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8Abstract

9The COVID-19 pandemic is the first to be rapidly and sequentially measured by nation-wide PCR community 

10testing for the presence of the viral RNA at a global scale. We take advantage of the novel "natural experiment" 

11where diverse nations and major subnational regions implemented various policies including social distancing 

12and vaccination at different times with different levels of stringency and adherence. Initially, case numbers 

13expanding exponentially with doubling times of ~1-2 weeks. In the nations where lockdowns were not 

14implemented or ineffectual, case numbers increased exponentially but then stabilized around 102-to-103 new 

15infections (per km2 built-up area per day). Dynamics under strict lockdowns were perturbed and infections 

16decayed to low levels. They rebounded following the lifting of the policies but converged on an equilibrium 

17setpoint. Here we deploy a mathematical model which captures this behavior, incorporates a direct measure of 

18lockdown efficacies, and allows derivation of a maximal estimate for the basic reproductive number Ro (mean 

191.6-1.8). We were able to test this approach by comparing the approximated "herd immunity" to the vaccination 

20coverage observed that corresponded to rapid declines in community infections during 2021. The estimates 

21reported here agree with the observed phenomena. Moreover, the decay rates d (0.4-0.5) and rebound rates r0 (0.2-

220.3) were similar throughout the pandemic and among all the nations and regions studied. Finally, a longitudinal 

23analysis comparing multiple national and regional results provides insights on the underlying epidemiology of 

24SARS-CoV-2 and lockdown and vaccine efficacy, as well as evidence for the existence of an endemic steady state 

25of COVID-19.
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29Introduction

30Quantitative studies of viral infection in human severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) 

31infected subjects have been enabled by the massive global deployment of sensitive and rapid PCR testing for 

32detecting viral RNA in infected persons. Data obtained with these procedures have allowed for extensive 

33mathematical modeling of infection expansion dynamics [1]. Indeed, epidemiological modeling of this pandemic 

34has exploded, though results have been mixed and proved how difficult it can be to provide accurate information 

35and predictions, especially in the early stages of the pandemic [2]. 

36COVID-19 cases initially grew exponentially in every nation. Reduction of community infection was initially 

37achieved by non-pharmaceutical and social distancing interventions [3,4]. The drastic social distancing measures 

38undoubtedly curbed viral expansion [5]. However, the underlying biological, environmental and social dynamics 

39were not fundamentally modified, and viral circulation was only temporarily inhibited. National vaccination 

40programs deployed during 2021 were also aimed to block person-to-person infection. These interventions were 

41enacted at different times, with different levels of enforcement, compliance and extent among nations and in major 

42regions within nations. This global "natural experiment" makes the COVID-19 pandemic a unique opportunity to 

43longitudinally model epidemiological dynamics. 

44COVID-19 modeling is primarily based on the standard SIR model as the foundational tool of mathematical 

45epidemiology and attempts to capture the main characteristics of the complex interplay among the virus, its host 

46and the environment [6]. The theoretical SIR model's solution converges on a logistic-like s-curve trajectory with 

47rapid expansion reaching a peak and declining in one wave [7]. Many much more elaborate models were deployed 

48to study COVID-19 dynamics [8,9]; however, complexity invokes problems such as overfitting, global 

49optimization, and interpretability. An important feature not reproduced in these models is the existence of a non-

50trivial equilibrium setpoint.

51A key criterion of epidemic expansion is the basic reproductive number (Ro) which represents a disease's 

52transmissibility. Specifically, it is the average number of productive secondary infections arising from one active 

53infectious individual [10]. It is derived from the ratio between the infection and removal rate constants in the SIR 

54or similar models [11]. A bifurcation threshold condition for the occurrence of a sustained epidemic is Ro≥1, 

55meaning that as Ro<1 the infection will converge on the disease-free state. This is also an indication for "herd 
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56immunity" [12,13]. In contrast to the outcome of a disease-free state, most models in the context of COVID-19 

57have lacked capacity to depict sustained endemic levels of infection.

58Estimation of the value of Ro is commonly based on the initial exponential growth rate [14] and the median 

59infectious period [15,16]. This is clearly an overestimate as it disregards the removal rate of cases [17]. Another 

60problem is it ignores the distinctive infection peak and inherent inevitable negative second derivative predicted 

61by SIR models. Other approximations treat reproductive rates as a function of time during the epidemic. Wallinga 

62& Lipsitch [18] summarize the main methods to calculate this time-dependent "effective" R (Re). A recent review 

63demonstrated that Cori et al. [19] derived an accurate estimate for this parameter [20]. It has also been suggested 

64that a simple Dirac delta distribution can be used as a proxy for Re [21]. These are important though Re will 

65fluctuate as a function of the changes in infection rates as the epidemic develops [22], but further discussion is 

66beyond the scope of this paper. While these measure changes in infection rates change over time (e.g., the first 

67derivative) they do not capture the underlying fundamental biological and social interactions.

68This paper highlights applicability of mathematical models based on the viral dynamics paradigm [23–25]. A 

69notable characteristic of these models is a non-trivial non-zero infection dynamical steady state equilibrium 

70setpoint. Further, they represent effects of interventions to block transmission of the pathogen throughout the 

71population. The major advantage of this methodology is the ability to derive estimations for the values of model 

72parameters directly from the data [26]. 

73We refrain from exploring the dynamics of the COVID-19 virus itself. SARS-CoV-2, the virus that causes 

74COVID-19, keeps changing and accumulating mutations in its genetic code. Some variants emerge and disappear, 

75while others emerge, spread, and replace previous variants. For the USA, for example, variant proportions are 

76tracked at https://covid.cdc.gov/covid-data-tracker/#variant-proportions. Obviously, the strategies for suppression 

77can interact with the evolution of the virus. We simply assume a virus able to evolve so that it can reinfect 

78previously infected individuals.

79Publicly available data for COVID-19 were used to characterize the epidemiological dynamics of community 

80infection. The implementation of efficacious social distancing and lockdown interventions instituted across many 

81nations allows the modeling of the dynamics of infection decay and subsequent rebound as interventions were 

82lifted or lose effectiveness. A longitudinal comparison among nations and major subnational regions provides 

83insights into pathogenesis that would be difficult or impossible to obtain in past pandemics.
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84Materials and Methods

85Epidemiological data 

86Data for confirmed active infected cases, COVID-19-associated mortality and PCR tests were retrieved [27]. For 

87most purposes we stop in September 2021 when the widespread availability of self-testing reduces the reliability 

88of some of the relevant time series. Preliminary review shows that the data exhibit two artifacts. First, a weekly 

89cycle is clearly observed with a tendency for more reporting in the middle of the week and less during weekends, 

90sometimes with orders-of-magnitude differences. Second, large inter-day fluctuations are reported, sometimes 

91with differences spanning multiple orders-of-magnitude. While it is common to smooth the data with a moving 

92average, the resulting estimates are highly sensitive to the fitting window, especially with small numbers and the 

93extremely noisy data (up to an order-of-magnitude between days). Therefore, weekly averages were adopted here 

94and calculated from the geometric mean of the daily measurements to stabilize the variance in the data [28]. 

95There is clearly a delay between time of infection and reporting. Incubation times for COVID-19 are 6.2 days and 

96the mean generation interval is 6.7 days, with a concurrent latent period of 3.3 days [29]. Further, there is a lag 

97between infection and detection by lab test with a skewed distribution [30,31]. While the exact value is unknown, 

98it will only offset the data in time and does not affect the shape of the infection trajectories. Therefore, a ten-day 

99delay is applied here to all confirmed case numbers, only shifting them left in time and not affecting the shape of 

100the data.

101Inclusion criteria

102Analyses were performed for nations and major subnational regions with 10-fold mean difference between PCR 

103tests and positive confirmed cases, high GDP (PPP) per capita [32] indicating the ability to perform an extensive 

104testing program, and approximately one log decrease in infections from peak to minimum rates during lockdowns. 

105The forty-five units qualifying are 24 European nations, Australia and New Zealand, the UK and the four nations 

106constituting the UK, 10 USA states, and four Asian nations. 

107Lockdown interventions, mobility and vaccination coverage

108Dates for national policy lockdown initiation and termination are available and collated from numerous sources 

109and the COVID-19 stringency index was accessed [33]. Even so, compliance was imperfect, and mobility was 

110used as a minimal estimate for the efficacy of the intervention to block infection [34,35]. The number of doses of 
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111vaccines were retrieved from Mathei et al. [36] and population data from the World Bank [37]; these enable 

112calculation of the percent of the populace vaccinated. To compare countries and regions, data are commonly 

113normalized to population size, such as "per million." However, COVID-19 is strongly dependent on population 

114density [38]. Therefore, to alleviate the population density bias, the data were normalized to the built-up area 

115[39,40].

116Mathematical modeling of COVID-19

117The epidemiology of COVID-19 was analyzed using a mathematical model of viral dynamics. The three model 

118compartments include susceptibles (S), COVID-19-confirmed individuals (I), and free virus particles (V). The 

119model assumes that uninfected people are being made available at a constant rate () and the virus productively 

120infects them with probability VS. Detected individuals are removed by quarantine at rate I. Deaths can be 

121thought of as a subset of these and are neglected for the purposes of this study. Viral particles are released from 

122infected individuals at rate pI and are inactivated at rate cV. These assumptions lead to the coupled nonlinear 

123ordinary differential equations:

124

125(1)

126

127Intervention efficacy to block infection, via lockdowns or vaccination, is parameterized here by (t). Assuming 

128partial and incomplete effectiveness, e.g. 0<<1, the system will converge on a new lower steady state. The mean 

129infectious time is 1/. The average number of virus particles produced during the infectious interval of a single 

130infected person (the burst size) is given by p/c. While asymptomatic carriers are thought to be efficient spreaders, 

131they are neglected here, and we assume as a first approximation that their dynamics are similar with I and change 

132in tandem with the confirmed cases. 

133Sustained viral propagation ensues if, and only if, the average number of secondary infections that arise from one 

134productively infected person is larger than one (1). This is the basic reproductive number and for Eq. (1) it is 

135defined by Ro=p/(c). The intrinsic growth rate constant, r, is solved for by the dominant root of the equation 

136r2+(+c)r+c(1−Ro). However, if c>> and r, then it can be simplified to: r=(Ro−1). When Ro>1, then infection 

137rates will initially experience an exponential increase [41]. 

(1 ( ))dS t VS
dt

    

(1 ( ))dI t VS I
dt

    

dV pI cV
dt

 

 . CC-BY 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted January 19, 2023. ; https://doi.org/10.1101/2023.01.19.23284768doi: medRxiv preprint 

https://doi.org/10.1101/2023.01.19.23284768
http://creativecommons.org/licenses/by/4.0/


6

138The model predicts that as the infection grows it decelerates. The infection will converge in damped oscillations 

139to the non-trivial equilibrium: S̄=c/p , Ī=(Ro−1)c/(p) , V̄=(Ro−1)(). This dynamical steady state is obtained 

140when the number of new infections equals the number of recovering individuals, where every productive infection 

141generates, on average, only one more new secondary infection. A global stability analysis can be found here [42]. 

142As far as we know,this is the simplest dynamical model which affords a non-trivial non-zero infection steady 

143state. 

144Assuming a quasi-steady state, e.g., the viral dynamics are much more rapid than the epidemiological phenomenon 

145(p>>c), then Eq. (1) can be reduced to:

146

147(2)

148'= p/c

149with no loss of generality for the major trajectories of infection dynamics [43]. The model dynamics are shown 

150in Figure 1. This functional form has the advantage to decrease model complexity, especially because the viral 

151compartment is less relevant at the community-scale. Exponential decay under interventions to block infection is 

152given by r0=−(1−)'S0, where S0 are the number of susceptibles at t0. Under highly efficient interventions, i.e., 

153→1, then a minimal estimate for  can be derived directly from the observed decay half-life of t½=ln(2)/ [44,45]. 

154When social interventions are withdrawn or vaccines become ineffectual at time t1, infections rebound at an 

155exponential rate given by r='S1−, where S1 is the level of available susceptibles at t1. Crucially, r can be obtained 

156directly from the observed slope on the semi-log graph, and its doubling-time is t2=ln(2)/r. This expansion in 

157infections will continue in damped oscillations returning to the steady-state.

158

159Figure 1. Epidemiological dynamics under interventions to block infection. Initially, infections rise exponentially 

160(though national COVID-19 testing programs were also ramping up). During stringent lockdown and effective 

161cessation of viral transmission, between t0 and t1, infection decays exponentially with a half-life of t½=ln(2)/r0, 

162where r0 is derived from the slope of the ln-transformed infection data. This provides a minimal estimate for the 

163value of parameter , assuming partial intervention efficacy (0<<1). This decay will decelerate reaching a lower 

164steady state. Infections will naturally rebound upon lifting of interventions and/or loss of vaccine efficacy with a 

(1 ) 'dS IS
dt

    

(1 ) 'dI IS I
dt
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165doubling time of t2=ln(2)/r and r also calculated from the exponential up-slope. The system will converge with 

166damped oscillations to an elevated infection steady state. This basic pattern will recur as interventions are 

167deployed at different times.

168

169

170Estimation of the basic reproductive ratio

171The basic reproductive number is based on a ratio among all five model parameters. However, the paucity of 

172independent knowledge and accurate values for them precludes adequate approximations of Ro. To alleviate this, 

173the relationship between the basic reproductive ratio (Ro) and the exponential growth rate (r) can be recovered 

174such that Ro=1+r(r++c)/c. If r+ is small compared to c, then this approaches:

175Ro=1+r/ (3)

176which can be calculated directly from the exponential slopes, r0 and r, as described above.

177Parameter values and statistical analysis

178To determine the initial values for model parameters, half-life decay during lockdowns and rebound doubling-

179times were calculated from the logn-transformed data of confirmed cases (weekly geometric means). Optimized 

180values were generated by nonlinear fitting (Berkeley Madonna v8), minimizing the objective function 

181 where Oi and Pi are the observed and expected values, for n datapoints, with the advantage of 

182stabilizing the variance during the fit [28]. Many functional forms for intervention efficacy () can be used but 

183for simplicity, generalizability and as a first approximation:

184

185for each intervention wave. The observed decrease in mobility is used here be used as a proxy to estimate its value 

186for each country [46]. Trivially, the proportion of the population needed to be vaccinated in order to block 

187community spread, known as "herd immunity" threshold is [47,48]:

188H=1−1/Ro (4)

 
1

log /
n

i i
i
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189Longitudinal comparisons on the parameter values is performed using the Mann-Whitney u test. 95% confidence 

190intervals, along with their statistical significance, are calculated as appropriate. Model errors (RMS) are reported. 

191Data, simulations and results are available online at: https://github.com/davidville/COVID-19.

192Results

193Dynamics of COVID-19 epidemiology

194A preliminary analysis of confirmed COVID-19 cases from 15 nations which did not implement stringent 

195lockdown policies, or were unsuccessful at their implementation, indicates widely varying rates and infection 

196levels (Fig. 2). By the end of Feb 2020 these nations had initial infection levels of ~100 cases per km2 with 

197sustained infection doubling times of 1.2-1.7 weeks. Levels increased exponentially for 20±8 weeks and stabilized 

198around a dynamical steady state with fluctuations no more than 0.5log. Setpoints among these countries were 100-

199400 cases per km2 built-up area per day. Interestingly, South Africa and Armenia exhibited spontaneously 

200oscillating kinetics with an amplitude one order-of-magnitude, perhaps alluding to the existence of a 'limit cycle'. 

201India exhibited one of the largest differences in infection over time, increasing to 102.5, declining to 101.5 then 

202peaking at 103 before declining spontaneously again to 102 cases per km2 built-up area per day. Because there 

203were no effective measures to block COVID-19 spread, the number of confirmed cases attained a dynamical 

204equilibrium around which case numbers fluctuated.

205  

206Figure 2. COVID-19 case levels for 10 nations with no or ineffective lockdowns (right and center panels) as 

207well as the Republic of South Africa and the United States (right panel), which instituted effective lockdowns. 

208

209Table 1. COVID-19 kinetic characteristics in countries with no effective lockdowns

Country Initial 
growth

Time to 
steady state

Steady 
State

rate   t2 weeks logI ± SD
Argentina 0.2     2.8 25 2.2 ± 0.3
Armenia* 0.4     2.0 11 2.2 ± 0.4
Brazil 0.6     1.1 13 2.4 ± 0.2
Chile 0.4     1.6 13 2.4 ± 0.3
Colombia 0.3     2.4 21 2.4 ± 0.3
Costa Rica 0.5     1.3 26 2.4 ± 0.5
Ecuador 1.3     0.5 19 1.9 ± 0.1
El Salvador 0.4     1.7 17 1.8 ± 0.3
India 1.1     0.6 20 3.9 ± 0.5
Iran 0.2     4.1 45 2.3 ± 0.4
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Iraq 0.4     1.7 22 2.5 ± 0.2
Mexico 0.8     0.8 17 1.7 ± 0.2
Oman 0.5     1.5 11 2.1 ± 0.4
Pakistan 0.3     2.6 25 2.3 ± 0.4
Peru 0.8     0.8 16 2.5 ± 0.3
S. Africa* 0.4     1.9 16 1.8 ± 0.4

mean 0.5     1.7 20 2.3
CI95% 0.4-0.7   1.2-2.2 15-24 2.0-2.6

210*) limit cycle dynamics

211

212

213Dynamics during effective lockdowns

214COVID-19 positive case turnover allows analysis of effective social distancing through population-level 

215lockdowns. Non-pharmaceutical means to block new rounds of infections were initially rapid and effectively 

216implemented. Infections begin to decay exponentially 7-10 days after the lockdown policies are implemented, 

217with down slopes of 0.5±0.3 per week and corresponding to half-life values of 2.0±1.1weeks. Infection rates 

218attained nadir within 4-6 weeks with average efficacy of 68% (range: 46-93%), declining 1-2log lower than pre-

219lockdown case numbers. Confirmed cases rebounded exponentially with doubling times of 2.3-2.6 weeks 

220following the end of severe lockdowns. The trajectory then converged on an empirical equilibrium steady state of 

221approximately 102-103 cases per km2 built area and with fluctuations less than 0.5log.

222The USA is composed of distinct political entities, with large inter-state variation. SARS-CoV-2 surged and 

223waned differently, peaking and ebbing at different times among the various states. Therefore, analyses of COVID-

22419 for the USA have been done at the state level. Ten states conformed to the inclusion criteria. The US state 

225COVID-19 dynamics were less extreme with lockdown declines of less than 2log in some states, albeit the up- 

226and down slopes during lockdowns were comparable with European nations. Four states suffered elevated steady-

227states approximately one order-of-magnitude higher (103.2-103.5 cases per built-up area per day).

228The UK as a whole had, on average, similar dynamical characteristics as its neighbors. However, the observed 

229decay rates during lockdowns were significantly less rapid, leading to differences that will be expanded upon 

230later. Asian nations, generally, had somewhat different COVID-19 trajectories. While the initial doubling times 

231before lockdowns were similar to other nations and regions, half-lives during lockdowns were nearly twice as 

232rapid, 1.3±0.5 vs. 2.0±1.1 weeks. The Asian rebound rates differed less relative to other countries, though they 
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233were more prolonged with some clear oscillatory effects. Additionally, the setpoint infection rates in Japan and 

234South Korea were an order-of-magnitude lower than in Europe. 

235The earliest, most stringent and prolonged restrictions were implemented in Australia and New Zealand (Fig. 5). 

236Confirmed case rates were perturbed to low levels for 35 months. They were kept 0.5log below the lowest rates 

237achieved in Europe until July 2021. Even so, these strict "Zero COVID" policies were insufficient to snuff out 

238community spread entirely. As limits were relaxed, infections surged exponentially with doubling times and 

239equilibrium states comparable to elsewhere, even in the milieu of high vaccination coverage.

240

241Figure 3. COVID-19 positive confirmed cases between February 2020 and September 2021. Data are normalized 

242to built-up area to account for density effects in infection rates. On this scale the recurring patterns become 

243apparent. The exponential decay during lockdowns and following vaccination is clear, as are the geometric 

244rebound trajectories. On this scale the recurring patterns in COVID-19 community diffusion kinetics are 

245undoubtedly evident.

246

247
248 Figure 4. COVID-19 positive confirmed cases ten US states conforming to inclusion criteria from February 2020 

249to September 2021. More rural and less dense populations have lower COVID-19 infection rates, in general. Data 

250are normalized to built-up area to account for density effects in infection rates.

251

252Figure 5. COVID-19 positive confirmed cases for Australia and New Zealand from February 2020 to September 

2532021. The strict "Zero COVID" policies implemented for 35 months kept infection levels but they rebounded 

254when restriction were lifted and achieved levels similar to those in Europe. Data are normalized to built-up to 

255account for density effects in infection rates. 

256

257

258Modeling of early COVID-19 infection dynamics
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259The frequent and robust PCR testing for COVID-19 deployed in nations and regions included here allow for the 

260mathematical analyses of infectious persons. Results of the modeling and the parameter values obtained are found 

261in Table 2. The infection dynamics parameter values were obtained from the exponential slopes directly from the 

262data. Initial infection expansion rate constants were 0.5-0.7 per week during February-March 2020, with 

263corresponding doubling times of 1.2-1.6 weeks. Social distancing and lockdowns resulted in exponential decay 

264of infection rates from the pre-lockdown peak values of 0.4-0.5 per week with half-life values of 1.7-2.3 weeks. 

265This provides a maximal estimate for the case recovery rate constant parameter ().

266
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267Table 2. COVID-19 model characteristics

Country Initial
growth

Decay
slope

Lockdown 
efficacy

Rebound 
trajectory

Steady state 
infection rate

Reproductive
number

Herd 
immunity RMS

  rate       t2        t½ r0       t2 logI ± SD Ro obs      exp
wk-1   wks wk-1   wks % wk-1   wks number %        %

  Australia 0.3    2.3 0.8    1.6 53 0.41    1.7 1.8 ± 0.1 1.2 52   --* 0.17
  Austria 0.5    1.4 0.4    1.7 71 0.3     2.6 2.0 ± 0.2 1.6 38    25 0.19
  Belgium 0.3    1.8 0.3    2.3 66 0.3     2.3 2.3 ± 0.1 1.8 44    35 0.13
  Cyprus 0.2    4.1 0.4    1.9 50* 0.3     2.6 2.2 ± 0.4 1.7 41    40 0.33
  Czechia 0.6    1.1 0.5    1.5 60 0.3     2.2 2.9 ± 0.2 1.7 41    33 0.23
  Denmark 0.3    2.1 0.2    3.9 69 0.2     4.6 2.0 ± .02 1.9 47   --* 0.21
  Estonia 1.3    0.5 0.4    1.8 64 0.2     3.0 2.4 ± 0.2 1.6 38    26 0.19
  Finland 1.0    0.7 0.3    2.1 51 0.3     2.7 1.2 ± 0.2 1.8 44    22 0.15
  France 0.7    2.0 0.6    1.2 79 0.3     2.5 2.3 ± 0.2 1.5 33    33 0.18
  Germany 0.5    1.3 0.4    2.0 57 0.3     2.2 2.4 ± 0.2 1.9 47    28 0.20
  Greece 0.4    1.6 0.2    3.0 80 0.2     3.0 1.9 ± 0.2 2.0 50    25 0.26
  Hungary 0.9    0.8 0.5    1.5 75 0.4     1.9 2.7 ± 0.3 1.8 44    37 0.26
  Iceland 0.7    0.9 0.9    0.7 58 0.4     2.0 1.9 ± 0.3 1.4 29    --* 0.33
  Ireland 0.5    1.5 0.4    1.6 76 0.3     2.7 2.0 ± 0.3 1.6 38    --* 0.27
  Israel 0.5    1.3 0.7    1.0 70 0.3     2.2 2.6 ± 0.3 1.5 33    37 0.30
  Italy 0.5    1.3 0.3    2.7 93 0.3     2.2 2.4 ± 0.3 1.8 44    29 0.17
  Luxembourg 0.6    1.2 0.4    1.7 71 0.4     1.9 2.5 ± 0.1 1.9 47    30 0.15
  Netherlands 0.6    1.2 0.7    1.0 67 0.3     2.0 2.7 ± 0.1 1.5 33    27 0.20
  New Zealand 0.6    1.1 1.5    0.5 50 0.2     3.1 2.0 ± 0.3 1.7 40    --* 0.33
  Norway 0.4    1.8 0.4    1.8 56 0.2     3.3 1.3 ± 0.2 1.5 33    22 0.19
  Slovenia 0.7    0.9 0.6    1.1 73 0.3     2.6 2.6 ± 0.1 1.4 29    36 0.19
  Slovakia 0.8   0.9 1.1     0.6  60 0.4     1.9   2.9 ± 0.2 1.4 29    28    0.20
  Spain 0.4    1.7 0.3    2.7 93 0.3     2.0 2.3 ± 0.3 2.3 57    63 0.29
  Switzerland 0.4    1.7 0.5    1.4 57 0.3     2.8 2.6 ± 0.3 1.5 33    27 0.18
UK 0.5    1.5 0.2    2.9 72 0.3     2.5 3.3 ± 0.2 2.2 55    22 0.14
  England 0.6    1.1 0.3    2.4 74 0.3     2.3 3.5 ± 0.2 2.1 52    22 0.12
  Wales 0.4    1.8 0.3    2.3 75 0.4     2.0 3.2 ± 0.2 2.1 52    38 0.14
  Scotland 0.8    0.9 0.4    1.6 72 0.2     3.7 2.7 ± 0.3 1.4 29    31 0.17

E
ur

op
e

  N. Ireland 1.1    0.6 0.4    2.0 67 0.3     2.4 2.8 ± 0.2 1.8 44    16 0.18
mean

SD
0.6   1.4
0.3   0.7

0.5   2.0
0.3   1.1

68
11

0.3     2.5
0.1     0.7

2.4
0.3 

1.7
0.3

41    28
  8    12

0.21
0.06

  Japan 0.6    1.3 0.5    1.3 80 0.4     1.9 1.3 ± 0.4 1.8 44    46 0.12
  Malaysia 0.5    1.5 0.6    1.2 72 0.1     6.5 2.1 ± 0.2 1.2 14    51 0.27
  Singapore 0.7    1.0 0.4    1.9 73 0.3     2.2 3.8 ± 0.4 1.8 44    --* 0.27A

si
a

  S. Korea 2.0    0.4 1.0    0.7 46  0.2     3.5 1.4 ± 0.1 1.2 16    --* 0.23
mean

SD
1.0    1.0
0.7    0.5

0.6    1.3
0.3    0.5

68
15

0.3     3.5
0.1    2.1

2.3
0.3

1.6
0.4

39    29
13    11

0.21
0.07

  Connecticut 0.6    1.1 0.3    2.2 56 0.1     6.5 2.7 ± 0.2 1.6 36    34 0.22
  Hawaii 0.8    0.9 0.9    0.8 85 0.3     2.5 1.9 ± 0.2 1.9 47    32 0.32
  Illinois 0.7    1.1 0.3    2.3 63 0.1     8.8 2.7 ± 0.4 1.4 29    26 0.19
  Massachusetts 0.6    1.2 0.3    2.3 69 0.1     6.9 2.8 ± 0.2 1.5 35    35 0.17
  Montana 0.7    1.0 1.0    0.7 64 0.4     1.7 1.4 ± 0.4 1.4 31    23 0.29
  N. Hampshire 0.7    1.0 0.4   1.7 55 0.3     2.2 2.4 ± 0.2 1.8 50    36 0.15
  New Jersey 0.4    1.9 0.3    2.8 68 0.2     4.3 3.5 ± 0.1 1.7 40   35 0.14
  New York 0.3    2.3 0.2    2.8 70 0.2     3.3 3.4 ± 0.2 2.0 50   34 0.11
  Pennsylvania 0.4    1.6 0.3    4.4 60 0.1     8.0 3.2 ± 0.2 1.8 44   32 0.11

U
S

  Rhode Island 0.6    1.1 0.2    3.3 69 0.1     6.4 3.4 ± 0.3 1.8 44   34 0.20
mean

SD
0.6    1.3
0.2    0.5

0.4    2.3
0.3    1.1

66
9

0.2     5.1
0.1     2.6

2.7
0.2

1.7
0.2

41   32 
 8    4

0.19
0.07

mean 0.6   1.2 0.5    2.0 67 0.3    3.2 2.5 1.7 40 0.20
CI95% 0.5-0.7  1.2-1.6 0.4-0.5  1.7-2.3 64-71 0.2-0.3  2.6-3.27 2.3-2.6 1.6-1.8 37-43 0.19-0.21
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268*) No rapid decreases in cases observed following vaccination.
269

270

271Infection rates rebounded with doubling times of 2.6-3.7 weeks (range:0.6-4.4 weeks) upon lifting of the extreme 

272social distancing measures. These represent a minimal estimate for r0. This is four-fold less rapid than the initial 

273pre-lockdown exponential growth rates. Finally, after 4-12 weeks infections reached a relatively stable setpoint 

274level with values ranging among countries ranging between 101.3-103.4 (CI95%: 102.3-102.6) cases per km2 built-up 

275area per day. Notably, initial pre-lockdown infection rates are significantly correlated with steady state infection 

276levels (PPMCC=0.41, P=0.037) alluding to the importance of the intrinsic infection rate and extent of very early 

277viral expansion in the infective dynamical and endemic steady state.

278Similar patterns were observed for ten states in the USA and five nations in Asian regions. Israel implemented a 

279second lockdown in 2020 leading to infections decaying with a half-life of 1.5 weeks and subsequent rebound 

280with a doubling time of 2.0 weeks; values which are only 15 and 43% more rapid than those during the primary 

281lockdown, respectively. Markedly, not only were decay and rebound slopes among countries of similar magnitude, 

282but they were also similar among infection waves within countries.

283Basic reproductive number (Ro)

284The analytical approach here contributes insight on the basic reproductive ratio for the community spread of 

285SARS-CoV-2. In the literature reporting on COVID-19, and other epidemics, this is approximated from the initial 

286exponential growth phase [14] and represents an overestimation because it ignores the / ratio. Here the "natural 

287experiment" of the efficient impedance of viral community spread during the initial phase of the SARS-CoV-2 

288pandemic allows the use of the empirical rebound up-slope (r) and values for the recovery/removal rate constant 

289(). The estimates for the basic reproductive number are provided in Table 2. Using experimentally established 

290values for  (0.4-0.5) from the decay slope during interventions to block viral expansion and ranges for r (0.2-

2910.3) leads to basic reproductive numbers ranging between 1.4-2.3, narrowing for a CI95% to 1.6-1.8. From this 

292perspective, active COVID-19 infected individuals would generate approximately 1.7 new secondary infections, 

293on average.

294Herd immunity and inhibition of infection by vaccination
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295Herd immunity is a threshold value at which new infections cannot perpetuate within the community and is 

296derived from the basic reproductive number. Indeed, nearly all countries experienced a rapid exponential decline 

297in case numbers with efficacies of 44-99% (CI95%: 64-72) and half-life values similar to those during lockdowns 

298(CI95%: 1.3-1.7. Table A1) following the distribution of SARS-CoV-2 vaccinations. The observed percent of the 

299population vaccinated which coincides with decay in confirmed cases is between 44-55%, based on the nations 

300and regions included here (Table 2). First, empirically, the values for Ro in other studies seem extremely high. 

301Second, now it is possible to test the previous calculation of Ro, which should be smaller than the observed values. 

302Indeed, the observed "herd immunity" was slightly above the values derived mathematically, as expected from 

303Eq. (4). 

304Delta variant wave rebound

305In June 2021, after the large decrease in COVID-19 following national vaccination programs, COVID-19 cases 

306rebounded spontaneously. The wave was driven by the Delta variant, which became dominant. This rebound was 

307characterized by doubling times of 1.1-1.3 (Table A1). It finally reasserted levels similar to those observed prior 

308to vaccination deployment. The decay due to vaccinations and this resurgence both correspond to the trajectories 

309observed in 2020. 

310Discussion

311Infection doubling times (t2) and half-life (t½) values reveal consistent rates with extremely small variance and 

312narrow range, longitudinally, among all countries analyzed here (Table 1). Mean doubling times for infection 

313levels during the initial exponential phase of the pandemic were 1.0 weeks (CI95%: 0.5-2.0). These were quite 

314robust with a caveat about the rate of deployment of testing regimes (see shorturl.at/hmuFN for analysis).

315Lockdowns were extremely effective by inhibiting physical contact and blocking the virus from circulating. 

316Countries with no effective social distancing measures rapidly reached a setpoint equilibrium state. Limiting 

317movement of the population was related to lockdown efficacy. Restrictions to travel of 45-93% decreased 

318infection rates by 10-fold or more, leading to an exponential decay of >90% in confirmed cases. Importantly, this 

319was uncorrelated with the minimal infection numbers. More stringent lockdowns do not appear to confer further 

320inhibition to stop viral diffusion and may signify the existence of an optimum in interventions to block COVID-

32119. The mean associated half-life value during lockdowns was 2.0 (CI95%: 1.7-2.39) with no statistically significant 
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322difference among the nations and regions studied here. The epidemiological interpretation of this measure is the 

323maximal value for the recovery rate of infected individuals.

324As distancing policies were lifted, infections rebounded exponentially as viral diffusion over the social network 

325is no longer perturbed. Intrinsic doubling times can therefore be determined empirically by the up-slope on a semi-

326log graph. The observed doubling time was consistent with 2.5±0.7 weeks in European countries. Asian nations 

327included here had values of 3.5±2.1, perhaps owing to their stricter regulations. In the states of the United States 

328the value was even higher at 5.1±2.6 weeks.

329Taken together, the rebound and decay rates were harnessed to provide a maximal estimate for the basic 

330reproductive number. Ro is consistent with a mean value of 1.7 (CI95%: 1-6-1.8), due to the invariance of the model 

331parameters. Spain, Greece, and Britain (i.e., England and Wales) were areas with elevated infectivity with values 

332of 2.3, 2.0 and 2.1, respectively. An important outcome of this calculation is the elucidation of the epidemiological 

333"herd immunity" threshold.

334During emergent pandemics, estimates of the basic reproductive number tend to be overestimated. EarlyCOVID-

33519 studies reported very high values [49,50]. Our estimates for SARS-CoV-2's Ro vary only slightly during waves 

336of COVID-19, which would make sense if the dynamical properties of the infection did not appreciably change, 

337and they are comparable to historical influenza pandemics [51] and commensurate with seasonal influenza 

338outbreaks [52]. Although these estimates are substantially lower than those reported elsewhere for COVID-19, 

339they agree with some studies [53]. 

340Vaccination deployment against SARS-CoV-2 had a dramatic effect on infection rates. Confirmed cases decayed 

341exponentially with a mean half-life value with similar rates as during the social distancing lockdowns, after 

342achieving the herd immunity threshold. For example, Israel with its early and rapid program experienced a half-

343life of 1.03 weeks in confirmed cases once 45% of the population was immunized. This agrees with the prediction 

344given by the approximations for R0 based on Eq. (3).

345Following the achievement of herd immunity, after approximately 30 weeks, infections spontaneously rebounded 

346again as the delta-variant emerged. The observed escape trajectory was empirically equivalent to the rebound 

347trajectories following the lockdowns and with doubling times approximately every 1.2±0.3 weeks, similar to the 

348post-lockdown rebounds doubling times. Interestingly, the Delta variant emerged in every nation included here 
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349within 4 weeks, surprising due to the low volume of international travel. Finally, infection rates returned to similar 

350levels as the pre-vaccination setpoint and invariant among the sampled countries. 

351Although infection rates tended to initially increase exponentially when numbers were low, they quickly saturated 

352to a level of 102-103 confirmed cases per km2 built-up area per day. This was reached in nearly all nations and 

353regions within 4-6 weeks, even in absence of interventions. Even New Zealand and Australia with strict and highly 

354effective lockdowns rapidly reached this level of infections with the lifting of social distancing measures). Such 

355observations, seen everywhere, suggest a basic, perhaps fundamental, shared epidemiological dynamic and the 

356importance of population density for the spread of SARS-CoV-2 [38,54,55]. 

357As we have shown, waves of both infection and suppression can define COVID-19. Our concluding perspective 

358views the infection data decomposed into their wavelet phases and modeled with the generalized multi-logistic 

359model [56]. This approach allows derivation of the saturation level of cases as well as the "characteristic time" 

360(t) denoting how long the infection takes to increase from 10% to 90% of its extent. While data for many nations 

361and regions resolve neatly into a succession of waves, Israel is unusual in having excellent data for (so far) seven 

362waves of infection as well as companion data about societal responses and suppression for the first five waves. 

363Figure 6 shows the first five infection waves and their durations ranging from 4.4 to 10.6 weeks. The sequence of 

364waves suggests the extremely dynamic interaction of COVID-19, generating new variants, with the social and 

365medical context, including lockdowns, distancing, and vaccines. Predicting new waves remains an unsolved 

366challenge.

367Figure 6. Logistic curves for first five waves of COVID-19 in Israel and the number of weeks each waves took 

368to run its course.

369

370

371To conclude, the dynamical properties of COVID-19 epidemiology are conserved with consistent kinetic patterns 

372with little variation during multiple waves of infection and globally among nations and subnational regions. 

373Nations and regions which implemented lockdowns sufficient to block community spread effectively experienced 

374a rapid decline in confirmed cases. However, with lifting of interventions, rates rebounded to the previous high 

375infection rates and attained a relatively stable empirical steady state. For COVID-19 societies so far appear to face 

 . CC-BY 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted January 19, 2023. ; https://doi.org/10.1101/2023.01.19.23284768doi: medRxiv preprint 

https://doi.org/10.1101/2023.01.19.23284768
http://creativecommons.org/licenses/by/4.0/


17

376a choice between relatively high oscillations involving waves of suppression and infection and lesser oscillations 

377around an endemic setpoint. The approach presented here based on the viral dynamics paradigm allows derivation 

378of fundamental measures vital to policy such as the basic reproductive number and lockdown efficacies. Values 

379for Ro derived here of 1.6-1.8 are maximal estimates and lower than other reports. Information on variables of 

380interest for policy normally difficult to obtain is available through this approach and may suggest monitoring 

381strategies efficient for accurate determination of the dynamical properties of future pandemics. 

382
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514Appendix A

515

516Table A1. Vaccination decay and Delta variant escape trajectories.

Country Vaccination 
intervention

Decay
slope Rebound slope Post-vax 

steady state
          t½ r       t2 logI       SD

% wk-1   wks wk-1   wks wk-1   wks
  Austria 60 0.48    1.44 0.60    1.16 __ ± __
  Belgium 45 0.50    1.39 0.51    1.36 __ ± __
  Cyprus 60 0.61    1.14 1.00    0.69 __ ± __
  Czechia 45 0.48    1.44 0.30    2.31 __ ± __
  Estonia 60 0.50    1.39 0.61    1.14 __ ± __
  Finland 50 0.32    2.17 0.48    1.44 __ ± __
  France 60 0.89    0.78 0.80    0.87 __ ± __
  Germany 60 0.54    1.28 0.47    1.47 __ ± __
  Greece 50 0.45    1.54 0.74    0.92 __ ± __
  Hungary 75 0.54    1.28 0.48    1.44 __ ± __
  Israel 60 0.67    1.03 0.59    1.17 __ ± __
  Italy 99 0.51    1.36 0.68    1.02 __ ± __
  Netherlands 50 0.52    1.33 0.6    1.2 __ ± __
  Norway 50 0.36    1.93 0.47    1.47 __ ± __
  Slovenia 90 0.76    0.91 0.44    1.58 __ ± __
  Slovakia 85 0.48     1.44  0.62   1.12 __ ± __
  Spain 80 0.47    1.47 0.70    0.99 __ ± __
  Switzerland 50 0.69    1.00 0.65    1.07 __ ± __
UK 75 0.35    1.98 0.47    1.47 __ ± __
  England 66 0.34    2.04 0.48    1.44 __ ± __
  Wales 80 0.34    2.04 0.58    1.20 __ ± __
  Scotland 61 0.31    2.24 0.68    1.02 __ ± __
  N. Ireland 72 0.29    2.39 0.48    1.44 __ ± __

E
ur

op
e

mean
SD

64
15

0.50   1.52
0.15   0.45

0.58   1.27
0.15   0.33

__ ± __
__ ± __

  Japan 99 0.5    1.3 0.6    1.3 __ ± __
  Malaysia 50 0.6    1.2 0.5    1.5 __ ± __
  Singapore 60 0.4    1.9 0.7    1.0 __ ± __A

si
a

mean
SD

70
26

0.50    1.47
0.10    0.38

0.60    1.27
0.10    0.25

__ ± __
__ ± __

  Connecticut 75 0.55    1.26 0.61    1.14 __ ± __
  Illinois 83 0.50    1.39 0.58    1.20 __ ± __
  Massachusetts 99 0.49    1.41 0.77    0.90 __ ± __
  N. Hampshire 91 0.51   1.36 0.69    1.00 __ ± __
  New Jersey 44 0.80    0.87 0.55    1.26 __ ± __
  New York 84 0.47    1.47 0.52    1.33 __ ± __
  Pennsylvania 65 0.41    1.69 0.52    1.33 __ ± __
  Rhode Island 98 0.61    1.14 0.69    1.00 __ ± __

U
S

mean
SD

80
18

0.54    1.32
0.12    0.24

0.62    1.15
0.09    0.16

__ ± __
__ ± __

mean 69 0.51    1.47 0.59    1.24
CI95% 62-75 0.46-0.56   1.3-1.6 0.55-0.64   1.1-1.3
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