each subpopulation, giving us the discrete-time N-SAIRS306
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model,307

ak+1
i = ak

i +qβi(Ni−ak
i − pk

i − rk
i )∑

j

Wi j

N j
(ak

j + pk
j)−σiak

i −κiak
i

pk+1
i = pk

i +(1−q)βi(Ni−ak
i − pk

i − rk
i )∑

j

Wi j

N j
(ak

j + pk
j)+σiak

i − γi pk
i

rk+1
i = rk

i +κiak
i + γi pk

i −δirk
i ,

308

where {ai, pi,ri} represent the population of asymptomatic, symptomatic-infected and recovered individuals in region309

i respectively, ∀i ∈ [n]. Since our simulation update also will be daily and the sampling rate is once-per-day, the310

sampling parameter typically made explicit in such sampled-data models will be 1 and thus is not explicitly noted311

above.312

3.1 Least Squares Estimation313

When the proportion q of the asymptomatic infections is known or estimated, we can apply a simple least squares314

(LS) approach, for example as outlined in [43] and further described for SAIRS models in [20], to estimate the model315

parameters βi,σi,κi,γi, and δi. Our initial estimation step is therefore to estimate q.316

3.1.1 Estimating the Asymptomatic Population Proportion317

Due to the difficulties in identifying and monitoring infected individuals without symptoms, explicit and unbiased318

information for asymptomatic-infected estimations is not always available. We have applied Nesterov’s Next-Day Law319

to estimate the daily number of asymptomatic individuals, based on a constant latent infectious period assumption, and320

further to estimate the proportion q of the asymptomatic infections as a fraction of the total population. We note that,321

more precisely stated, this approach gives us a pre-symptomatic subpopulation proportion. We state the Next-Day322

Law here for completeness.323

Proposition 3. [44] Let T (d) represent the total number of confirmed cases by day d, and A(d) represent the number324

of asymptomatic infected individuals at the beginning of day d. Assume the latent period (the time between exposure325

and onset of symptoms) is a constant time of ∆ days. Then, A(d +1) = T (d +∆)−T (d),∀d ∈ Z326
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From estimated daily asymptomatic numbers, the proportions q and 1−q corresponding to the asymptomatic and327

symptomatic infections, can be approximated.328

As observed in many data sets for COVID-19 (for example, in the testing data posted by the Champaign-Urbana329

Public Health Department, Illinois), the infected (both asymptomatic and symptomatic) and recovered populations are330

relatively much smaller than the susceptible population. Therefore, the third and fourth terms in the first two equations331

in (30) are assumed to be negligible compared to the second term. Omitting these terms gives us the approximate332

relationship333

ak+1
i −ak

i

pk+1
i − pk

i
≈ q

1−q
, (30)334

from which we can approximate335

q≈
ak+1

i −ak
i

(ak+1
i −ak

i )+(pk+1
i − pk

i )
. (31)336

3.1.2 Estimation of Model Parameters337

Given an estimated, or a known value, for q, we can now rewrite the networked system (30) as a system of linear338

equations. Let339

b :=



a1
i −a0

i
...

aT
i −aT−1

i

p1
i − p0

i
...

pT
i − pT−1

i

r1
i − r0

i
...

rT
i − rT−1

i



, A :=


Φi

Σi

Γi

 , x :=



βi

σi

γi

κi

δi


,340
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with341

Φi :=


qs0

i ∑ j Wi j(a0
j + p0

j) −a0
i 0 −a0

i 0
...

...
...

...
...

qsT−1
i ∑ j Wi j(aT−1

j + pT−1
j ) −aT−1

i 0 −aT−1
i 0

 ,342

Σi :=


(1−q)s0

i ∑ j Wi j(a0
j + p0

j) a0
i −p0

i 0 0
...

...
...

...
...

(1−q)sT−1
i ∑ j Wi j(aT−1

j + pT−1
j ) aT−1

i −pT−1
i 0 0

 ,343

Γi :=


0 0 a0

i p0
i −r0

i
...

...
...

...
...

0 0 aT−1
i pT−1

i −rT−1
i ,

344

345

where sk
i = N−ak

i − pk
i − rk

i ,∀i ∈ [n],k ∈ Z.346

Then the discrete-time N-SAIRS model can be written as347

A x = b ∀i ∈ [n] (32)348

Since q is assumed known, (32) is linear with respect to the remaining model parameters. When A is full rank,349

we can thus recover the parameters β ∗i ,σ
∗
i ,γ
∗
i ,κ

∗
i , and δ ∗i using a standard least-squares solution to (32).350

3.2 Preliminary estimation results351

For our preliminary parameter estimation, local COVID-19 testing-site data from Champaign County, Illinois, dating352

from April to September, 2020, is used. We obtained data from the Champaign-Urbana Public Health District web-353

site (publicly available at https://www.c-uphd.org/champaign-urbana-illinois-coronavirus-information.html), which is354

updated daily and includes the total accumulative number of infected (lab-confirmed), recovered, hospitalized, and355

deceased individuals for Champaign county, as well as current number of actively infected (lab-confirmed) individuals356

over 34 zip code areas within the county. We scraped the website data on a daily basis manually from April 2020 to357

March 2022, storing the daily accumulative infected, actively-infected, and recovered populations for each zip code in358
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a Google Sheet [45]. Preliminary estimates are presented from the initial wave of COVID-19 in Champaign County,359

where we consider different phases of the epidemic according to the Illinois State Restore plan, specifically:360

Phase 1 : Rapid Spread April 01, 2020 - April 31, 2020361

Phase 2 : Flattening May 01, 2020 - May 29, 2020362

Phase 3 : Recovery May 30, 2020 - June 26, 2020363

Phase 4 : Revitalization June 27, 2020 - September 26, 2020364
365

We assume a latent period of ∆ = 6 days, giving estimated parameter values:366

Phases q β σ γ κ R0

Phase 2 0.7 0.06 0.22 0.15 -0.10 1.004

Phase 3 0.6 0.07 0.15 0.15 -0.05 1.156

Phase 4 0.6 0.07 0.08 0.11 0.02 1.104

367

368

Estimated local Sars-CoV-2 paramters369

For comparison, we computed an asymptomatic infection proportion q using Peoria County medical clinics data370

[46], containing COVID-19-related records of all individuals who visited one of eight medical clinics in Peoria and371

Pekin from April to June 2020. The Peoria clinic data explicitly includes records of the COVID-19 test results, as372

well as all symptoms described by the patient to the provider, for each visiting individual. The computed values for373

proportion q for Phase 2 and Phase 3 in the Peoria data are approximately 0.51 and 0.42, respectively, both of which374

are lower than the values estimated from the Champaign County data. This difference is not unexpected, given that375

patients visited the Peoria clinics because they were experiencing symptoms of illness, although these may have been376

illnesses other than COVID-19.377

We note that, as the epidemic progresses, the basic reproduction number R0 first increases, and then decreases due378

to the implementation of quarantine and other social distancing measures. The prelimimary results also expose issues379

with data-based estimation and analysis early in an epidemic. For example, due to the limited available testing in the380

early stage of the epidemic we have a non-random population sample, thus the testing population presented in the data381
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is skewed toward Symptomatic-Infected individuals. This hinders us from accurately capturing the true proportion of382

the Asymptomatic-Infected subgroup, as well as an accurate prevalence of the epidemic over the total population [47].383

In addition, our assumption of a constant latent period is not consistent with viral infections, including COVID-19; the384

latent period value we have chosen is thus an average value taken from [48,49]. These issues lead to estimation errors,385

in particular note the negative values for recovery rate κ in Phase 1 and Phase 2. For this reason, estimated values386

from the larger virology and epidemiology literature are evaluated and used in our simulation studies.387

4 Simulations388

In this section, we illustrate the dynamics associated with endemicity, and the roles of the asymptomatic subgroup389

and contact network in the progression of the epidemic. We follow this with a multi-stage forecast of an epidemic390

spread process with both pharmaceutical and non-pharmaceutical mitigation approaches, as well as a simulation of an391

endemic COVID-19 process under annual vaccinations.392

First, we simulate a baseline N-SAIRS model based on (4), for which we assume homogeneous spread parameters393

and a five-subpopulation network structure. We assume the total population size is 10,000 and the respective sub-394

populations denoted A, B, C, D, and E have populations of 2000,2500,1500,3500, and 500 people, respectively. In395

this baseline simulation we assume the subpopulations are fully connected with evenly distributed edge weights, thus396

this model is equivalent to the single group model represented in (3). We use the estimation results from early local397

data (discussed in Section 3) in addition to drawing upon the literature on COVID-19 (e.g., [48,50–52]) to inform our398

baseline model parameter value selection, specifically setting (q,β ,σ ,γ,κ,δ ) = (0.7,0.25,0.15,0.11,0.08,0.0001).399

These values represent the original strain of SARS-CoV-2. Note these parameters roughly correspond to an in-400

fectious disease with a duration of symptomatic infection of 9 days, duration of asymptomatic infection of 12 days,401

duration of pre-symptomatic infection of 6 days, and duration of immunity following recovery from infection of 30402

years, or essentially permanent immunity. We further set the initial proportions of the A, I,R compartments as403

a(0) = (aA(0),aB(0),aC(0),aD(0),aE(0)) = (0.006,0.004,0.012,0.004,0.004)

p(0) = (pA(0), pB(0), pC(0), pD(0), pE(0)) = (0.005,0.002,0.008,0.003,0.002)

r(0) = (rA(0),rB(0),rC(0),rD(0),rE(0)) = (0.007,0.003,0.010,0.008,0.005)

404
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Simulating the SAIRS model over 60 days results in the epidemic progression shown in Fig 1. Note that peak active

Figure 1: Group/Network SAIRS Simulation: Baseline Model

405

infection occurs on day 33, that is p(t) + a(t) attains a maximum of approximately 28% on day t = 33. By day406

60, approximately 87% of the entire population has been or is infected; assuming a mortality rate of 2% would407

correspond to 174 deaths in the two month time span. Again we note this model assumes homogeneous mixing408

within the entire population. We will use this baseline model to compare to situations where immunity following409

recovery is not permanent, leading to endemicity and to potential virus mutations yielding multi-strain/multi-stage410

viral processes [53].411

4.1 Endemicity412

As presented in Proposition 2, the condition for endemicity (that is, GAS of the endemic equilibrium) is given by413

C = β (qγ +(1−q)κ +σ)− γ(κ +σ)> 0, (33)414

and415

Rend =
(CD+D2)(δ +F)Φ(FΦ−Ψ)−D2Ψ(FΦ−Ψ)+δ (δ +F)(C2 +CD)Φ2 +δCDΦ(FΦ−Φ2−Ψ)

CDΨΦ2 > 1, (34)416

where D, F , Φ and Ψ are given in the preceding section.417

Note that the condition C > 0 for the existence of an endemic equilibrium is equivalent to the condition that R0 > 1.418

It can be observed that, with values for all other parameters unchanged, Rend increases monotonically as the value for419

the model parameter δ increases. Setting the initial conditions and parameters as in the baseline model, excepting a420

change in the parameter value of δ , simulation results depicting endemic equilibria corresponding to different Rend421

thresholds are presented in Figures 2, 3, 4.

Figure 2: Endemicity with δ = 0.001, corresponding to immunity following infection of approximately 2.8 years.

422

As the value for Rend increases with increasing δ value, the oscillations before reaching the endemic equilibrium423
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Figure 3: Endemicity with δ = 0.01, corresponding to immunity following infection of approximately 3 months.

Figure 4: Endemicity with δ = 0.1, corresponding to immunity following infection of approximately 10 days.

have smaller amplitude, although they may have higher frequency. For the models with parameters δ = 0.001, δ =424

0.01, δ = 0.1, the first oscillatory dip in the R (recovered) subgroup occurs at approximately 850 days, 160 days and425

55 days, respectively, and the amplitude differences in the proportions of the recovered subgroups between the first426

peaks to the following lowest points are approximately 0.45, 0.22, 0.015, respectively. Comparing the population427

proportions for the endemic equilibria points in these three models, as the value for δ increases, the proportion of428

R decreases, whereas proportions for A and I increase. This observation coincides with the expression of endemic429

equilibria presented in (10), in Section 2.430

4.2 Asymptomatic Effects431

One major obstacle in the control of COVID-19 has been the challenge of identifying and monitoring individuals432

in the asymptomatic but infectious subgroup. Herein we explore the impact of the asymptomatic subgroup on the433

epidemic evolution. We first assume no control actions are imposed on either the asymptomatic or symptomatic434

infected subgroups, for example, imposing isolation or masking policies. For simplicity, we use the group model (3)435

with the same parameter values as in our baseline model, which gives a basic reproduction number R0 ≈ 2.5 from (7).436

By setting initial proportions for the A, I,R compartments as437

(a(0), I(0),R(0)) = (0.004,0.002,0.003), (35)438

we obtain the 90-day simulation results shown in Fig 5. The population reaches a peak infection level of approximately

Figure 5: No control policies in effect on either Asymptomatic or Symptomatic Infected subgroups

439

25% on day 35. By day 80, approximately 87% of the population has been or is infected.440

Next, we implement moderate and stringent isolation policies on only the symptomatic subgroup; this is effected441

in the simulations by changing the respective infection rate parameters of the subgroups, which we now denote indi-442
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vidually by βA and βI . Imposing isolation policies on a subgroup effectively lowers the corresponding infection rate.443

The simulations results are shown in Fig 6. We note that with isolation measures on only the symptomatic infected

(a) Moderate isolation of Symptomatic-Infected subgroup;
βA = 0.25,βI = 0.11 giving effective R0 = 1.5

(b) Stringent isolation of Symptomatic-Infected subgroup;
βA = 0.25,βI = 0.06 giving effective R0 = 1.2

Figure 6: Imposing isolation policies on subgroup I

444

subgroup, the epidemic now progresses more slowly and mildly, as is expected, however there is still substantial infec-445

tion in the population. The infection peaks at days 60 and 75, respectively, approximately 4−6 weeks later than with446

no control. With moderate isolation policies in effect on the I subgroup, the peak infection level is approximately 9%447

and with strict isolation policies the peak infection level attained is approximately 2.5%. Finally by day 80, the total448

percentages of the population that have been or are infected is approximately 49% and 17%; with a mortality rate of449

2% this corresponds to 98 and 34 deaths, respectively.450

Alternatively, we consider the situation where Asymptomatic individuals are also identified and isolated, under451

both moderate and stringent policies, with the results shown in Fig 7.

(a) Moderate isolation of both Symptomatic- and Asymptomatic-
Infected subgroups;
βA = 0.11, βI = 0.11 giving effective R0 = 1.09

(b) Stringent isolation of both Symptomatic- and Asymptomatic-
Infected subgroups;
βA = 0.0125, βI = 0.0125 giving effective R0 = 0.12

Figure 7: Imposing isolation policies on subgroups A and I

452

Note that, with only moderate isolation on both Asymptomatic and Symptomatic Infected subgroups (7a), the453

epidemic is under control within three months. By day 80, approximately 7.7% of the population has been or is454

infected, corresponding to a total of 770 individuals in a population base of 10,000; at a 2% mortality rate this455

corresponds to approximately 15−16 deaths as compared to approximately 34 deaths with stringent control imposed456

on only the Symptomatic Infected subgroup (6b).457

An additional perspective to consider is the effective reproduction number under the different isolation policies.458

Moderate isolation of both Asymptomatic and Symptomatic subgroups (7a) gives an effective R0 ≈ 1.09, while strin-459

gent isolation on just the Symptomatic subgroup (6b) gives an effective R0 ≈ 1.2.460

These simulation results confirm the obvious: identification and isolation of Asymptomatic infected individuals is461

much more effective in curbing the spread of the epidemic than identification and isolation of only the Symptomatic462
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subgroup. To achieve this goal, either regular extensive mandatory testing policies, or persistent isolation of the whole463

population, is required.464

4.3 Network Effects465

Here, we evaluate the effect that a more realistic interaction structure has on epidemic spread over a population. We466

consider the 5-node network introduced earlier, and consider the removal of a small number of edges between nodes,467

corresponding to there being no interaction between certain subpopulations. We first consider an interconnection468

network structure with adjacency matrix469

W =



1
3

1
3

1
3 0 0

1
3

1
3 0 0 1

3

1
3 0 1

3
1
3 0

0 0 1
2

1
2 0

0 1
2 0 0 1

2


. (36)470

Using the same parameters and initial conditions as in the baseline model, our simulations return results as shown in471

Fig 8 for subpopulations C and E, for example.

(a) Subpopulation C (b) Subpopulation E

Figure 8: Densely Connected Network Simulation Results

472

(a) Subpopulation 4 (b) Subpopulation 22 (c) Subpopulation 28

(d) Subpopulation 32 (e) Subpopulation 34 (f) Subpopulation 48

Figure 9: Sparsely Connected Network Simulation Results

With an incomplete network structure, the epidemic spreads more slowly and weakly. Subpopulation C reaches its473

peak infection level at day 37, and subpopulation E at day 39. By day 60, approximately 83% of area C population474

and 81% of area E population have been infected. However, in total, approximately 480 fewer individuals over the475

five areas are infected as compared to the fully connected (i.e., complete) baseline model.476

24

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted January 22, 2023. ; https://doi.org/10.1101/2023.01.20.23284824doi: medRxiv preprint 

https://doi.org/10.1101/2023.01.20.23284824
http://creativecommons.org/licenses/by/4.0/


To explore the impact of quarantine and stronger social distancing measures, we further break the full popula-477

tion into 50 smaller subpopulations, and generate a stochastic adjacency matrix with each node only connected to478

(randomly selected) 20 other nodes out of the total of 50 group nodes. We also generated the initial proportions ran-479

domly, i.e., a(0), p(0),r(0), assuming ai(0) ∼N (0.04, 0.005), pi(0) ∼N (0.02, 0.005), ri(0) ∼N (0.03, 0.005),480

with these values restricted to be non-negative. Randomly selecting 6 of the 50 sub-populations, we present a sample481

of the simulation results as shown in Fig 9:482

Note that, with this more extensive isolation structure, the epidemic decays much faster than under the previous483

densely connected network (Fig 8). Subpopulations 4,22,28,32,34 and 48, respectively, reach their peak infection484

levels at days 21,59,7,24,0 and day 8. Among the six subpopulations in the sample, subpopulation 22 is the most485

highly infected group. However, overall after 60 days, approximately only 13.6% of the population has been or486

is infected, which is a reduction of 73.4% of the population compared to the fully connected network (Fig 1), and487

a reduction of 67.7% compared to the strongly connected network (Fig 8). These simulations confirm that social488

distancing measures, such as quarantining within each community or family, does serve to slow the spread of the489

epidemic. From the perspective of the group model, extensive isolation policies do help reduce the group transmission490

rate for person-to-person contact, although these do not completely halt the disease spread.491

We also investigate the impacts of different underlying network structures on the stability of the DFE and endemic492

equilibria. As shown in (23) in Section 2, the bound provided on the eigenvalues of the q-scaled adjacency matrix W493

by the eigenvalues of a matrix generated by diagonal block entries of ratios of recovery and transition rates (symptoms494

onsetting) to infection rates gives a sufficient condition for the stability of the DFE. We consider the equilibria for the495

full population under different interconnection network structures. Evaluating endemic equilibria, for all i ∈ [n], we496

set the homogeneous spread parameter values to497

(q,βi,γi,κi,σi,δi) = (0.7,0.15,0.11,0.08,0.15,0.01). (37)498

The convergence results of the networked models (4) with a 5-node densely connected network (36), a 50-node fully499

connected network and a 50-node sparsely connected network are illustrated in Fig 10, yielding the simulation results500

shown over 700 days.501

On one hand, the maximum eigenvalue of the fully connected graph (10a) and densely connected graph (10b)502
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(a) Fully connected network (b) Densely connected network

(c) Sparsely connected network

Figure 10: DFE convergence for N-SAIRS models

are both approximately 1.04. This value is larger than the minimum eigenvalue of the parameters matrix, which is503

approximately 0.49. In both network structures, the systems converge to the endemic equilibrium. On the other hand,504

the maximum eigenvalue of the sparsely connected graph (10c), which is approximately 0.25, is smaller than the505

minimum eigenvalue of the parameters matrix. With this network structure, the system converges to the DFE. These506

simulation results serve as examples of the condition derived in (23). Note that (23) is not a necessary condition for507

convergence to the DFE. That is, violation of this condition does not guarantee that the system will converge to an508

endemic equilibrium.509

4.4 A Multi-stage Simulation510

In addition to non-pharmaceutical measures, such as mask policies and social distancing, pharmaceutical measures511

such as vaccinations and treatment of symptoms clearly also play important roles in the control of epidemic spread512

processes. With the increasingly availability of vaccines for COVID-19 since March 2021, the number of daily new513

cases of COVID-19 has dropped, even with less strict social distancing amongst populations [54, 55]. However, the514

overall effect of these vaccinations may be compromised by virus mutations [56, 57]. In this section, taking both515

vaccines and virus mutations into consideration, we present a multi-stage group SAIRS simulation representing the516

evolution of COVID-19 in Illinois in Fig 11; the relevant timeline is also given.

Figure 11: Multi-stage (3-year) SAIRS process with Vaccinations and Virus Mutations
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517

Stage 1 : Rapid Spread (45 days : Day 1−Day 45)518

Stage 2 : Flattening: Lockdown (70 days : Day 46−Day 115)519

Stage 3 : Restoration: Social distancing, masking, reduced indoor capacities (135 days : Day 116−Day 250)520

Stage 4 : Re-enacted Restrictions:
1
2

o f all regions (15 days : Day 251−Day 265)521

Stage 5 : Re-enacted Restrictions: all regions (90 days : Day 266−Day 355)522

Stage 6 : Vaccination rollout: (90 days : Day 356−Day 445)523

Stage 7 : Variant 1 Emergence: (210 days : Day 446−Day 655)524

Stage 8 : Booster rollout: (30 days : Day 656−Day 685)525

Stage 9 : Variant 2 Emergence: (145 days : Day 686−Day 830)526

Stage 10 : Social Distancing Lifted, Waning Vaccine Immunity: (170 days : Day 831−Day 1000)527
528

We have again considered the baseline group model529

Ṡ(t) =−(pβv +(1− p)βuv)S(t)(A(t)+ I(t))+δR(t)

Ȧ(t) = q(pβv +(1− p)βuv)S(t)(A(t)+ I(t))−σA(t)−κA(t)

İ(t) = (1−q)(pβv +(1− p)βuv)S(t)(A(t)+ I(t))+σA(t)− γI(t)

Ṙ(t) = κA(t)+ γI(t)−δR(t),

530

p is the vaccination level, and βv, βuv, respectively, are the transmission rates between infected and non-infected531

individuals who have or have not been vaccinated, respectively. Assuming that the immunity individuals gain after532

infection or vaccination lasts one year, we set the baseline model parameter values based on COVID-19 literature for533

the United States up to June 2021 as534

(βuv,βv,q,v,σ ,γ,κ,δ ) = (0.2,0.0001,0.7,0.7,0.075,0.14,0.15,0.003),535
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Different βuv values are implemented throughout the simulation for different levels of social distancing. In Stage 6,536

the vaccination level p is set to increase at the beginning of each sub-stage. Specifically, p = 0.2 for day 1-day 30;537

p = 0.4 for day 31-day 60, p = 0.5 for day 61-day 90, in reference to the first day of vaccination rollout. In Stage 7,538

both βuv and βv are set to be higher than the original baseline transmission rates due to the highly contagious nature of539

the new variant, and the receding immunity provided by the vaccines as time passes.540

As shown in Figure 11, the lockdown in Stage 2 effectively mitigates the spread of the epidemic, whereas the541

relaxation of social distancing policies results in a slight surge in infection rates starting from approximately day542

240. This coincides with the network results previously presented in Section 4.3. Vaccination in Stage 6 successfully543

mitigates the spread of the epidemic, however, a new surge arises with the emergence of new variants starting from544

approximately day 450, which attains a peak infection level of approximately 13.5% on day 510. To reinforce the effect545

of the first round of vaccines, in Stage 8 booster shots are provided, which facilitate the mitigation of the epidemic.546

The effectiveness of these booster shots are again undermined as a more contagious variant of the virus emerges on day547

685. Despite being highly contagious, this new variant appears to result in less severe symptoms among vaccinated548

individuals, which results in faster recoveries compared to the previous virus strains. As the immunity gained from549

vaccines recedes over time and social distancing policies are lifted, individuals become more exposed to new variants550

and therefore have higher chances of being infected or reinfected, resulting in another surge in the infection level551

during stage 10.552

Further, we simulated a five-year glance into the future where the epidemic of COVID-19 potentially becomes553

endemic, and updated booster vaccines are provided annually, similar to current influenza practices; this is shown in554

Fig 12.555

Figure 12: Endemic SAIRS with Annual Vaccinations

We have again updated model parameter values as556

(βuv,βv,q,σ ,γ,κ,δ ) = (0.5,0.2,0.5,0.75,0.15,0.1,0.005)557

based on the COVID-19 literature up to September 2022 (e.g. [58–61]), where Omicron (B.1.1.529) is the main variant558

of the endemic epidemic. We also assume the effectiveness of the annual vaccines decreases by 10% every two months559
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based on [62]. This corresponds to 100% effectiveness during the first two months following vaccination, and 50%560

effectiveness over the last two months until getting the next annual vaccination. We set the initial proportions for the561

A, I,R compartments as562

(a(0), I(0),R(0)) = (0.018,0.03,0.5) (38)563

based on the proportions at the end of Multi-stage simulation (Fig 11) and [63]. Fig 12 shows periodic oscillations in564

both the recovered population (R: attaining local peaks at day 64, day 347, day 642, day 996, day 1356 and day 1721)565

and the infected populations (A+ I: attaining local peaks at day 21, day 287, day 576, day 924, day 1284 and day566

1648), for which the frequency and amplitude decreases over time until eventually reaching the endemic equilibria.567

This observed epidemic behavior coincides with the behavior of the endemic evolution as simulated in Figures 2,3,4.568

5 Conclusions and Future Work569

In this paper, we have briefly reviewed classical epidemiological compartment models, with a focus on a new SAIR(S)570

model that emphasizes the role played by the Asymptomatic-infected subpopulation. We presented continuous-time,571

discrete-time, and networked versions of the SAIR(S) model, and discuss their corresponding equilibria and stability572

properties. We have noted the use of Nesterov’s Next-Day Law and a basic least-squares approach for model parameter573

estimation, and conducted initial parameter estimation for COVID-19 using publicly available data from Champaign574

County, Illinois. Furthermore, we completed simulations of both group and networked models investigating the impact575

of isolating subpopulations, highlighting the crucial role of the Asymptomatic subgroup in the control of epidemic576

evolution, and exploring long-term endemicity conditions.577

In the estimation process, we have encountered many challenges, most significantly biased testing data and the lack578

of explicit information on the asymptomatic infected population. Our ongoing efforts include pursuing more complete579

endemic equilibria analyses for the N-SAIR(S) model and investigating approaches for model estimation under non-580

random and missing sample data sets, for example as described in [64]. We are further investigating Bayesian statistical581

methods for estimating true prevalence of epidemics given biased information for apparent prevalence [65].582
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