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Abstract

Background
People with comorbidities are under-represented in clinical trials. Empirical estimates of treatment 
effect modification by comorbidity are lacking leading to uncertainty in treatment 
recommendations. We aimed to produce estimates of treatment effect modification by comorbidity 
using individual participant data (IPD).

Methods and Results
Using 126 industry-sponsored phase 3/4 trials across 23 index conditions, we performed a two-stage 
IPD meta-analysis to estimate modification of treatment effect by comorbidity. We estimated the 
effect of comorbidity measured in 3 ways: (i) the number of comorbidities (in addition to the index 
condition), (ii) presence or absence of the six commonest comorbid diseases for each index 
condition, and (iii) using continuous markers of underlying conditions (e.g., estimated glomerular 
function).

Comorbidities were under-represented in trial participants and few had >2 comorbidities.
We found no evidence of modification of treatment efficacy by comorbidity, for any of the 3 
measures of comorbidity. This was the case for 20 conditions for which the outcome variable was 
continuous (e.g., change in glycosylated haemoglobin in diabetes) and for three conditions in which 
the outcomes were discrete events (e.g., number of headaches in migraine). Although all were null, 
estimates of treatment effect modification were more precise in some cases (e.g., Sodium-glucose 
co-transporter inhibitors for type 2 diabetes – interaction term for comorbidity count 0.004, 95% CI -
0.01 to 0.02) while for others credible intervals were wide (e.g., corticosteroids for asthma – 
interaction term -0.22, 95% CI -1.07 to 0.54). 

Conclusion
For trials included in this analysis, there was no empirical evidence of treatment effect modification 
by comorbidity. Our findings support the assumption that estimates of treatment efficacy are 
constant, at least across modest levels of comorbidity.
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Introduction
Multimorbidity, the presence of two or more long-term conditions, is a global clinical and public 
health priority.1,2 The prevalence of multimorbidity is such that most people with a given long term 
condition also have comorbidities (referring to additional long-term conditions in the context of an 
index condition). There is uncertainty about how individual long-term conditions should be managed 
in the presence of comorbidities.3 A major driver of this uncertainty is the underrepresentation of 
people with multimorbidity in randomised controlled trials.4,5 Trial populations are typically younger, 
healthier and have fewer comorbidities than people treated in routine clinical practice. This has led 
clinical guideline developers to caution against the application of single-disease recommendations 
for people with multimorbidity.6 However, despite the challenges to clinical management posed by 
this uncertainty, the efficacy of treatments in the context of comorbidity is rarely assessed. It is 
therefore not clear, for most treatments, whether relative treatment efficacy differs in people with 
comorbidity.

Assessing individual differences in response to medical treatments is a controversial topic. 
Differences in treatment efficacy is typically assessed using subgroup analyses. Subgroup analyses in 
randomised controlled trials (RCTs) seek to assess if treatment efficacy differs by patient 
characteristics.7 Testing of pre-specified subgroup effects is common practice in RCTs of medical 
therapies.8,9 As such, subgroup analyses seek to inform stratified approaches to patient care by 
identifying groups for whom recommendations may be tailored.10 However, trials rarely report 
subgroup analyses by levels of comorbidity or for specific comorbidities. Furthermore, subgroup 
analyses are inconsistently executed and reported, as well as suffering a number of well-
documented statistical pitfalls,7,11 notably that analysis of subgroups risks false positive and false 
negative findings.11 RCTs are generally not powered to detect subgroup effects, and as such the 
sample size in subgroup analyses is frequently insufficient to detect clinically significant differences 
in treatment efficacy even if these were to exist.12 Conversely, by testing multiple subgroups, the 
likelihood of chance findings (i.e., false positives) is increased.7,12 

The limitations of trial-level subgroup analyses can be reduced using meta-analyses. However, when 
considering whether treatment efficacy varies by comorbidity, traditional study-level meta-analysis 
of published findings are likely to be inadequate as trials rarely report subgroup effects by 
comorbidity, and those that do may be subject to publication bias. Individual-participant data meta-
analysis has the potential to overcome these problems. We previously demonstrated, using data 
from >100 industry-sponsored clinical trials, that it was possible to identify comorbidities in most 
trials and that multimorbidity was common (although under-represented) in trial populations.4 
Furthermore, in a recent simulation study we demonstrated that combining trials on all comparisons 
for a given indication in Bayesian hierarchical models has several desirable properties in terms of 
estimating treatment effect modification by comorbidity.13 First, precision is higher compared to 
single-comparison meta-analyses, increasing the likelihood of detecting small (but clinically relevant) 
subgroup effects where these are present. Secondly, extreme values are attenuated towards the null 
(shrinkage), reducing the risk of false positive findings.13 Bayesian hierarchical models may therefore 
be a useful tool to assess treatment efficacy estimates in the context of multimorbidity.

This study aims to assess whether treatment effects are modified in the presence of comorbidity, by 
using individual participant data (IPD) from 126 trials to assess whether treatment efficacy for 23 
index conditions differs by i) age and sex, ii) number of additional long-term conditions (comorbidity 
count), (iii) the six commonest comorbidities for each index condition, (iv) by continuous biomarkers 
associated with comorbidity. 
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Methods
Study design
For trials of 23 index conditions we identified comorbid long-term conditions using IPD for each trial. 
We then summarised these as a comorbidity count (in addition to the index condition) for each 
participant. Further, we identified the six commonest comorbidities for each index condition across 
trials and defined a presence/absence variable for each. We estimated differences in treatment 
efficacy by fitting regression models to IPD for each trial to obtain trial-level estimates of covariate-
treatment interaction effects. We fit models for age and sex alone, for a comorbidity count, and for 
each of the six commonest comorbidities for each index condition. Trial level estimates were then 
meta-analysed to obtain drug- and index-condition specific estimates of treatment effect 
modification by comorbidity. This process is summarised in Figure 1 and explained in detail below.

All analyses were conducted in R (R Core Team, 2021). Analysis code, metadata (indicating, for 
example, how treatment arms and outcomes were selected) and data (except trial IPD) are available 
on the project github repository).
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Figure 1: Overview of analysis

Data sources
Trials were identified according to a pre-specified protocol.14 We focused on trials of 
pharmacological agents for 23 index conditions (Table 1). Eligibility criteria were industry-sponsored 
RCTs for one of the index conditions; registered with the United States Clinical trials registry 
(clinicaltrials.gov) on or after January 1990; phase 2/3, 3, or 4; including ≥300 participants, and with 
eligibility defined using an upper age limit of 60 years or more or no upper age limit. Smaller studies 
and studies with lower age limits were excluded as they were considered less likely to include 
sufficient people with comorbidity. From a list of all registered, eligible trials we then identified trials 
for which IPD were available from one of two repositories: Clinical Study Data Request (CSDR) or the 
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Yale Open Data Access (YODA) repository. The process of trial identification is described in detail 
elsewhere.4

Quantifying comorbidity
For each participant with a specified index condition in each of the included trials, we identified co-
morbidities from a pre-specified list of 21 conditions (cardiovascular disease, chronic pain, arthritis, 
affective disorders, acid-related disorders, asthma/chronic obstructive pulmonary disease, diabetes 
mellitus, osteoporosis, thyroid disease, thromboembolic disease, inflammatory conditions, benign 
prostatic hyperplasia, gout, glaucoma, urinary incontinence, erectile dysfunction, psychotic 
disorders, epilepsy, migraine, parkinsonism, and dementia).4 These comorbidities were based on 
previous work identifying comorbidities within trial IPD, and were based on assessment of medical 
history and concomitant medication data. In this previous work, we demonstrated that while for 
many trials medical history had been redacted, data on concomitant medications were widely 
available, and could be used to define comorbidities.4 This involved combining some conditions into 
the same definition (e.g., asthma and chronic obstructive pulmonary disease, which could not be 
differentiated based on medication use alone). These definitions were based on the World Health 
Organisation Anatomic Therapeutic Classification and are described in our previous publication and 
available on the project github repository.4 Where medical history data was available and coded 
using the Medical Dictionary for Regulatory Activities (MedDRA) coding system, we also identified 
the same conditions using MedDRA codes. 

Comorbidity count
For the primary analysis, we created a comorbidity count for each participant. This was the total 
number of comorbidities present, not including the index condition. This count was used as a 
numerical variable in all analyses. 

Individual comorbidities
For each index condition, we also identified the six most common comorbidities from the full list of 
21 possible comorbidities. These individual comorbidities were analysed as binary variables 
(reflecting the presence of absence of that specific comorbidity). 

Selected biomarkers/risk factors
In addition to the 21 comorbidities defined using medication and/or medical history, we identified 
five continuous biomarkers which may indicate comorbidity (e.g. renal impairment, hypertension, 
anaemia or liver disease) or risk factors (e.g. obesity). These were based on baseline trial 
measurements: estimated Glomerular Filtration Rate (eGFR, as a marker of renal impairment, taken 
from trial data where this was available and calculated from creatinine, age, sex, and race using the 
Modification of Diet in Renal Disease (MDRD) equations if it was not), body mass index (as recorded, 
or calculated based on height and weight), Fibrosis-4 (FIB-4) Index (as a marker of liver disease 
calculated from aspartate aminotransferase, alanine transaminase and platelet counts), 
haemoglobin, and mid-blood pressure (MBP, defined as 0.5 x (systolic blood pressure + diastolic 
blood pressure)).

Demographics
Age and sex were extracted from each trial based on the trial recorded values at randomisation.

Treatment arms
Treatment arm comparisons were pre-specified prior to undertaking the outcome analyses. For 
multi-arm trials the most extreme arms were selected for comparison (e.g., if different dosages were 
used, the highest dose was compared to placebo or usual care – e.g., canagliflozin 300mg, rather 
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than 100mg, vs placebo). Where placebo or usual care was included as a trial arm, this was selected 
as the comparator. Otherwise, we chose the arm with the least recently developed treatment as the 
comparator arm. This was to give the best chance of identifying effect modification, with the 
resulting analysis representing an upper limit on the degree of effect modification observed. 

Outcomes
We aimed to identify outcomes common across trials to facilitate meta-analysis. We obtained 
information from clincialtrials.gov via the Database for Aggregated Analysis of ClinicalTrials.gov 
(AACT; https://ctti-clinicaltrials.org/citation-policy/) on all outcomes (primary and secondary) for 
each trial. For each index condition we then identified one or more outcomes which appeared to be 
common to multiple trials (e.g., Forced expiratory volume in 1 second (FEV1) in chronic obstructive 
pulmonary disease (COPD) trials, 6-minute walk distance (6MWD) in pulmonary hypertension trials). 
Within the trial repositories we then reviewed the trial documentation to identify these outcomes 
for each trial.

Statistical analyses
In four separate analyses we i) estimated age and sex treatment interactions without including 
comorbidity, ii) estimated comorbidity-treatment interactions for the comorbidity count, iii) 
estimated comorbidity-treatment interactions for the six commonest comorbidities for each index 
condition and iv) examined covariate-treatment interactions for continuous biomarkers. Full 
descriptions of the modelling are provided in the supplementary appendix and are described briefly 
below.

IPD analysis
For trials where the outcome was a continuous variable, for each trial and analysis the change in 
each outcome was modelled using linear regression. For analysis (i), the final measure was regressed 
on the baseline measure, age (per 15-year increment, which was close to the standard deviation for 
most trials), sex (male versus referent group of females) arm (binary variable treatment/control) and 
interactions with arm for each covariate. For American College of Rheumatology-N (ACR-N, a 
measure of improvement in disease activity in rheumatoid arthritis, which is itself a measure of 
change) we did not include the baseline measure as a covariate. We then repeated this modelling for 
the remaining analyses (ii-iv) adding comorbidity covariates in addition to age and sex (comorbidity 
count, specific comorbidities, and continuous biomarkers for analyses ii-iv, respectively). From these 
models, the model coefficients, standard errors, and variance-covariance matrices were obtained 
and exported from the YODA and CSDR secure analysis platforms.

For trials where the outcome was a count or a binary variable, we fitted similar models using Poisson 
regression and logistic regression, respectively.

Meta-analysis
For the continuous outcomes, in order to convert the measures onto a similar scale we divided the 
estimates and standard errors by the minimum clinically important difference (MCID) for that 
measure. For most outcome measures, higher scores indicate worse outcomes (e.g., Bath Ankylosing 
Spondylitis Disease Activity Index (BASDI)). Where this was not the case (e.g., FEV1) we multiplied 
the values by minus one so that the direction of effect was the same for all trials. For the variance 
co-variance-matrix we divided each element by the MCID-squared. The MCID was selected using the 
published literature by hand-searching papers in the Core Outcome Measures in Effectiveness Trials 
(COMET) database for relevant conditions.15 This search was supplemented by simple internet 
searches (Google searches using the full and abbreviated names for each outcome and MCID, MID, 
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“minimum clinically important difference” or “minimum important difference”). Where no published 
MCID recommendations could be found, we used the MCID defined in the power calculations in the 
trial protocols. At this stage, for each index condition, we restricted the analysis to the single most 
common outcome across trials. In two index condition (Ankylosing spondylitis and hypertension), 
two outcomes were equally common; BASDAI and Bath Ankylosing Spondylitis Functional Index 
(BASFI) and diastolic blood pressure and systolic blood pressure, we arbitrarily chose BASDAI in the 
former case and chose systolic blood pressure in the latter as it is more prominent in clinical decision 
making.

For each drug class the model outputs were then meta-analysed. We used random-effects meta-
analyses where 5 or more trials were included within the same drug class, and fixed effects where 
there were fewer than five trials. We used Bayesian models since this allowed us to simultaneously 
model multiple coefficients (e.g., age-treatment and sex-treatment interactions). The Bayesian 
models were fit using the brms package.(29) Samples from the posterior distribution were obtained 
and summarised as the mean and 95% credibility intervals (CI). 

In case other researchers wish to use the results of our models of treatment-covariate interactions 
to inform subsequent analyses as informative priors, we obtained summaries of the posterior 
predictions. We did so only for analysis (ii) for continuous outcomes. In order to provide a more 
general set of priors, we also predicted the comorbidity count-treatment interaction for treatment 
comparisons/conditions not included in our model by obtaining samples from the posteriors. We 
then summarised these samples by fitting a Student’s t-distribution. As with the main analysis, these 
models were fitted using the brms package (see Supplementary appendix for additional details).
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Results
Trial characteristics
Trial baseline characteristics have been reported previously.4 For trials with continuous outcomes 
there were 20 index conditions and 47 treatment comparisons across a total of 109 trials. For 9 
index conditions there was only one treatment comparison across all trials. Diabetes, which was the 
condition for which there were the most trials (22), had the largest number of treatment 
comparisons (9) (Table 1). Within each model, all trials had a single common outcome except 
inflammatory bowel disease, where the ulcerative colitis trials used the MAYO score and Crohn’s 
disease trials used the Crohn's Disease Activity Index score. For trials with categorical outcomes 
there were 3 index conditions (migraine, osteoporosis and thromboembolism) and 11 treatment 
comparisons across a total of 17 trials, with three index conditions migraine, osteoporosis and 
thromboembolism. For the latter indication there were three more specific categories of indication - 
primary prevention (5 trials), secondary prevention (2 trials) and treatment (2 trials).

Table 1: Index conditions, outcomes and treatment comparisons for included trials
Index conditions Outcome Treatment comparisons Trials

Trials with continuous outcomes

Ankylosing 
Spondylitis

BASDAI score Interleukin inhibitors (L04AC)-IL6 [1],
Tumor necrosis factor alpha (TNF-) inhibitors (L04AB) [2]

3

Asthma FEV1 Glucocorticoids (R03BA) [2],
Other systemic drugs for obstructive airway diseases (R03DX) [1],
Selective beta-2-adrenoreceptor agonists (R03AC) [1]

4

Benign Prostatic 
Hypertrophy

IPSS Total Score Drugs used in erectile dysfunction (G04BE) [5] 5

Chronic Idiopathic 
Urticaria

DLQI Score Other systemic drugs for obstructive airway diseases (R03DX) [3] 3

Dementia ADAS score Anticholinesterases (N06DA) [3] & Thiazolidinediones (A10BG) [3] 6

Diabetes HBA1c Biguanides (A10BA) vs Glucagon-like peptide-1 (GLP-1) analogues (A10BJ) [1], 
Dipeptidyl peptidase 4 (DPP-4) inhibitors (A10BH) [1], 
Dipeptidyl peptidase 4 (DPP-4) inhibitors (A10BH) vs Glucagon-like peptide-1 (GLP-1) 
analogues (A10BJ) [1], 
Dipeptidyl peptidase 4 (DPP-4) inhibitors (A10BH) vs Sodium-glucose co-transporter 
2 (SGLT2) inhibitors (A10BK) [1], 
Glucagon-like peptide-1 (GLP-1) analogues (A10BJ) [2], 
Insulins and analogues (A10A) vs Glucagon-like peptide-1 (GLP-1) analogues (A10BJ) 
[2], 
Sodium-glucose co-transporter 2 (SGLT2) inhibitors (A10BK) [12], 
Sulfonylureas (A10BB) vs Dipeptidyl peptidase 4 (DPP-4) inhibitors (A10BH) [1], 
Sulfonylureas (A10BB) vs Sodium-glucose co-transporter 2 (SGLT2) inhibitors (A10BK) 
[1]

22

Erectile 
dysfunction

IPSS Total Score Drugs used in erectile dysfunction (G04BE) [1] 1

Gastro-
oesophageal 
Reflux Disease

Percent 
heartburn free 
days

Proton pump inhibitors (A02BC) [2] 2

Gout Urate Preparations inhibiting uric acid production (M04AA) [1] 1

Hypertension Systolic blood 
pressure

ACE inhibitors, plain (C09AA) vs Angiotensin II antagonists, plain (C09CA) [3], 
Angiotensin II antagonists, plain (C09CA) [1], 
Thiazides & plain (C03AA) [1]

5

Inflammatory 
Bowel Disease

CDAI Score or 
MAYO score

Interleukin inhibitors (L04AC)-IL12-IL23 [3], 
Selective immunosuppressants (L04AA) [2].
Tumor necrosis factor alpha (TNF-) inhibitors (L04AB) [6]

11

Inflammatory 
Arthropathy

ACR numerical Interleukin inhibitors (L04AC)-IL12-IL23 [1], 
Interleukin inhibitors (L04AC)-IL6 [4], 
Tumor necrosis factor alpha (TNF-) inhibitors (L04AB) [8],
Tumor necrosis factor alpha (TNF-) inhibitors (L04AB) vs Interleukin inhibitors 
(L04AC)-IL6 [1]

14

Osteoporosis BMD Total Hip Bisphosphonates (M05BA) [2], 
Bisphosphonates (M05BA) vs Parathyroid hormones and analogues (H05AA) [1],
Parathyroid hormones and analogues (H05AA) [2]

5
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Parkinson Disease UPDRS Total Dopamine agonists (N04BC) [4] 4

Psoriasis PASI score Interleukin inhibitors (L04AC)-IL12-IL23 [2],
Interleukin inhibitors (L04AC)-IL17A [4]

6

Pulmonary 
Disease, Chronic 
Obstructive

FEV1 Glucocorticoids (R03BA) [3],
Selective beta-2-adrenoreceptor agonists (R03AC) [1],
Selective beta-2-adrenoreceptor agonists (R03AC) vs Anticholinergics (R03BB) [2]

6

Pulmonary 
Fibrosis

FVC Other protein kinase inhibitors (L01EX) [2] 2

Restless Legs 
Syndrome

RLS Symptom 
Score Total

Dopamine agonists (N04BC) [3] 3

Rhinitis, allergic Total Nasal 
Symptom Score

fluticasone (R01AD08) [1] 1

Systemic Lupus 
Erythematosus

SLE Disease 
Activity Index

Selective immunosuppressants (L04AA) [2] 2

Trials with categorical outcomes

Migraine No. headaches topiramate (N03AX11) [5] 5

Osteoporosis Vertebral 
fracture

Parathyroid hormones and analogues (H05AA) [1] & Bisphosphonates (M05BA) [2] 3

Thromboembolic Bleeding [1]; 
DVT or PE [1]; 
DVT or PE and 
Bleeding [7]

Vitamin K antagonists (B01AA) vs Direct thrombin inhibitors (B01AE) [4],
Heparin group (B01AB) [1],
Heparin group (B01AB) vs Direct thrombin inhibitors (B01AE) [3],
Direct thrombin inhibitors (B01AE) [1]

9

 “Treatment comparisons” indicates the treatment comparisons for each trial based on drug class using the WHO ATC code (For L04AC-
Interleukin inhibitors the ATC class was also further split according to the specific interleukin(s). Where there is only a single code the 
comparator is either placebo or usual care). 

Continuous outcomes – age and sex treatment interactions
For all conditions with continuous outcomes, interaction terms for age- and sex-treatment 
interactions are shown in Table 2. For most drug classes, interaction terms for age included the null, 
indicating no statistically significant associations consistent with modification of treatment efficacy 
by age. However, in the diabetes trials, there appeared to be an attenuation in the treatment effect 
with increasing age for three drug classes (0.07 (95% CI 0.00 to 0.13) for Sulfonylureas vs SGLT2 
inhibitors, 0.09 (95% CI 0.01 to 0.17) for DPP-4 inhibitors vs SGLT2 inhibitors and 0.07 (95% CI 0.04 to 
0.11) for SGLT2 inhibitors versus placebo). Taking SGLT2 inhibitors versus placebo as an example, 
this can be read as follows – ‘the lowering effect on HbA1c of SGLT2 inhibitors versus placebo is 0.28 
(95% CI 0.16 to 0.44) mmol/mol smaller (since the MCID for HbA1c is 4 mmol/mol) per 15-year 
increment in age, for age 50 years versus age 80 years this corresponds to the effect being 0.56 (95% 
CI 0.32 to 0.88) mmol/mol smaller.

Table 2: Covariate-treatment interactions (expressed as multiples of minimal clinically 
important difference) by age and sex for continuous outcomes. Point estimates and 95% 
credible intervals 

Index condition Treatment comparison Age-
treatment 
interaction

Sex-
treatment 
interaction

Ankylosing Spondylitis Tumor necrosis factor alpha (TNF-) inhibitors (L04AB) -0.02 (-0.09 
to 0.05)

-0.06 (-0.19 
to 0.06)

Ankylosing Spondylitis Interleukin inhibitors (L04AC)-IL6 -0.01 (-0.10 
to 0.08)

0.03 (-0.13 
to 0.20)

Asthma Selective beta-2-adrenoreceptor agonists (R03AC) -1.16 (-2.05 
to -0.28)*

-1.15 (-3.18 
to 0.87)

Asthma Glucocorticoids (R03BA) 0.12 (-0.37 
to 0.60)

-0.40 (-1.41 
to 0.64)

Asthma Other systemic drugs for obstructive airway diseases (R03DX) 0.39 (-0.36 
to 1.13)

-0.84 (-2.25 
to 0.58)

Benign Prostatic 
Hypertrophy

Drugs used in erectile dysfunction (G04BE) -0.04 (-0.51 
to 0.42)

-

Chronic idiopathic 
urticaria

Other systemic drugs for obstructive airway diseases (R03DX) 0.09 (-0.15 
to 0.33)

0.58 (0.07 
to 1.07)*
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Dementia Thiazolidinediones (A10BG) 0.30 (-0.01 
to 0.61)

0.19 (-0.15 
to 0.54)

Dementia Anticholinesterases (N06DA) 0.09 (-0.15 
to 0.32)

-0.02 (-0.29 
to 0.26)

Diabetes INSULINS AND ANALOGUES (A10A) vs Glucagon-like peptide-1 (GLP-1) 
analogues (A10BJ)

0.02 (-0.06 
to 0.09)

0.04 (-0.05 
to 0.13)

Diabetes Biguanides (A10BA) vs Glucagon-like peptide-1 (GLP-1) analogues (A10BJ) 0.05 (-0.04 
to 0.14)

-0.00 (-0.12 
to 0.12)

Diabetes Sulfonylureas (A10BB) vs Dipeptidyl peptidase 4 (DPP-4) inhibitors (A10BH) 0.01 (-0.04 
to 0.06)

0.03 (-0.04 
to 0.10)

Diabetes Sulfonylureas (A10BB) vs Sodium-glucose co-transporter 2 (SGLT2) 
inhibitors (A10BK)

0.07 (0.00 
to 0.13)*

0.04 (-0.04 
to 0.12)

Diabetes Dipeptidyl peptidase 4 (DPP-4) inhibitors (A10BH) vs Glucagon-like peptide-
1 (GLP-1) analogues (A10BJ)

0.08 (-0.04 
to 0.21)

-0.02 (-0.17 
to 0.14)

Diabetes Dipeptidyl peptidase 4 (DPP-4) inhibitors (A10BH) vs Sodium-glucose co-
transporter 2 (SGLT2) inhibitors (A10BK)

0.09 (0.01 
to 0.17)*

0.05 (-0.05 
to 0.15)

Diabetes Dipeptidyl peptidase 4 (DPP-4) inhibitors (A10BH) 0.02 (-0.03 
to 0.06)

-0.01 (-0.07 
to 0.06)

Diabetes Glucagon-like peptide-1 (GLP-1) analogues (A10BJ) 0.02 (-0.13 
to 0.17)

0.29 (0.12 
to 0.49)*

Diabetes Sodium-glucose co-transporter 2 (SGLT2) inhibitors (A10BK) 0.07 (0.04 
to 0.11)*

-0.01 (-0.05 
to 0.03)

ED Drugs used in erectile dysfunction (G04BE) 0.33 (-0.34 
to 0.99)

-

Gastro-oesophageal 
reflux disease

Proton pump inhibitors (A02BC) -0.01 (-0.05 
to 0.04)

-0.10 (-0.18 
to -0.01)*

Gout Preparations inhibiting uric acid production (M04AA) 0.01 (-0.40 
to 0.43)

-0.51 (-1.78 
to 0.77)

Hypertension ACE inhibitors, plain (C09AA) vs Angiotensin II antagonists, plain (C09CA)  0.28 (-0.12 
to 0.70)

-0.02 (-0.60 
to 0.59)

Hypertension Thiazides, plain (C03AA) -0.01 (-0.72 
to 0.70)

 1.04 (-0.07 
to 2.15)

Hypertension Angiotensin II antagonists, plain (C09CA) -0.26 (-1.21 
to 0.70)

-0.02 (-1.36 
to 1.33)

IBD Selective immunosuppressants (L04AA) 0.11 (-0.04 
to 0.27)

0.09 (-0.16 
to 0.34)

IBD Tumor necrosis factor alpha (TNF-) inhibitors (L04AB) 0.06 (-0.09 
to 0.22)

-0.04 (-0.40 
to 0.26)

IBD Interleukin inhibitors (L04AC)-IL12-IL23 0.11 (-0.08 
to 0.30)

0.05 (-0.27 
to 0.36)

Inflammatory 
Arthropathy

Tumor necrosis factor alpha (TNF-) inhibitors (L04AB) vs Interleukin 
inhibitors (L04AC)-IL6

0.39 (-1.04 
to 1.82)

2.41 (-0.66 
to 5.48)

Inflammatory 
Arthropathy

Tumor necrosis factor alpha (TNF-) inhibitors (L04AB) 0.17 (-0.44 
to 0.79)

-0.87 (-1.82 
to 0.11)

Inflammatory 
Arthropathy

Interleukin inhibitors (L04AC)-IL12-IL23 1.72 (-1.92 
to 5.36)

0.31 (-5.40 
to 6.03)

Inflammatory 
Arthropathy

Interleukin inhibitors (L04AC)-IL6 0.28 (-0.33 
to 0.88)

0.00 (-1.12 
to 1.12)

Osteoporosis Bisphosphonates (M05BA) vs Parathyroid hormones and analogues 
(H05AA)

0.06 (-0.05 
to 0.17)

-0.00 (-0.26 
to 0.25)

Osteoporosis Parathyroid hormones and analogues (H05AA) -0.13 (-0.27 
to 0.02)

-

Osteoporosis Bisphosphonates (M05BA) 0.01 (-0.05 
to 0.07)

0.30 (0.14 
to 0.45)*

Parkinson Disease Dopamine agonists (N04BC) 0.19 (-0.20 
to 0.59)

-0.28 (-0.77 
to 0.19)

Psoriasis Interleukin inhibitors (L04AC)-IL12-IL23 0.04 (-0.11 
to 0.19)

-0.43 (-0.68 
to -0.18)*

Psoriasis Interleukin inhibitors (L04AC)-IL17A 0.07 (-0.03 
to 0.16)

-0.30 (-0.47 
to -0.12)*

Pulmonary Disease, 
Chronic Obstructive

Selective beta-2-adrenoreceptor agonists (R03AC) -0.34 (-0.91 
to 0.22)

0.00 (-0.68 
to 0.68)

Pulmonary Disease, 
Chronic Obstructive

Glucocorticoids (R03BA) 0.07 (-0.19 
to 0.32)

-0.15 (-0.43 
to 0.15)

Pulmonary Disease, 
Chronic Obstructive

Selective beta-2-adrenoreceptor agonists (R03AC) vs Anticholinergics 
(R03BB)

0.09 (-0.26 
to 0.42)

0.12 (-0.27 
to 0.53)

Pulmonary Fibrosis Other protein kinase inhibitors (L01EX) 0.05 (-0.48 
to 0.56)

-0.22 (-0.83 
to 0.42)
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Restless Legs Syndrome Dopamine agonists (N04BC) -0.05 (-0.45 
to 0.36)

-0.09 (-0.78 
to 0.58)

Rhinitis, allergic fluticasone (R01AD08) -0.86 (-2.55 
to 0.84)

1.40 (-2.32 
to 5.13)

Systemic Lupus 
Erythematosus

Selective immunosuppressants (L04AA) 0.03 (-0.12 
to 0.19)

-0.24 (-0.74 
to 0.26)

See Table 1 for abbreviations. Estimates are expressed as multiples of the minimum clinically important difference for each outcome. The 
effect estimates (age, and sex) were obtained from a model of each outcome on treatment arm, age, sex and age and sex treatment 
interactions.  Blank cells in the sex column are where there were no female participants in the trial (BPH and ED) or no male participants 
(osteoporosis)

Continuous outcomes – Comorbidity treatment interactions
For each drug class, Figures 2a-2c show the main treatment effect (black points, expressed as change 
in minimally clinically important difference) and the estimate for the comorbidity-treatment based 
on a comorbidity count. Meta-analyses for each drug class are shown in Figures 2 and, for classes 
where only one trial was analysed, trial-level estimates are shown in Figure 2c. Comorbidity count 
was not associated with any attenuation or strengthening in treatment efficacy; in all cases the 95% 
credible intervals included the null. When examining comorbidity-treatment interactions for the six 
most common comorbidities within each index condition, 95% credible intervals included the null for 
all estimates (supplementary table 1). Similarly, when assessing modification of treatment efficacy 
by continuous biomarkers all estimates included the null (supplementary table 2).

Informative priors for subsequent analyses including different index condition/treatment 
comparisons
On predicting treatment effect modification by comorbidity count for a notional unobserved 
condition and notional unobserved treatment comparison, the samples from the posterior were 
approximately t-distributed (central estimate = 0.01, dispersion = 0.01, degrees of freedom = 3.24).
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Figure 2: Treatment effect (grey = study level, black = meta-analysis) and comorbidity-
treatment interaction (red) based on comorbidity count. Meta-analysis of drug classes.
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Figure 2 continued: Treatment effect (black) and comorbidity-treatment interaction (red) 
based on comorbidity count. Meta-analysis of drug classes.
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Figure 2c: Treatment effect (black) and comorbidity-treatment interaction (red) based on 
comorbidity count. Single trial estimates.
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Categorical outcomes - morbidity-count treatment interactions
For the three index conditions with categorical outcomes (Table 1), there was no evidence of any 
comorbidity count treatment interactions. These findings are summarised in Table 3. 

Table 3: Comorbidity-treatment interactions for binary and count outcomes. Point estimates 
and 95 % credible intervals 

Outcome Condition Intervention Comparator Trials Comorbidity count 
treatment interaction

Number 
of 
headache
s

Migraine topiramate placebo 
(N03AX11)

5 1.03 (0.85-1.22)

Vertebral 
fracture

Osteoporosis teriparatide placebo 
(H05AA02)

1 0.87 (0.58-1.30)

Vertebral 
fracture

Osteoporosis zoledronic 
acid 

placebo 
(M05BA08)

2 0.96 (0.79-1.17)

Bleeding Primary 
prevention

dabigatran 
(B01AE07)

LMWH 
(B01AB)

2 1.06 (1.00-1.12)

DVT/DVT 
or PE

Primary 
prevention

dabigatran 
(B01AE07)

LMWH 
(B01AB)

3 1.07 (0.89-1.26)

Bleeding Primary 
prevention

dabigatran 
(B01AE07)

LMWH 
(B01AA03)

1 1.00 (0.96-1.04)

DVT/DVT 
or PE

Secondary 
prevention

dabigatran placebo 
(B01AE07)

1 0.82 (0.64-1.05)

Bleeding Secondary 
prevention

dabigatran placebo 
(B01AE07)

1 0.96 (0.60-1.54)

DVT/DVT 
or PE

Secondary 
prevention

dabigatran 
(B01AE07)

warfarin 
(B01AA03)

1 1.06 (0.94-1.19)

Bleeding Secondary 
prevention

dabigatran 
(B01AE07)

warfarin 
(B01AA03)

1 1.05 (0.64-1.70)

DVT/DVT 
or PE

Acute 
treatment

dabigatran 
(B01AE07)

warfarin 
(B01AA03)

2 1.00 (0.90-1.10)

Bleeding Acute 
treatment

dabigatran 
(B01AE07)

warfarin 
(B01AA03)

2 0.91 (0.75-1.10)

The interaction estimates represent the ratio per one-unit increase in comorbidity count; effect measures estimates above one indicate 
worse outcomes in the intervention compared to the comparison arm. For number of migraines the effect estimates are on the rate ratio 
scale, for the remainder the effect estimates are on the odds ratio scale.
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Discussion
Statement of principal findings
In an IPD meta-analysis of 109 trials we examined whether the efficacy of drug treatments differed 
by comorbidity. For 20 index conditions where the outcome variable was continuous (e.g., 
glycosylated haemoglobin in diabetes trials), efficacy did not differ by the total number of 
comorbidities or by the presence or absence of specific comorbidities. Similarly, for 3 conditions (17 
trials) examining outcomes which were discrete events (e.g., thromboembolism, bleeding, 
headaches, and fractures) there was no evidence of treatment effect modification by comorbidity 
count or by specific comorbidities.

Strengths and weaknesses of the study
This is the first IPD clinical trial meta-analysis, as far as we are aware, to examine whether treatment 
efficacy differs by comorbidity. Nonetheless, there are several important limitations. First, while for 
some index conditions (e.g., diabetes) there were many trials, for others there were few trials and so 
relatively few participants, limiting the precision with which covariate-treatment interactions could 
be estimated.

Second, most trials were phase 3 trials focussed on efficacy outcomes (e.g. change in a disease 
marker such as blood pressure or glycosylated haemoglobin) rather than pragmatic trials focussed 
on harder outcomes (such as the incidence of specific adverse health outcomes). The findings for the 
smaller number of trials (17 in total) where we did have harder outcomes (headaches, bleeding, 
thromboembolism, fracture) were similar to the findings for the remaining trials; there was no 
evidence of treatment effect modification by comorbidity count on the conventional scale (additive 
for continuous outcomes and relative for non-continuous outcomes). Nonetheless, the small number 
of trials and indications where hard outcomes were studied mean that caution is needed in 
extrapolating our findings to trials or meta-analyses focussing on such outcomes.

Third, while this analysis assesses treatment efficacy we did not assess whether comorbidities lead 
to variation in adverse effects of treatment. An appreciation of both benefits and harms is required 
in order to inform judgements about the net benefits of treatment in the context of comorbidity. 

Finally, while comorbidity was present in all the included trials, they remain under-representative in 
terms of the extent comorbidity.4,16-18 Specifically, there were few people in the included trials with 
high comorbidity counts (e.g., 4 or more conditions). This highly multimorbid population is not 
uncommon in routine clinical practice19 and presents considerable challenges for clinical decision 
making.3 Their exclusion from these trials means that our findings cannot be assumed to be directly 
transferable to patient groups with the highest degree of multimorbidity, for whom uncertainties 
over the net benefit of treatments are often greatest.20,21

Comparison with other studies
Several previous studies have reported findings on treatment effect modification in IPD meta-
analyses and meta-analyses of reported subgroup effects. However, these have largely been 
confined to major cardiovascular disease trials (e.g., for showing similar efficacy of statin in people 
with and without diabetes,22 or showing questionable net benefit of aspirin in primary prevention23) 
or to concordant conditions defined as those closely related to the index condition or target event 
for the trial (such as hypertension in stroke trials24). These studies have not considered the impact of 
comorbidity more broadly or of discordant comorbidities not related to the index condition of the 
trial. This represents an important omission, because there are a number of mechanisms by which 
the presence of discordant conditions might plausibly modify treatment efficacy (positively or 
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negatively) including increased diagnostic misclassification, altered pharmacokinetics or 
pharmacodynamics (e.g., altered drug excretion in people with mild renal impairment, or increased 
benefits of antiplatelet drugs in the presence of co-existent inflammatory conditions) and altered 
treatment-related behaviours (e.g., better or worse treatment adherence due to existing treatment 
regimens). Our study adds to this sparse literature showing that, on average, relative treatment 
effects are similar across different populations within trials (at modest comorbidity counts of 3 or 
fewer). This supports the standard assumption that treatment effects are similar when generalising 
from trial to non-trial eligible populations, at least for populations with limited prevalence of 
comorbidity such as in these trials.  

Although we found that relative treatment efficacy did not differ by comorbidity count, net overall 
treatment benefits may nonetheless differ in people with differing degrees of comorbidity. This is 
because differences in the baseline risk (e.g., the absolute risk of the outcome that the treatment is 
intended to prevent), differences in susceptibility to treatment-related adverse events, as well as 
differences in competing risks (e.g., absolute risk of mortality from other causes) may all lead to 
differences in the net overall benefit of treatment.25 Therefore, where comorbidity alters the 
(baseline) natural history of diseases, the likelihood of adverse treatment effects (e.g., comorbid 
renal impairment) or life expectancy (e.g., via discordant comorbidities associated with mortality), 
the effects of treatment must differ even assuming that there is no difference in efficacy. For 
example, while there is strong evidence that the benefits of dual antiplatelet therapy (DAPT) 
following myocardial infarction (versus a single antiplatelet) outweigh the risks,26,27 this may not be 
true for patients with co-existing COPD. Cardiovascular mortality is commoner in COPD than the 
general population, favouring DAPT.28 However, non-cardiovascular mortality is also higher,29 
favouring single-antiplatelet therapy because of competing risks. Intensive control of blood glucose 
and other risk factors in diabetes30,31 and anticoagulant use in atrial fibrillation,32 provide similar 
examples where the net overall treatment benefits are uncertain for people with comorbidity.

Implications
In order to estimate net overall treatment benefits, clinical guidelines and health technology 
assessments routinely use evidence synthesis.33 Such approaches combine (i) estimates of relative 
treatment efficacy with (ii) ‘natural’ history (standard comparator rates) to calculate absolute 
effectiveness, commonly expressed as the absolute risk reduction (ARR) or number needed to 
treat.34 However, hitherto evidence synthesis has rarely been used to estimate net overall treatment 
effects for people with multimorbidity. This may partly be due to uncertainty as to whether and how 
efficacy estimates differ in people with and without comorbidities. Since estimating the natural 
history rates of target and adverse events for people with multimorbidity is relatively 
straightforward using routine healthcare data (since such data are sufficiently large and rich in 
people with multimorbidity to produce such estimates), and within the limitations outlined above, 
our findings support the standard assumption of estimates of treatment efficacy being constant (at 
least at the modest levels observed within trial populations).

To support such evidence syntheses, we have provided a set of informative priors which can be used 
to propagate, into the final treatment effectiveness estimates, the additional uncertainty arising 
from applying estimates from clinical trials to populations rich in multimorbidity. We summarised 
the variation in treatment effects by comorbidity count as a set of Student’s t-distributions. These 
distributions can be used to inform modelling studies (e.g., health technology assessments) designed 
to extrapolate treatment effect estimates from trial populations to routine clinical practice where 
multimorbidity is more common. This has the potential to better inform regulatory bodies and 
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guideline developers as they seek to make treatment recommendations for people with 
multimorbidity. 

Our findings also have relevance for analyses of comorbidity sub-group findings in both single clinical 
trials and as part of meta-analyses. The lack of information for estimating sub-group effects in 
clinical trials and dangers of falsely claiming spurious sub-group effects is well established and a 
range of approaches have been advocated for dealing with this problem. These include limiting the 
number of sub-groups and performing corrections for multiple testing (e.g., the Bonferroni 
technique used in frequentist analysis), the analysis of treatment effect modification according to 
participant’s prognostic risk scores at baseline (which reduce the dimensionality of the problem and 
prioritises characteristics known to predict differences in the rates of target events)35 and, in a 
Bayesian context the use of subject-matter expert knowledge (via prior elicitation). The prior 
distributions derived from our modelling for the comorbidity-treatment interactions can help inform 
such prior-elicitation exercises. Another technique used in Bayesian subgroup analyses is to use off-
the-shelf conservative priors designed to avoid over fitting;36 our findings will help provide 
reassurance that such priors are unlikely to be overly conservative for modelling comorbidity-
treatment interactions.

Finally, our results have relevance for reporting of clinical trial results. Both comorbidity and frailty 
can be measured using data already collected from clinical trials and – as we show – it is feasible to 
estimate comorbidity-treatment interactions using such measures. In our project this required 
access to IPD a process which is expensive (in terms of analysis time) and complex (requiring formal 
contractual agreements). The PATH statement advocated that clinical trials should report treatment 
effect modification by baseline prognostic risk score.35 We agree that this is a useful approach 
because it reduces the complex problem of sub-group analysis into a single measure (reducing over-
fitting), and because, by definition, it targets variables which most strongly predict the risk of target 
events. This latter aspect is important as it helps inform evidence synthesis models applying trial 
results to a target population with a higher target event rate. For similar reasons we propose that 
trials should also report evidence of treatment effect modification by comorbidity or degree of 
frailty; this would both reduce the risk of overfitting by reducing comorbidity to a single variable that 
predicts rates of competing events. To inform judgements about net benefits, this same information 
should be provided for adverse events. In addition, more research is required to establish whether 
specific comorbidities may attenuate or strengthen treatment efficacy, as if these effects were in the 
opposite direction for different comorbidities, then a cumulative count of comorbidities may 
obscure this effect. 

Conclusion
We found no evidence that treatment efficacy differed by comorbidity within the levels of 
comorbidity observed within clinical trial populations. This finding held whether comorbidity was 
measured using a simple condition count or by the presence or absence of six common conditions. 
The analysis of these trials may be used to inform subsequent evidence syntheses, analysis and 
reporting of individual trials, meta-analyses, and health economic models. We provide model 
outputs in the form of prior distributions to support such analyses. 
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