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Abstract 32 
Human mitochondria contain a high copy number, maternally transmitted genome (mtDNA) that 33 
encodes 13 proteins required for oxidative phosphorylation. Heteroplasmy arises when multiple 34 
mtDNA variants co-exist in an individual and can exhibit complex dynamics in disease and in 35 
aging. As all proteins involved in mtDNA replication and maintenance are nuclear-encoded, 36 
heteroplasmy levels can, in principle, be under nuclear genetic control, however this has never 37 
been shown in humans. Here, we develop algorithms to quantify mtDNA copy number (mtCN) 38 
and heteroplasmy levels using blood-derived whole genome sequences from 274,832 individuals 39 
of diverse ancestry and perform GWAS to identify nuclear loci controlling these traits. After 40 
careful correction for blood cell composition, we observe that mtCN declines linearly with age 41 
and is associated with 92 independent nuclear genetic loci. We find that nearly every individual 42 
carries heteroplasmic variants that obey two key patterns: (1) heteroplasmic single nucleotide 43 
variants are somatic mutations that accumulate sharply after age 70, while (2) heteroplasmic 44 
indels are maternally transmitted as mtDNA mixtures with resulting levels influenced by 42 45 
independent nuclear loci involved in mtDNA replication, maintenance, and novel pathways. 46 
These nuclear loci do not appear to act by mtDNA mutagenesis, but rather, likely act by conferring 47 
a replicative advantage to specific mtDNA molecules. As an illustrative example, the most 48 
common heteroplasmy we identify is a length variant carried by >50% of humans at position 49 
m.302 within a G-quadruplex known to serve as a replication switch. We find that this 50 
heteroplasmic variant exerts cis-acting genetic control over mtDNA abundance and is itself under 51 
trans-acting genetic control of nuclear loci encoding protein components of this regulatory 52 
switch. Our study showcases how nuclear haplotype can privilege the replication of specific 53 
mtDNA molecules to shape mtCN and heteroplasmy dynamics in the human population. 54 
 55 

56 



 

INTRODUCTION 57 
 58 
Mitochondria are ancient organelles that contain a tiny, high copy number circular genome 59 
(mitochondrial DNA, mtDNA). Sequencing of the human mtDNA in 1981 (Anderson et al., 1981) 60 
revealed that it encodes 13 core protein components of the oxidative phosphorylation system, 61 
as well 2 rRNAs and 22 tRNAs required for their expression. The remaining ~1100 mitochondrial 62 
proteins, including all proteins required for mtDNA maintenance, replication, and transcription, 63 
are encoded by the nuclear DNA (nucDNA) and imported (Rath et al., 2020). Tissues can contain 64 
tens to thousands of copies of mtDNA per cell depending on cell type (D’Erchia et al., 2015). 65 
Variants in mtDNA can be maternally transmitted or arise somatically, and when they co-exist 66 
with wild-type molecules, lead to a state called heteroplasmy. While mtDNA maintenance is fully 67 
reliant on nucDNA-encoded proteins, a systematic understanding of how nuclear genetic 68 
variation influences variation in mtDNA abundance and heteroplasmy levels in humans is lacking. 69 
 70 
Defects in mtDNA are associated with a spectrum of human diseases (Frazier et al., 2019). Since 71 
the first identification of pathogenic mtDNA mutations (Holt et al., 1988; Wallace et al., 1988), 72 
scores of maternally inherited syndromes have since been characterized (Ratnaike et al., 2021). 73 
Mendelian forms of mitochondrial disease producing mtDNA deletion or depletion were later 74 
identified and mapped to nuclear genes involved in mtDNA replication, maintenance, and 75 
nucleotide balance (Nishino et al., 1999; Suomalainen et al., 1995; van Goethem et al., 2001). 76 
More generally, a quantitative decline in mtDNA copy number (mtCN) and an accumulation of 77 
somatic mtDNA mutations have both long been associated with aging and age-associated disease 78 
(Ashar et al., 2017; Fazzini et al., 2021; Wanagat et al., 2001). Mutations in mtDNA accumulate in 79 
many cancers and in a small subset of tumors fulfill criteria as “drivers” of tumorigenesis (Gopal, 80 
Calvo, et al., 2018; Gopal, Kübler, et al., 2018). 81 
 82 
Heteroplasmy dynamics are complex and presumed to be shaped by mutation, drift, and 83 
selection. The mtDNA mutation rate has been reported as 10-100x higher than the nucDNA (W. 84 
M. Brown et al., 1979; Thomas & Wilson, 1991), with the main non-coding region (control region, 85 
CR) containing three hypervariable regions thought to be mutational hotspots (Stoneking, 2000). 86 
The high copy number, elevated substitution rate, and lack of recombination have made mtDNA 87 
CR variants a valuable genetic tool in anthropology and forensics, even leading to the African 88 
mitochondrial “eve” hypothesis (Cann et al., 1987; Vigilant et al., 1991). Heteroplasmy can vary 89 
across siblings, attributed to germline bottleneck effects, and between cell types and tissues, 90 
thought to be due to random segregation and selection (Li et al., 2015; Walker et al., 2020). 91 
Mechanisms underlying heteroplasmy dynamics in humans remain obscure, though classical 92 
mouse studies identified nuclear quantitative trait loci (QTLs) controlling mtDNA segregation 93 
(Battersby et al., 2003), suggesting a role for nucDNA variation. 94 
 95 
Here, we characterize the spectrum of mtCN and heteroplasmy across ~300,000 individuals 96 
spanning 6 ancestry groups in UK Biobank (UKB) and AllofUs (AoU) and identify their nuclear 97 
genetic correlates. To our knowledge, this is the largest analysis of human mtDNA sequence to 98 
date. After rigorous blood cell composition corrections, we find that mtCN declines with age, is 99 
influenced by numerous nuclear genetic loci, and does not decline in most common diseases. 100 



 

mtDNA heteroplasmy shows two patterns: heteroplasmic single nucleotide variants (SNVs), 101 
which tend to be somatic and accumulate with age; and heteroplasmic indels, which are more 102 
common than SNVs, occur most frequently in the non-coding region, do not vary with age, and 103 
are quantitatively inherited as mixtures of multiple alleles along the maternal lineage. These 104 
indels are present in most individuals, showing variation across the population and even across 105 
single cells from one person. For the first time, we find that many heteroplasmies are influenced 106 
by a shared nuclear genetic architecture nominating genes with established roles in mtDNA 107 
replication and maintenance as well as mitochondrial genes with no prior links to mtDNA biology. 108 
These loci are likely acting by conferring a replicative advantage to specific mtDNA sequences. 109 
For instance, the most common heteroplasmy, found in more than 50% of the population, is a 110 
length variant in the mtDNA CR, which controls mtCN (in cis) and itself is influenced by nuclear 111 
loci (trans) implicated in a mitochondrial transcription/replication switch. 112 
 113 
RESULTS 114 
 115 
Calling mtDNA copy number and variants at scale 116 
We developed mtSwirl, a scalable pipeline for calling mtDNA variants and copy number from 117 
whole genome sequencing data (Methods, Supplementary note 1). We augmented a pipeline 118 
previously used to analyze mtDNA variation in gnomAD (Laricchia et al., 2022), now constructing 119 
self-reference sequences for each sample using homoplasmic and homozygous calls on the 120 
mtDNA and reference nucDNA regions of mtDNA origin (NUMTs, Supplementary figure 1A). 121 
mtSwirl shows improved mtDNA coverage, particularly among African haplogroups 122 
(Supplementary figure 1B-E), and reduced variant calls at very low heteroplasmy 123 
(Supplementary figure 1F), indicating reduced ancestry- and NUMT-specific mis-mapping. We 124 
observe high concordance of heteroplasmy estimates with the prior method used in gnomAD (R2 125 
= 0.996 for heteroplasmy > 0.05), with homoplasmies showing allele fractions now closer to 1 126 
suggesting reduced influence of NUMTs (Supplementary figure 1G, Laricchia et al., 2022). We 127 
used mtSwirl to quantify mtDNA traits across 274,832 individuals of diverse ancestry across UKB 128 
and AoU (Supplementary figure 2, Supplementary table 1), generating >7,800,000 mtDNA 129 
variant calls across all samples. 130 
 131 
Determinants of mtDNA copy number variation 132 
We began by identifying covariates of blood mtDNA copy number (mtCNraw) in UKB. Our analysis 133 
highlights the strong influence of blood cell composition on mtCNraw (R2 ~23%, Figure 1A) as 134 
previously reported (Hägg et al., 2020; Hurtado-Roca et al., 2016, Supplementary figure 3C). We 135 
identified several additional technical covariates including time of day, month of year, and fasting 136 
duration (R2 ~ 2.5%, Figure 1A, Supplementary figures 3E-3J). Following adjustment for all 137 
identified covariates (Methods, Supplementary note 2, 3), we find that corrected mtCN (which 138 
we term mtCNcorr) was unimodal in UKB across 178,134 subjects with an average of 61.66 copies 139 
per nuclear genome (Supplementary figure 3D). We observed a linear decline in mtCNcorr with 140 
age (Figure 1C) of approximately 2% per decade among both males and females. 141 
 142 
We next assessed the degree to which mtCNcorr is under nuclear genetic control. Our GWAS 143 
identified 92 linkage disequilibrium (LD)-independent nucDNA association signals across 46 loci 144 



 

(Figure 1D) after cross-ancestry meta-analysis, with an estimated SNP-heritability of ~4% 145 
(Methods). In contrast, mtDNA haplogroup explained < 0.5% of the variance in mtCNcorr with only 146 
a few associations of small magnitude observed (Supplementary figure 4A, B). 33 nuclear loci 147 
showed variants with a posterior inclusion probability (PIP) of 0.1 or greater after fine-mapping 148 
(Methods); 11 of these had protein-altering variants in the 95% credible set (CS) at PIP > 0.1 149 

Figure 1. Genetic and phenotypic determinants of mtDNA copy number in UK Biobank. A. Variance explained in mtCN 
by blood composition, technical, and demographic correction models. Relationship of B. mtCNraw and C. mtCNcorr as a 
function of age and genetic sex. D. GWAS Manhattan plot from cross-ancestry meta-analysis in UKB. Labeled genes were 
obtained either via fine-mapping or, if a credible set (CS) could not be constructed, mapping to the nearest gene. Red 
genes are mitochondrial or are implicated in mtDNA disease; † = CS variants proximal to the gene with posterior 
probability of inclusion (PIP) > 0.1; ‡ = CS variants with PIP > 0.9; ”c” = coding variant in the CS; underline = eQTL 
colocalization PIP > 0.1. Asterisks above peaks on chromosome 19 and 21 correspond to GP6 and RUNX1 respectively. E. 
Table of variants in the 95% CS with PIP > 0.1 causing a protein-altering change. Red indicates mitochondria-relevant. F. 
Standardized odds ratios for log mtCNraw, log mtCNcorr, and major blood composition phenotypes in predicting risk of 
selected common diseases in UKB. Inset numbers are p-values; error-bars are 95% CI. HTN = hypertension; MI = 
myocardial infarction; T2D = type 2 diabetes. Correlation between effect sizes for genome-wide significant lead SNPs 
detected for neutrophil count between neutrophil count and G. mtCNraw and H. mtCNcorr. Error bars represent 1SE, dotted 
line is weighted least squares regression line, inset corresponds to regression p-value. 
 



 

(Figure 1E) and seven showed eQTL colocalization with the assigned gene at PIP > 0.1 including 150 
TFAM, MFN2, NDUFV3, and RRM1. Seven loci contained genes implicated in disorders of mtDNA 151 
maintenance, six of which harbored variants with PIP > 0.1. Prioritized genes (Methods) encoded 152 
proteins that participate in the mtDNA nucleoid and replisome (TFAM, POLG2, TWINKLE, 153 
TOP1MT, LONP1), nucleotide metabolism (RRM1, RRM2B, DGUOK, AK3, SLC25A5), and 154 
mitochondrial fusion (MFN1, MFN2). The PNP/APEX1 locus was notable as these adjacent genes 155 
encode proteins in nucleotide metabolism and mtDNA repair, neither of which has been 156 
implicated in mtCN control. Fine-mapping implicated both genes, even identifying a missense 157 
variant in APEX1 at PIP > 0.9 (Supplementary figure 5A). Several additional loci included 158 
mitochondrial proteins with no prior links to mtDNA (SLC25A10, MCAT, MIEF2, NDUFV3). 159 
Telomerase (TERT) is in the vicinity of one locus, however fine-mapping did not provide additional 160 
evidence for its causality (Supplementary table 3).  161 
 162 
We next tested mtCNcorr for heritability enrichment in genes associated with organelles or organs 163 
using stratified LD-score regression (S-LDSC, Finucane et al., 2015, 2018; Gupta et al., 2021), 164 
Methods). Encouragingly, the most significant organelle enrichment was seen for the 165 
mitochondrion (Supplementary figure 4C). Across organs, skeletal muscle and whole blood were 166 
top scoring (Supplementary figure 4D). Whole blood enrichment is expected given the sampling 167 
site, but skeletal muscle enrichment was unexpected and may be due to shared patterns of gene 168 
expression between blood and muscle or non-cell autonomous control of blood mtCN. 169 
 170 
Blood cell composition confounds prior genetic and phenotypic associations with mtCN 171 
Although many prior studies have reported associations between low blood mtCN and common 172 
diseases (Ashar et al., 2017; Chong et al., 2022; Fazzini et al., 2021; Yang et al., 2021), we could 173 
not replicate these results using mtCNcorr in UKB for type 2 diabetes, myocardial infarction, 174 
stroke, hypertension, or dementia (Figure 1F). We tested 24 other common diseases and only 175 
observed lower mtCN in individuals with osteoarthritis (Supplementary figure 3K). Upon 176 
repeating this using mtCNraw, without adjusting for blood composition, we recovered these prior 177 
associations (Figure 1F, Supplementary figure 3K). Even the oft-reported elevated mtCN in 178 
females (Ding et al., 2015) appears to be largely driven by blood composition (Figure 1B, 1C). Our 179 
genetic analyses underscore the confounding effects of blood composition in previous work. We 180 
replicated (at p < 5*10-5) 70 of the 96 previously reported mtCN GWAS loci (Longchamps et al., 181 
2021) using mtCNcorr, with 37 at genome-wide significance (GWS) (Methods). However, we 182 
recover 12 additional loci from this prior study at GWS using mtCNraw including loci containing 183 
HBS1L-MYOB, C2, HLA, GSDMC, and CD226, which are linked to blood cell types and inflammation 184 
(Supplementary figure 4F). In contrast, associations near TFAM, a well-known mtCN controlling 185 
gene (Ekstrand et al., 2004), strengthen by ~40 orders of magnitude following blood composition 186 
correction. It has long been known that inflammation is associated with cardiometabolic disease 187 
(Aul et al., 2002); indeed, elevations in inflammatory blood cell indices predict elevated risk for 188 
26/29 tested diseases in UKB (Figure 1F, Supplementary figure 3L). Bidirectional Mendelian 189 
randomization showed that effect sizes for GWS loci for neutrophil count were strongly positively 190 
correlated with corresponding mtCNraw effect sizes (Figure 1G) while the converse did not 191 
convincingly hold (Supplementary figure 4G), suggesting that changes in blood cell composition 192 
cause mtCNraw changes rather than the reverse. Importantly, neutrophil count effect sizes did not 193 



 

predict corresponding mtCNcorr effect sizes (Figure 1H, Supplementary figure 4H). The most 194 
parsimonious explanation for our observations is that previously reported associations between 195 
blood mtCN and common diseases are, in many cases, secondary to blood composition changes. 196 
 197 
Nuclear genetic control of variation in coverage across the mtDNA genome 198 

Whole genome sequencing (WGS) yields high coverage across the 16,569 bases of the mtDNA, 199 
but it is non-uniform (Figure 2A). We observe a coverage dip by over 50% in the major non-coding 200 

Figure 2. Nuclear genetic control of relative mtDNA coverage in the non-coding region. A. Mean per-base coverage across 
the mtDNA in UKB. Zoomed dropdown highlights coverage depression in the mtDNA non-coding region. Arrows correspond to 
stages of replication: red dashed arrow = RNA primer; black dashed arrow = transient DNA “primer” flap; black solid arrow = 
retained replicated DNA. Grey ribbon is +/- 1 standard deviation. CSB = conserved sequence box. B. GWAS Manhattan plot of 
the residual of the regression of mtDNA median DNA primer coverage on median RNA primer coverage. C. GWAS Manhattan 
plot of the residual of the regression of mtDNA median DNA primer coverage on median 7s DNA region coverage. Insets for B 
and C show 2D histograms of the correlation between the respective quantities across all individuals in UKB. Red genes are 
mitochondrial or are implicated in mtDNA disease; † corresponds to CS variants proximal to the gene with posterior probability 
of inclusion (PIP) > 0.1; ‡ corresponds to CS variants with PIP > 0.9, ”c” corresponds to a missense variant in the CS; underline 
corresponds to eQTL colocalization PIP > 0.1. D. Structure of MGME1 (5ZYV) shown with bound ssDNA in dark blue, the 310 
helix in pink and the T265 alpha carbon as a red sphere. Inset shows the hydrogen bond between T265 and I262. 
 



 

segment of the mtDNA called the control region (CR), which contains the light strand promoter 201 
(LSP), three conserved sequence blocks (CSBs), the heavy strand origin of replication (OH), and 202 
the D-loop, which contains a stable third strand of DNA (7s DNA) (Supplementary figure 6). 203 
mtDNA replication starts with RNA primer synthesis from LSP-CSBII (red dashed arrow, Figure 204 
2A). Primed mtDNA synthesis begins at CSBII, with the nascent DNA between CSBII and OH 205 
forming a transient flap called the “DNA primer” (black dashed arrow, Figure 2A). Further 206 
replication produces the persistent 7s DNA after which replication proceeds (black solid arrow, 207 
Figure 2A; c.f. Falkenberg & Gustafsson, 2020). In theory, we expect the highest local WGS 208 
coverage in the persistently triple-stranded 7s DNA, lower coverage in the transiently triple-209 
stranded “DNA primer” region, and lowest coverage in the RNA primer region. This is what we 210 
observe (Figure 2A). 211 
 212 
We hypothesized that genetic variation in nuclear-encoded mtDNA replication machinery might 213 
influence the persistence of replication intermediates in the CR. To quantify these intermediates, 214 
we computed the difference in coverage between these three regions across individuals in UKB 215 
(insets, Figures 2B and 2C, Methods). Upon performing GWAS and cross-ancestry meta-analysis 216 
for these traits, we find that nuclear genetic variants near MGME1 associate with the degree of 217 
coverage discordance between the RNA primer and the DNA primer (Figure 2B), while variants 218 
near TFAM, POLG, MCAT, and MGME1 associate with the discordance between 7s DNA and the 219 
DNA primer (Figure 2C). All four genes encode mitochondrial-localized proteins, and MGME1 and 220 
POLG work in concert to resolve flap intermediates (i.e., the DNA primer) via exonuclease activity 221 
during mtDNA replication (Uhler et al., 2016). Missense variants in POLG, MGME1, and MCAT all 222 
show PIP > 0.1 after fine-mapping, and the highest PIP variant at the MGME1 locus causes 223 
p.Thr265Ile which disrupts a hydrogen bond within a helix-forming part of the DNA binding 224 
pocket of the MGME1 exonuclease domain (Figure 2D), potentially impacting DNA binding. We 225 
also identify a variant causing p.Ala303Gly in MCAT, which has no prior connection to mtDNA 226 
maintenance and encodes a component of mitochondrial type II fatty acid synthase. 227 
 228 
Intermediate disease phenotypes in carriers of pathogenic mtDNA mutations 229 

Figure 3. Evidence of intermediate phenotypes among carriers of the MELAS variant in UKB. Table shows carrier frequencies 
for 10 known pathogenic mutations in UKB, including chrM:3243:A,G (pathogenic for MELAS), with heteroplasmy distributions 
plotted as jittered points. Panels show mean Hemoglobin A1c, triglyceride levels, auditory threshold (via speech recognition 
threshold test), and visual impairment (via vision test measured as logMAR) among mtDNA pathogenic variant carriers. Only 
points corresponding to more than 10 measurements are shown. Vertical lines represent per-trait means among individuals 
with none of the 10 pathogenic mutations detected. 
 



 

We next considered mtDNA sequence variation in UKB (Methods), with an initial focus on ten 230 
established pathogenic mtDNA mutations, including those associated with Leber’s hereditary 231 
optic neuropathy, mitochondrial encephalopathy, lactic acidosis, and stroke-like episodes 232 
(MELAS), and aminoglycoside-induced ototoxicity (Figure 3). We find that ~1:192 individuals in 233 
UKB carry at least one of the ten variants, in agreement with a previous estimate of 1:200 (Elliott 234 
et al., 2008). A longstanding question is whether carriers of rare pathogenic mtDNA variants in 235 
the population exhibit intermediate disease phenotypes, which can now be addressed thanks to 236 
the rich phenotyping in UKB. We tested four phenotypes traditionally associated with these 237 
mtDNA variants: hemoglobin A1c (chrM:3243:A,G), triglyceride levels (chrM:3243:A,G), hearing 238 
impairment (chrM:1555:A,G, chrM:3243:A,G, chrM:7445:A,G), and visual impairment 239 
(chrM:3460:G,A, chrM:11778:G,A, chrM:14484:T,C, chrM:14459:G,A) (M. D. Brown et al., 2000; 240 
Rydzanicz et al., 2011; Sharma et al., 2021; Shoffner et al., 1995). Individuals carrying the 241 
chrM:3243:A,G variant show elevated hemoglobin A1c, elevated triglycerides, and hearing and 242 
vision impairment (Figure 3, Methods). The other tested mtDNA variants were not associated 243 
with deviations in these phenotypes. 244 
 245 
Spectrum of mtDNA sequene variation across 253,583 individuals 246 
Our analysis across UKB and AoU yields the largest database of mtDNA SNVs and indels to date 247 
(Figure 4A). Consistent with prior gnomAD analysis (Laricchia et al., 2022), we find that the 248 
number of homoplasmies per individual is closely related to haplogroup, with haplogroup H 249 
(closest to GRCh38 reference) showing the fewest and haplogroup L0 showing the most 250 
(Supplementary figure 7A). Heteroplasmy distributions were consistent between UKB and AoU 251 
(Figure 4B, Supplementary figure 7D, 7H), and most individuals carried 0-1 heteroplasmic SNVs 252 
and 0-2 heteroplasmic indels (Supplementary figure 7E). The hypervariable regions of the 253 
mtDNA, found within the non-coding CR, contain an elevated heteroplasmic SNV rate and a vast 254 
predominance of heteroplasmic indel variants (Figure 4A). Heteroplasmic indels primarily arise 255 
near poly-C stretches (e.g., chrM:302, chrM:567, chrM:955, chrM:16182) in the non-protein-256 
coding mtDNA, while coding mtDNA shows a low indel rate despite the presence of many poly-C 257 
tracts (Figure 4A), consistent with negative selection. We tested the most common 258 
heteroplasmies in UKB for associations with risk of 29 common diseases (Methods) and found 259 
little or no evidence of association, though sample sizes were limited (Supplementary figure 7F).  260 
 261 
mtDNA SNVs and indels exhibit distinct modes of transmission and age accrual 262 
We next investigated the patterns of transmission and age-dependence for mtDNA 263 
heteroplasmies. For analysis of age, we focused on AoU given the broader age range of 264 
participants (20-90 versus 40-70 for UKB). While heteroplasmic SNVs tend to accumulate with 265 
age (particularly after age 70), this was not the case for indel heteroplasmies (Figure 4C). Using 266 
siblings and parent-offspring pairs in UKB (Methods), we find that nearly all heteroplasmic indels 267 
are quantitatively maternally transmitted and shared between siblings, while most 268 
heteroplasmic SNVs are not (Figure 4D). The maternal transmission and stability across age leads 269 
us to conclude that most indel heteroplasmies are inherited as mixtures; in contrast, for 270 
heteroplasmic SNVs, the typical lack of transmission and accumulation with age strongly suggests 271 
that they typically arise via somatic mutagenesis. In contrast to prior reports, no variants showed 272 
evidence of paternal transmission (Figure 4D). Transitions were far more frequent than 273 



 

transversions and showed a sharp increase in frequency in older age, consistent with the somatic 274 
mtDNA mutational spectrum seen in aging brains (Kennedy et al., 2013). Curiously, we observed 275 
a decline in transversion heteroplasmies in older individuals (Supplementary figure 7F). 276 
 277 
Nuclear genome GWAS for mtDNA heteroplasmy 278 
We next sought to determine the extent to which mtDNA heteroplasmy is influenced by nuclear 279 
genetic loci. To our knowledge, nuclear genetic loci influencing individual mtDNA heteroplasmies 280 
in humans have never been reported. Given that most common heteroplasmies showed 281 
maternal transmission (Supplementary figure 7H), we restricted to individuals carrying each 282 
heteroplasmy and performed GWAS with the heteroplasmy level as a quantitative trait (Figure 283 
4B, Supplementary figure 7I).  284 
 285 
We identified 42 LD-independent associations across 39 heteroplasmies after cross-ancestry 286 
meta-analysis of our UKB GWAS. Our results revealed a shared nuclear genetic architecture for 287 
heteroplasmies across mtDNA sites, with nine of 20 unique nuclear loci associated with >1 288 
heteroplasmic variant (Figure 4E, Supplementary figure 9A). Cross-mtDNA heterogeneity was 289 
also observed: chrM:302:A,AC and chrM:302:A,ACC appeared most associated with loci near 290 
SSBP1, TFAM, LONP1, and MCAT, while the other heteroplasmies were most strongly associated 291 
with loci containing DGUOK, PNP, and POLG2. While many genes implicated in heteroplasmy 292 
control were also identified in our mtCN GWAS, others were not (e.g., TEFM, POLRMT, MTPAP, 293 
SSBP1, ABHD10; Figure 4E). Many associated loci were near genes with established roles in 294 
mtDNA replication and maintenance (Figure 4F), with missense variants identified within the 95% 295 
credible set in DGUOK, LONP1, POLRMT, MGME1, and POLG2 and eQTL colocalization PIP > 0.1 296 
seen for POLRMT, POLG2, and TFAM. Of the novel hits, we highlight a locus containing C7orf73 297 
(Figure 4E, Supplementary figure 9F), which encodes a protein recently linked to Complex IV 298 
(Sang et al., 2022), suggesting a moonlighting role for this short protein in mtDNA maintenance. 299 
 300 
Zooming in, we see strong effect sizes from PIP > 0.9 variants in or near genes related to 301 
nucleotide metabolism (PNP, DGUOK) and DNA replication (POLG2). The likely causal variant for 302 
PNP (PIP 1, Supplementary figure 9G) is in an intron of PNP and colocalizes with a strong negative 303 
cross-tissue eQTL (multi-tissue p ~ 0; colocalization PIP 1; Supplementary figure 9H-I; Aguet et 304 
al., 2020) this gene is not yet linked to mtDNA disease but performs an analogous reaction to 305 
TYMP (an mtDNA disease gene) on purines. The likely causal variant for DGUOK (PIP 0.99, Figure 306 
4G) results in a p.Gln170Arg missense change within the kinase domain, potentially disrupting 307 
the tertiary structure of the protein as this glutamine side chain participates in a number of 308 
hydrogen bonds and stacking interactions (Figure 4H). The putative causal variant for POLG2 (PIP 309 
1, Figure 4I) results in p.Gly416Ala within a predicted anticodon binding domain. This amino acid 310 
is highly conserved (Supplementary figure 9J) and the mutation impacts a loop near the POLG2 311 
homodimer surface (Figure 4J). These examples highlight variants impacting proteins and 312 
producing a large impact on the levels of specific heteroplasmic mtDNA variants. 313 
 314 
To test if heteroplasmy-associated nuclear loci act via mtDNA mutagenesis, we repeated our 315 
GWAS re-coding heteroplasmy traits as “case/control”, where for each mtDNA variant, cases 316 
showed detectable heteroplasmy and controls did not. We observed little signal (Supplementary 317 



 

figure 9B), arguing against a mutagenic origin influenced by nucDNA variation and supporting the 318 
notion that maternal transmission determines the presence of each tested heteroplasmy, while 319 

Figure 4. Pervasive nuclear genetic control over the most common mitochondrial DNA heteroplasmies. A. mtDNA 
heteroplasmies passing QC in UKB and AoU. Data tracks show, starting from the inside: positions of poly-C tracts; mtDNA genomic 
annotations (orange = HVR, yellow = rRNA genes; blue = tRNA genes; purple = coding genes); counts of heteroplasmic SNVs (red); 
counts of heteroplasmic indels (black). Teal arc corresponds to region highlighted in Figure 5. Light line in outermost track is a 
reference line at 100. B. Selected heteroplasmy distributions across UKB and AoU in individuals carrying the allele. C. Mean count 
of heteroplasmies per individual across age groups in AoU. Error bars are 1SE. D. Relationship between heteroplasmy levels in 
mother-offspring (left), father-offspring (middle), and sibling-sibling (right) for all heteroplasmies found in >5 individuals. E. 
GWAS lead SNPs from all common heteroplasmies with genome-wide significant signals. Point size corresponds to lead SNP p-
value; dark points are genome-wide significant. Vertical lines correspond to SNPs near genes of interest and/or loci found across 
multiple mtDNA variants. Green corresponds to genes nominated for mtCN, † = CS variants with PIP > 0.1; ‡ = CS variants with 
PIP > 0.9, ”c” = coding variant in CS; underline = eQTL colocalization PIP > 0.1. F. mtDNA dynamics pathway showing genes 
highlighted in heteroplasmy GWAS. G. chrM:16183:AC,A heteroplasmy as a function of lead SNP genotype in DGUOK. H. 
Structure of DGUOK (2OCP) with amino acid Q170 in red and nearby residues participating in hydrogen bonds or stacking 
interaction in pink. dATP shown as black sticks. I. chrM:16183:A,AC heteroplasmy as a function of lead SNP genotype in POLG2. 
J. Structure of polymerase gamma enzyme (4ZTU) with POLG in light blue and POLG2 subunits in green and yellow. Bound DNA 
is in dark blue and the POLG2 residue G416 is shown as red spheres. In panels G and I, red lines correspond to medians. 
 



 

nuclear variation can influence the subsequent relative heteroplasmic fraction. 320 
 321 
We took several steps to validate our genetic findings. We performed a replication analysis in 322 
AoU across 96,698 diverse individuals and observed high concordance between cross-ancestry 323 
meta-analysis effect sizes in UKB and AoU (R2 = 0.79, Supplementary figure 9C) with limited 324 
attenuation (as expected with Winner’s curse, c.f. Lohmueller et al., 2003). We investigated 325 
potential technical and biological confounders, observing little correlation between these 326 
variables and heteroplasmies (Supplementary figure 8A-E, Supplementary note 2). We explicitly 327 
tested the robustness of our results to the contaminating effects of NUMTs (Supplementary note 328 
5), finding that GWAS effect sizes were not sensitive to mtDNA coverage as would be expected 329 
for NUMT-derived signals (Supplementary figure 8J-M). Additionally, we found strong 330 
correlations between UKB meta-analysis effect sizes and those from individual ancestry groups 331 
in AoU despite small N (R2 = 0.49-0.78 Supplementary figure 9D), reducing the likelihood of 332 
confounding by recent polymorphic NUMTs. We tested all GWAS hits for LD R2 > 0.1 with variants 333 
within 20kb windows of 4,736 reference and polymorphic NUMTs, finding only one concerning 334 
locus – among UKB EUR, the SSBP1 locus had LD R2 = ~1 with variants in a reference NUMT. 335 
Importantly, this locus remained significant for chrM:302:A,AC among AFR in AoU despite AFR 336 
showing much lower LD with NUMT variants (Supplementary figure 9K).  337 
 338 
Pervasive length variation in CSBII across individuals and within single cells 339 
The “length heteroplasmy” at chrM:302, located within the CSBII region of the mtDNA CR (Figure 340 
5A), is the most common heteroplasmic site we observed in UKB and occurs within a regulatory 341 
motif for mtDNA replication (Wanrooij et al., 2010). Though the reference genome corresponds 342 
to GmAG7 (nomenclature indicates the length of the poly-G stretch on the GRCh38 opposite 343 
strand, Figure 5A), we frequently observe individuals harboring GmAG8 (chrM:302:A,AC), GmAG9 344 
(chrM:302:A,ACC), and GmAG10 (chrM:302:A,ACCC). Quantitatively, the levels of these 345 
heteroplasmies are shared between siblings (Figure 5B), indicating maternal transmission of 346 
mixtures of multiple mtDNA haplotypes.  347 
 348 
Most of the 156,885 individuals assessed in UKB harbor a mixture of these length heteroplasmies 349 
(Figure 5C), with individuals from different haplogroups showing different distributions (Figure 350 
5D). The observed quantitative maternal transmission of heteroplasmy implies that mtDNA 351 
mixtures exist in individual cells, and we indeed find mtDNA mixtures at chrM:302 in 171 single 352 
cells from one individual (Figure 5E) by re-analyzing single-cell mtDNA ATAC-seq data (Methods). 353 
 354 
We find multiple lines of evidence linking mtDNA replication and length variation at chrM:302. 355 
Longer alleles at this site are associated with declining mtCNcorr with an effect size comparable to 356 
the TFAM locus (Figure 5F, PIP ~ 1). GWAS for chrM:302:A,AC, the most common length 357 
heteroplasmy, nominated several genes relevant for mtDNA replication and nucleotide balance 358 
not identified in other heteroplasmy GWAS (CDA, MTPAP, TFAM, TEFM, LONP1, MCAT; Figure 359 
4E, 5G). mtCN and chrM:302:A,AC heteroplasmy even show colocalization at the two most 360 
significant mtCN loci: 10:60145079:A,G (a TFAM 5’ UTR variant) and 19:5711930:C,T (a LONP1 361 
missense variant) both show a PIP ~ 1 for mtCN and have PIP > 0.3 for chrM:302:A,AC. It is notable 362 
that prior studies have suggested that length variation at the chrM:302 site serves as a “rheostat” 363 



 

for mtDNA replication versus transcription. The G-quadruplex at CSBII (Figure 5A) is a tertiary 364 
structure formed by the DNA and the nascent RNA primer which promotes DNA replication by 365 
blocking RNA polymerase progression (Wanrooij et al., 2010, 2012). In vitro studies have 366 
suggested that CSBII G-quadruplex strength is a function of chrM:302 allele, influencing the 367 
degree to which RNA transcription switches to DNA synthesis (Figure 5A, Tan et al., 2016). For 368 
the first time we now report that nuclear variants in genes related to the mtDNA replisome can 369 
favor one length heteroplasmy over another – for example, variants near SSBP1 favor 370 
chrM:302:A,ACC (Figure 5H). Taken together, our results suggest that nuclear genetic variation 371 
can influence the replication efficiency of mtDNA molecules based on chrM:302 allele. 372 
 373 
DISCUSSION 374 
 375 
mtDNA heteroplasmy dynamics are highly complex, shaped by random drift and selection that in 376 
principle can operate at the level of mtDNA, mitochondria, or cells. Given that all protein 377 

Figure 5. chrM:302 length heteroplasmies are inherited maternally as mixtures, co-exist in single cells, and are under the 
influence of the nuclear genome. A. Scheme showing chrM:302 region inside CSBII responsible for forming a G-quadruplex 
structure along with length heteroplasmy GmAGn nomenclature. B. Sibling-sibling transmission of length heteroplasmies at 
chrM:302. C. Length heteroplasmy composition across all UKB individuals. D. Length heteroplasmy composition in UKB in 
select mtDNA haplogroups. E. Length heteroplasmy composition across 171 single cells in whole blood. Each vertical bar 
corresponds to a single individual (C, D) or cell (E). Colors for panels B-E correspond to legend between panels B and D. F. 
Effect of length of major allele at chrM:302 (red line) and TFAM fine-mapped variant (black dot) on mtCN. Error bars are 
1SE. G. Case-only mtDNA heteroplasmy GWAS Manhattan plot for chrM:302:A,AC. Red genes are mitochondrial or are 
implicated in mtDNA disease; † corresponds to CS variants proximal to the gene with PIP > 0.1; ”c” corresponds to coding 
variant in CS; underline corresponds to eQTL colocalization PIP > 0.1. H. chrM:302 length heteroplasmies as a function of 
highest PIP SNP genotype in SSBP1 locus. Red line corresponds to per-nuclear-genotype median heteroplasmy. 
 



 

machinery for mtDNA replication and maintenance is encoded by the nucDNA, it has long been 378 
theorized that the nuclear haplotype could influence mtDNA heteroplasmy. Classical mouse 379 
genetics revealed the existence of nuclear QTLs that could influence heteroplasmic mtDNA 380 
transmission (Battersby et al., 2003), though specific mechanisms and relevance to humans have 381 
been lacking. Here, for the first time, by leveraging whole genome sequencing across two large 382 
biobanks, we report pervasive nuclear genetic control of mtDNA abundance and heteroplasmy 383 
variation in humans. Many of these nuclear QTLs involve the machinery responsible for mtDNA 384 
maintenance, which likely act directly on mtDNA by altering the relative replication efficiency of 385 
mtDNA molecules based on their sequence, while several others correspond to genes never 386 
before linked to mtDNA biology. High statistical resolution allows us to gain detailed molecular 387 
insights into the mechanisms underlying an entire battery of mito-nuclear interactions, with 388 
implications for human disease, physiology, and evolution. 389 
 390 
Our ability to dissect the genetic architecture of mtCN and heteroplasmy was possible both 391 
because of the statistical power afforded by the scale of large biobanks and because of careful 392 
attention given to technical and biological confounders. We analyzed mtDNA sequences across 393 
274,832 individuals of diverse ancestries from two biobanks, generating the largest collection of 394 
mtDNA traits to date. We were particularly attentive to the technical challenges of contamination 395 
by mtDNA pseudogenes in the nuclear genome (NUMTs, Supplementary Note 5, 6). We explicitly 396 
tested many potential confounders of mtDNA traits, finding that correction of mtCN for blood 397 
cell composition had a profound effect on the observed association landscape. Many previously 398 
reported associations between blood mtCN and cardiometabolic traits (Ashar et al., 2017; Fazzini 399 
et al., 2021) disappear or reverse direction after adjustment for blood cell composition (Figure 400 
1F). Our corrections reduce and even eliminate GWAS hits near genes suspiciously related to 401 
blood cell composition and inflammation (e.g., HLA, HBS1L) seen in recent studies (Longchamps 402 
et al., 2021). Our data suggest that, in many cases, an inflammatory state in cardiometabolic 403 
disease influences blood cell composition, driving the previously observed decline in mtCN. 404 
 405 
The resulting GWAS of mtCNcorr and mtDNA heteroplasmies provide new insights into mtDNA 406 
maintenance. The nuclear loci we identify, including those with fine-mapped missense variation 407 
(e.g., MGME1, POLG, POLG2, DGUOK, LONP1), are enriched for roles in the mtDNA nucleoid, 408 
mtDNA replication, and nucleotide balance, rather than pathways previously implicated in 409 
heteroplasmy maintenance in model organisms such as mitophagy or stress response (Gitschlag 410 
et al., 2016; Lin et al., 2016). We show how population-level genetic analysis can produce 411 
detailed, mechanistic insights into mtDNA replication: GWAS of the relative mtDNA coverage in 412 
the 7S DNA “primer” highlights missense variants in both MGME1 and POLG, whose products 413 
have exonuclease activity that can resolve this “flap” intermediate. We observe notable 414 
differences in the genetic architecture of mtCNcorr and heteroplasmy, producing additional 415 
insights: while TFAM, LONP1, DGUOK, and PNP are associated with both, the former two 416 
(encoding components of the mtDNA nucleoid) were the most significant associations for 417 
mtCNcorr, while the latter two (involved in nucleotide balance) were among the strongest 418 
associations across heteroplasmies. QTLs corresponding to TWNK were only identified for 419 
mtCNcorr while associations near SSBP1, TEFM, and POLRMT were specific to heteroplasmy, 420 
suggesting that genetic variation in different mtDNA replication genes can have effects specific 421 



 

to mtCN or heteroplasmy. We identify many loci with no prior links to mtDNA biology, such as 422 
C7orf73, MCAT, ABHD10, NDUFV3, CDA, and ADA, proposing new roles for their protein products. 423 
The PNP gene product represents an excellent candidate gene for unsolved mtDNA deletion 424 
syndromes as it performs an analogous function to TYMP for purines and is notable for its 425 
association with the levels of 13 length heteroplasmy variants at three mtDNA sites.   426 
 427 
A striking finding from our work is that nearly everyone harbors heteroplasmic mtDNA variants 428 
obeying two key, previously unappreciated, principles: (i) heteroplasmic SNVs are typically 429 
somatic, accrue with age sharply after age 70, and tend to be transitions, while (ii) heteroplasmic 430 
indels are found in >60% of individuals, do not accrue with age, and are usually inherited as 431 
mixtures within the same maternal lineage. Consistent with prior work (Stoneking, 2000), 432 
heteroplasmic SNVs tend to occur more in the mtDNA hypervariable regions, but most 433 
heteroplasmies detected here are inherited indels. Most heteroplasmic indels appear to occur 434 
next to poly-C stretches in the non-protein coding mtDNA; heteroplasmic indel rates are orders 435 
of magnitude lower next to poly-C stretches in coding regions, suggesting negative selection in 436 
these regions. Strikingly, for any given common indel, we find that maternal heteroplasmy levels 437 
quantitatively predict offspring heteroplasmy levels, suggesting neutral transmission. We show 438 
for the first time that these heteroplasmy levels are also under nuclear genetic control, with 439 
associated loci enriched for genes involved in mtDNA biology and nucleotide balance. These loci 440 
are similar across heteroplasmies at multiple mtDNA sites, suggesting a shared genetic 441 
architecture. 442 
 443 
Our identified nuclear QTLs for mtDNA length heteroplasmies could, in principle, operate by one 444 
of two mechanisms: (1) the associated nuclear variants are “mutagenic” and impair mtDNA 445 
copying fidelity resulting in somatic indels due to slippage in poly-C tracts (Marchington et al., 446 
1997), or (2) these nuclear variants confer an mtDNA replicative advantage to maternally 447 
inherited mtDNA molecules carrying certain length variants. Our data favors the latter. 448 
Case/control GWAS showed very little signal compared to case-only analysis; in concert with the 449 
observed maternal transmission this strongly suggests that the identified nuclear QTLs modify 450 
existing indel heteroplasmy levels rather than acting via mutagenesis, likely by altering the 451 
replicative efficiency of the mtDNA molecules carrying different alleles. Variants near POLG2, but 452 
notably not POLG, were associated with heteroplasmy; POLG is the active subunit of mtDNA 453 
polymerase in which mutations produce a “mutator” phenotype (Trifunovic et al., 2004), while 454 
POLG2 is the accessory subunit relevant for processivity (Lim et al., 1999; Longley et al., 2006). 455 
 456 
Our work provides insight into mechanisms by which the nuclear haplotype can confer a 457 
replicative advantage to specific mtDNA variants. This is perhaps best illustrated by length 458 
heteroplasmy at chrM:302. This heteroplasmy occurs within the G-quadruplex in CSBII in the 459 
mtDNA noncoding region, which can induce switching from transcription to replication by 460 
blocking transcription progression. Prior in vitro studies have shown that the chrM:302 length 461 
polymorphism impacts the strength of this G-quadruplex hence modifying the 462 
transcription/replication switch (Agaronyan et al., 2015; Tan et al., 2016). We find that mixtures 463 
of mtDNA with different chrM:302 length variants are maternally inherited in more than half of 464 
the population. Once inherited, we show that chrM:302 alleles influence mtDNA abundance 465 



 

(acting in cis), and we find that the resulting heteroplasmy levels are influenced in trans by 466 
nuclear QTLs (e.g., SSBP1, POLG2, TEFM) whose proteins directly operate this regulatory switch 467 
(Tan et al., 2016). In sum, our results suggest that the associated nuclear variants alter chrM:302 468 
heteroplasmy by influencing factors that interact with the chrM:302 G-quadruplex, thus 469 
privileging the replication of mtDNA templates carrying a particular chrM:302 genotype. Recent 470 
experiments in embryonic stem cells led to speculation that CSBII length variants may contribute 471 
to mtDNA reversion after mitochondrial replacement therapy (MRT) (Kang et al., 2016) due to 472 
replicative advantage of carryover mtDNA from the intending mother – our nuclear genetic 473 
association results may provide insight into nuclear genetic control of this reversion. 474 
 475 
An open question is why mtDNA heteroplasmy is so common in humans, and whether a selective 476 
advantage preserves this variation and the observed mito-nuclear interactions. As the mtDNA 477 
has high mutation rates with little or no recombination, it is prone to the accumulation of 478 
disabling mutations that could lead to its “meltdown” via Mueller’s ratchet (Lynch et al., 1993). 479 
However, mtDNA mutation followed by heteroplasmy is a requisite step in evolutionary 480 
adaptation. The identified nuclear QTLs for mtDNA heteroplasmy may represent mechanisms by 481 
which a reservoir of such variation can be tolerated and harnessed. 482 
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DATA AVAILABILITY 514 
In terms of data processed or generated as part of this study, we provide genetic association 515 
statistics for LD-independent lead SNPs and fine-mapped variants in UKB in addition to 516 
colocalization results (Supplementary tables 2-4). Full GWAS summary statistics from UKB and 517 
AoU will be made available in Zenodo upon peer-review. All GWAS sample sizes for each genetic 518 
ancestry group, meta-analysis, and phenotype can be found in Supplementary table 1. AoU 519 
policy does not currently permit public release of individual-level data due to important ethical 520 
and privacy considerations: https://www.researchallofus.org/wp-content/themes/research-521 
hub-wordpress-522 
theme/media/2020/05/AoU_Policy_Data_and_Statistics_Dissemination_508.pdf 523 
 524 
In terms of external data used in this study, we leveraged GWAS summary statistics, and ancestry-525 
specific LD-matrices, and a curated list of 29 common, high-quality disease phenotypes 526 
generated as part of the Pan UKBB project (Pan UKBB Initiative, 2022), with more information 527 
available online (https://pan.ukbb.broadinstitute.org). UKB phenotype and whole genome 528 
sequencing data can be accessed via the UKB Research Analysis Platform after completing a UKB 529 
access application: https://ukbiobank.dnanexus.com/landing. AoU phenotype and genotype 530 
data can be accessed via access to the Controlled Tier v6 on the AoU researcher workbench: 531 
workbench.researchallofus.org. Published mtscATACseq data used for chrM:302 analysis can be 532 
obtained via approval from dbGaP. Gene-sets for enrichment analyses can be obtained using 533 
COMPARTMENTS (https://compartments.jensenlab.org) and MitoCarta 2.0 534 
(https://www.broadinstitute.org/files/shared/metabolism/mitocarta/human.mitocarta2.0.html535 
) as described previously (Gupta et al., 2021). The GRCh37 and GRCh38 reference genomes as 536 
well as other standard reference data are available via the GATK resource bundle: 537 
https://gatk.broadinstitute.org/hc/en-us/articles/360035890811-Resource-bundle. Annotations 538 
for the baseline v1.1 and BaselineLD v2.2 models for S-LDSC as well certain other relevant 539 
reference data, including the HapMap3 SNP list, can be obtained from 540 
https://alkesgroup.broadinstitute.org/LDSCORE/. BLASTn was used as available from the NCBI: 541 
https://blast.ncbi.nlm.nih.gov/Blast.cgi. Known reference and polymorphic NUMTs were 542 
obtained from supplemental data as provided in published work (Calabrese et al., 2012; Dayama 543 
et al., 2014; Li et al., 2012; Wei et al., 2022). 544 
 545 
CODE AVAILABILITY 546 
We release the full WDL pipelines for mtDNA analysis from whole genome sequencing data on 547 
GitHub: (https://github.com/rahulg603/mtSwirl). We also provide the code we used to run the 548 
pipeline on the UKB Research Analysis Platform, AoU, and Terra, consolidate all data, and 549 
perform mtDNA sample and variant QC. See Methods and the README for more information on 550 
how to use the pipeline. Several tools were used as part of mtSwirl, including GATK v4.2.6.0 551 
(https://gatk.broadinstitute.org/), samtools v1.9 (https://github.com/samtools/samtools) and 552 
bcftools v1.16 (https://github.com/samtools/bcftools), Haplochecker 0124 553 



 

(https://github.com/genepi/haplocheck), R (r-project.org), Hail (hail.is), and UCSC kent LiftOver 554 
tools (genome-source.soe.ucsc.edu/kent.git). 555 
 556 
We used several published tools and scripts to perform downstream analysis of the mtDNA 557 
callset in this study. All data wrangling, statistical analysis, and figure generation was performed 558 
using either Hail v0.2.98 (hail.is) or R v4.2.1 (r-project.org). Parallelization of tasks in UKB was 559 
performed using Hail Batch (batch.hail.is) and in AoU using Cromwell v77 560 
(cromwell.readthedocs.io). GWAS was performed in UKB using SAIGE v1.1.5 (saigegit.github.io). 561 
For scaling of UKB GWAS, a custom modification of the GWAS pipeline from the Pan UKBB pan-562 
ancestry GWAS was used (https://github.com/atgu/ukbb_pan_ancestry). GWAS was performed 563 
in AoU using Hail. mtDNA PCA was performed in R using the irlba v2.3.5.1 package (https://cran.r-564 
project.org/web/packages/irlba/index.html). Multinomial models were trained using the nnet 565 
v7.3-17 package in R (https://cran.r-project.org/web/packages/nnet/index.html). Circos plots 566 
were made using the circlize package v0.4.15 in R 567 
(https://jokergoo.github.io/circlize_book/book/). For analysis of chrM:302 in single cell data, we 568 
used BedTools v2.29.2 (bedtools.readthedocs.io). LD clumping was performed using Plink v1.90 569 
(https://www.cog-genomics.org/plink/). Finemapping was performed using FINEMAP-inf and 570 
SuSiE-inf (https://github.com/FinucaneLab/fine-mapping-inf). eQTL data was obtained from 571 
GTEx v8 (gtexportal.org) and the eQTL catalogue release 4 (https://www.ebi.ac.uk/eqtl/). For 572 
replication analysis effect size comparisons, the deming pacakge v1.4 was used in R 573 
(https://cran.r-project.org/web/packages/deming/index.html). Heritability estimates and 574 
enrichment analyses were performed using stratified LD-score regression 575 
(https://github.com/bulik/ldsc). 576 
 577 
  578 



 

METHODS 579 
 580 
Overview of mtSwirl: 581 
 582 
Here we develop mtSwirl, a scalable pipeline for mitochondrial DNA copy number and variant 583 
calling which makes calls relative to an internally generated per-sample consensus sequence 584 
before mapping all calls back to GRCh38. In addition to GRCh38 reference files and whole-585 
genome sequencing (WGS) data, the mtSwirl pipeline takes as input nuclear genome reference 586 
intervals that represent regions with high homology to the mtDNA (reference NUMTs). We 587 
constructed a set of 385 putative NUMTs by using a BLAST-based inventory of reference NUMTs 588 
published previously (Li et al., 2012), extending the boundaries of each interval by 500 bases, and 589 
merging any overlapping intervals. Initial variant calls within the mtDNA and reference NUMT 590 
regions are made from mapped WGS data using Mutect2 and HaplotypeCaller respectively (via 591 
GATK v4.2.6.0), and haplogroup inference is performed via Haplogrep (Weissensteiner et al., 592 
2016). Consensus sequences are subsequently constructed using homoplasmies (mtDNA) and 593 
homozygous alternate (nucDNA) calls. Reads are realigned to the new consensus sequence and 594 
variants are called on the mtDNA using Mutect2. To avoid the artificial coverage depression at 595 
the ends of the mtDNA reference genome, we call variants in the control region after alignment 596 
to a shifted mtDNA molecule. All variant calls and per-base coverage estimates are then returned 597 
to GRCh38 coordinates and output from the pipeline. See Supplementary note 1 for more details. 598 
We release two versions of our pipeline on GitHub (https://github.com/rahulg603/mtSwirl): 599 
mtSwirlSingle, a single-sample pipeline intended for use with Cromwell and on platforms with 600 
high worker limits like Terra and the AllofUs Workbench, and mtSwirlMulti, a multi-sample 601 
version which processes multiple samples serially per machine intended for use on platforms 602 
with a smaller parallel worker limit such as the UKB Research Analysis Platform (RAP). 603 
 604 
Cohorts: 605 
 606 
UK Biobank (UKB) 607 
 608 
The UK Biobank is a large prospective cohort study of ~500,000 individuals in the UK (Sudlow et 609 
al., 2015), ~200,000 of whom had whole genome sequencing performed at the time of this study. 610 
Samples were selected for the first round of WGS using a pseudorandom approach to ensure that 611 
included samples were representative of the full cohort. Sequencing data was generated using 612 
DNA extracted from buffy coat obtained from participants; more details have been reported 613 
previously (Halldorsson et al., 2022). All UKB data was accessed under application 31063 and 614 
mtDNA variant calling was performed on the UKB RAP. 615 
 616 
AllofUs (AoU) 617 
 618 
AllofUs is a large longitudinal cohort study based in the United States, with a central goal of 619 
enrolling a diverse cohort of participants providing electronic health record data over time, 620 
specimens for genetic analysis, survey responses, and standardized biometric measurements 621 
(“The ‘All of Us’ Research Program,” 2019). At the time of this study, 98,590 individuals had 622 



 

completed whole genome sequencing on samples obtained from whole blood. DNA extraction 623 
was completed at the Mayo Clinic, and sequencing was performed at three sequencing centers 624 
(Baylor College of Medicine, Broad Institute, and University of Washington) using harmonized 625 
protocols. Post-sequencing variant and sample quality control was performed by the AllofUs Data 626 
and Research Center (DRC). All mtDNA analyses were performed using the AllofUs Researcher 627 
Workbench in the Controlled Tier v6 workspace: “Genetic determinants of mitochondrial DNA 628 
phenotypes” using data from the Q2 2022 release. See 629 
https://support.researchallofus.org/hc/en-630 
us/article_attachments/7237425684244/All_Of_Us_Q2_2022_Release_Genomic_Quality_Repo631 
rt.pdf for more details on genomics QC and pre-processing. 632 
 633 
gnomAD v3.1 subset 634 
 635 
gnomAD v3.1 is a database aggregating whole genome sequencing data from 76,156 samples 636 
from several experiments and projects around the world, as part of which an mtDNA variant 637 
callset was recently produced (Laricchia et al., 2022). Samples were sourced from several study 638 
designs including case-control studies for common diseases, population-based cohorts, and 639 
observational studies. Individuals with inborn severe pediatric disease were excluded. Most data 640 
are sourced from sequencing performed on either blood samples extracted using study-specific 641 
methodologies or from cell lines (Laricchia et al., 2022). We made use of a subset of the gnomAD 642 
v3.1 samples to prototype our pipeline (mtSwirl) and compare its performance to previous 643 
mtDNA copy number and variant calls (“Vanilla”). We excluded samples with very high mtDNA 644 
copy number as done previously (Laricchia et al., 2022) as these are likely cell line samples and 645 
not from whole blood; we used a more stringent threshold of 350 as we wanted to maximally 646 
enrich for whole blood samples for this trial. We also removed samples with mtCN < 50 due to 647 
elevated NUMT contamination in these samples (Laricchia et al., 2022, Supplementary figure 648 
7C). We selected ~6300 samples from gnomAD v3.1 to maximize inclusion of diverse haplogroups 649 
including those underrepresented in UK Biobank (Supplementary figure 2A). We specifically 650 
supplemented samples belonging to the L haplogroups and enforced a cap on the number of 651 
samples assigned to either NFE (Non-Finnish European) or FIN (Finnish). For other larger 652 
haplogroups we performed random subsampling proportional to the original composition of the 653 
gnomAD dataset to achieve our final sample size. All analyses were performed using Terra (Terra, 654 
n.d.). 655 
 656 
Computing mean nuclear DNA coverage in UKB: 657 
 658 
As mean nuclear DNA coverage was not available in UK Biobank, we used samtools v1.9 idxstats 659 
(Danecek et al., 2021), samtools flagstat, and GATK v4.2.6.0 CollectQualityYieldMetrics as part of 660 
the mtSwirlMulti pipeline to efficiently and economically estimate mean coverage on the nuclear 661 
DNA. idxstats-based counts of total mapped reads were computed over autosomes with the 662 
subsequent formula applied to get average nuclear DNA coverage after removing contributions 663 
from duplicate reads: 664 
 665 



 

𝑚𝑒𝑎𝑛	𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒666 

=
(𝑡𝑜𝑡𝑎𝑙	𝑚𝑎𝑝𝑝𝑒𝑑	𝑟𝑒𝑎𝑑𝑠 − 𝑠𝑖𝑛𝑔𝑙𝑒𝑡𝑜𝑛𝑠 − 𝑟𝑒𝑎𝑑𝑠	𝑤/	𝑑𝑖𝑠𝑐𝑜𝑟𝑑𝑎𝑛𝑡	𝑚𝑎𝑡𝑒 − 𝑑𝑢𝑝𝑙𝑖𝑐𝑎𝑡𝑒𝑠) ∗ 𝑟𝑒𝑎𝑑	𝑙𝑒𝑛𝑔𝑡ℎ

𝑔𝑒𝑛𝑜𝑚𝑒	𝑙𝑒𝑛𝑔𝑡ℎ
 667 

 668 
Computing mtDNA copy number: 669 
 670 
Across all cohorts we use the following formula to compute mtDNA copy number: 671 
 672 

2 ∗ 𝑚𝑒𝑎𝑛	𝑜𝑟	𝑚𝑒𝑑𝑖𝑎𝑛	𝑚𝑡𝐷𝑁𝐴	𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒/	𝑚𝑒𝑎𝑛	𝑛𝑢𝑐𝐷𝑁𝐴	𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒 673 
 674 
We default to use of mean mtDNA coverage for main mtCN-related analyses. 675 
 676 
Post-calling mtDNA phenotype QC: 677 
 678 
To integrate our variant calls and perform sample and variant QC, we extended a previously 679 
developed pipeline (Laricchia et al., 2022). Single-sample VCFs emitted from mtSwirl were 680 
merged into a single Hail MatrixTable (v0.2.98; (Hail Team, n.d.)) upon which all downstream 681 
steps were conducted.  682 
 683 
For sample QC, any samples showing homoplasmic variant overlap (see Supplementary note 1) 684 
were removed. We observed a significant elevation in heteroplasmic SNV calls among samples 685 
with mtCN below 50, with a stabilization of heteroplasmic calls above 50 mtDNA copies per cell 686 
(Supplementary figure 7C), highly suggestive of elevated NUMT contamination in the low copy 687 
number samples. Thus, to avoid contamination of our results, all samples with mtCN < 50 were 688 
removed. Finally, all samples with evidence of contamination > 2% were removed, as estimated 689 
by either (1) mtDNA contamination via Haplocheck 0124 (Weissensteiner et al., 2021) in mtSwirl, 690 
(2) nucDNA contamination, or (3) the presence of multiple haplogroup-defining variants at 691 
abnormally low allele fraction. Given the small count of samples processed in 2006 and 692 
abnormally elevated mtDNA copy number estimates in these samples (Supplementary figure 693 
3E), we excluded these samples from all UKB analyses. 694 
 695 
For variant QC, (1) variants with a very low heteroplasmy (< 0.01) were called as reference with 696 
a heteroplasmy of 0, (2) variants with heteroplasmy below 0.05 were flagged and removed as 697 
these are at high risk of being enriched for NUMT-derived signals, and (3) all variant calls flagged 698 
by Mutect2 were removed. For all sites, a minimum coverage threshold of 100 was used to 699 
distinguish between homoplasmic reference calls and sites without variant calls due to low 700 
variant-calling confidence as done previously (Laricchia et al., 2022). mtDNA variants were 701 
annotated using the Variant Effect Predictor (VEP) v101 (McLaren et al., 2016) and dbSNP v151 702 
(Sherry et al., 1999). Variants with at least 0.1% of samples passing filters showing a heteroplasmy 703 
between 0 and 0.5 were annotated as “common low heteroplasmy”. Variant calls failing QC were 704 
coded with a missing heteroplasmy. 705 
 706 
For mtCN, we remove the samples identified during variant callset sample QC showing signs of 707 
contamination, abnormal overlapping homoplasmy calls, or which were processed in 2006. Since 708 



 

we expect mtDNA-wide coverage measures, such as mtCN, to be robust to NUMTs, we do not 709 
enforce hard cutoffs on mtCN measurements. 710 
 711 
Construction of mtDNA heteroplasmy phenotypes: 712 
 713 
We defined our set of common heteroplasmies in UKB as “common low heteroplasmy” variants 714 
(Methods) which are present as heteroplasmies in at least 500 individuals, resulting in 39 715 
variants. We produced two main sets of phenotypes: (1) a “case-only” dataset consisting of 716 
heteroplasmy values for these variants where any individuals without the variant detected were 717 
coded as missing and (2) as “case-control” dataset where cases consisted of those with any 718 
detectable heteroplasmy and controls consisted of those with the variant not detected. In both 719 
phenotype schemes, samples identified as homoplasmic for each variant were always coded as 720 
missing. For the case-control dataset, only samples which could be accurately inferred as 721 
reference for each variant were labeled as controls – specifically, the sample was coded as 722 
missing for a variant if it had a coverage < 100 at the site or showed the variant call as QC-fail 723 
(Methods). 724 
 725 
For sensitivity analyses, we produced several additional case-only heteroplasmy datasets: (1) 726 
where any variant calls supported by an alternate allele depth (AD alt) of less than the mean 727 
nuclear DNA coverage of the sample were made missing; (2) where heteroplasmy estimates were 728 
corrected for the depth of mtDNA coverage at the variant site after realignment; and (3) where 729 
length heteroplasmy estimates at chrM:302 were corrected for median coverage at CSBII. All 730 
corrections were performed by obtaining residuals from the linear regression of the 731 
heteroplasmy onto the covariate for each variant across all samples prior to genetic analysis. 732 
 733 
mtDNA phenotype covariate correction approach: 734 
 735 
We investigated time of day of blood draw, fasting time, assessment date, and assessment center 736 
as technical covariates for mtDNA traits. As draw time and assessment date are continuous, we 737 
used natural splines in the correction model to flexibly model nonlinear relationships between 738 
these covariates and the mtDNA phenotype. We used knots placed roughly seasonally to model 739 
seasonal variation in mtDNA phenotypes – these corresponded to 3-month increments starting 740 
on July 1st 2007 and ending on July 1st 2010. For draw time, we used a natural spline basis with 5 741 
degrees of freedom. Assessment month and assessment center were modeled as indicator 742 
variables. Fasting times were provided in increments of 1 hour and thus were modeled as 743 
indicator variables; fasting times of > 18 hours were labeled as 18 and fasting times of 0 were 744 
labeled as 1. All terms were included in a joint model for correction. 745 
 746 
We also investigated the relationship between mtDNA phenotypes and blood cell type 747 
percentages and mean blood cell volumes. We selected all non-redundant traits available: white 748 
blood cell leukocyte count, haematocrit percentage, platelet crit, monocyte percentage, 749 
neutrophil percentage, eosinophil percentage, basophil percentage, reticulocyte percentage, 750 
high light scatter reticulocyte percentage, immature reticulocyte fraction, mean corpuscular 751 
volume, mean reticulocyte volume, mean sphered cell volume, mean platelet thrombocyte 752 



 

volume. We did not include nucleated red blood cell percentage as only ~1% of the entire UKB 753 
cohort has non-zero values for this measure, and we excluded lymphocyte percentage given 754 
collinearity with neutrophil percentage (r = 0.92) and the sum-to-1 property of the white blood 755 
cell (WBC) differential measurements. To avoid excess leverage from outlying blood cell 756 
measurements, we removed any blood measurements with a Z-score > 4. All terms were included 757 
in a joint model for correction. 758 
 759 
For both the technical covariate and blood cell type models, F-test p-values were obtained for 760 
each of the 40 mtDNA phenotypes (39 case-only heteroplasmies and mtCN). For any phenotypes 761 
which showed F-test p-values < 0.05/40 (Bonferroni corrected), we produced corrected versions 762 
of the phenotype by obtaining the residuals from the regression of the mtDNA phenotype onto 763 
covariates of interest prior to genetic analysis. For mtDNA copy number, adjustments were 764 
performed with log(mtCN) as the response variable. For heteroplasmy estimates, adjustments 765 
were performed with case-only heteroplasmies as the response variable. The specific corrections 766 
implemented were: 767 
 768 

log𝑚𝑡𝐶𝑁~	𝑛𝑠(𝑏𝑙𝑜𝑜𝑑	𝑑𝑟𝑎𝑤	𝑡𝑖𝑚𝑒, 5) + 𝑎𝑠𝑠𝑒𝑠𝑠𝑚𝑒𝑛𝑡	𝑐𝑒𝑛𝑡𝑒𝑟 + 𝑓𝑎𝑠𝑡𝑖𝑛𝑔	𝑡𝑖𝑚𝑒769 
+ 𝑛𝑠(𝑎𝑠𝑠𝑒𝑠𝑠𝑚𝑒𝑛𝑡	𝑑𝑎𝑡𝑒, 𝑆𝐸𝐴𝑆𝑂𝑁𝐴𝐿	𝐾𝑁𝑂𝑇𝑆) + 𝑚𝑜𝑛𝑡ℎ	𝑜𝑓	𝑎𝑠𝑠𝑒𝑠𝑠𝑚𝑒𝑛𝑡770 
+ 𝑏𝑙𝑜𝑜𝑑	𝑐𝑒𝑙𝑙	𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠 771 

 772 
As sensitivity analyses for case-only heteroplasmy phenotypes, residuals from the following 773 
models were produced: 774 
 775 
𝑐ℎ𝑟𝑀: 567: 𝐴, 𝐴𝐶𝐶𝐶𝐶𝐶𝐶~	𝑛𝑠(𝑏𝑙𝑜𝑜𝑑	𝑑𝑟𝑎𝑤	𝑡𝑖𝑚𝑒, 5) + 𝑎𝑠𝑠𝑒𝑠𝑠𝑚𝑒𝑛𝑡	𝑐𝑒𝑛𝑡𝑒𝑟 + 𝑓𝑎𝑠𝑡𝑖𝑛𝑔	𝑡𝑖𝑚𝑒776 

+ 𝑛𝑠(𝑎𝑠𝑠𝑒𝑠𝑠𝑚𝑒𝑛𝑡	𝑑𝑎𝑡𝑒, 𝑆𝐸𝐴𝑆𝑂𝑁𝐴𝐿	𝐾𝑁𝑂𝑇𝑆) + 𝑚𝑜𝑛𝑡ℎ	𝑜𝑓	𝑎𝑠𝑠𝑒𝑠𝑠𝑚𝑒𝑛𝑡 777 
 778 
(𝑐ℎ𝑟𝑀: 16093: 𝑇, 𝐶; 𝑐ℎ𝑟𝑀: 16182: 𝐴, 𝐴𝐶𝐶; 𝑐ℎ𝑟𝑀: 16183: 𝐴, 𝐴𝐶)	~	𝑏𝑙𝑜𝑜𝑑	𝑐𝑒𝑙𝑙	𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠 779 

 780 
For each response variable, residuals were generated using residuals(lm(model)) as 781 
implemented in R v4.2.1. In all visualizations of corrected variables (e.g., mtCNcorr), we rescale 782 
the residualized variable by adding the pre-corrected mean. In the case of mtCNcorr, we rescale 783 
the residualized variable and then exponentiate the same to return corrected values back to an 784 
absolute scale. See Supplementary note 2 and 3 for more details. 785 
 786 
mtDNA PCA and predictive power for mtDNA haplogroups: 787 
 788 
To construct a high-quality variant genotype matrix for PCA, we obtained the set of homoplasmic 789 
variants (heteroplasmy >= 0.95) passing QC identified at a MAF >= 0.001 in UKB. Any samples 790 
with a QC-pass homoplasmy detected were coded as 1 for each respective variant; all others 791 
were coded as 0. This binary genotype matrix was subsequently filtered to the set of unrelated 792 
samples upon which we computed the first 50 principal components after centering and scaling 793 
using the efficient truncated singular value decomposition algorithm implemented in the irlba 794 
v2.3.5.1 package in R. Related samples were projected onto these PCs to produce a set of mtDNA-795 
PC coordinates for each sample. The set of related samples were defined previously in the Pan 796 



 

UKBB project (Pan UKBB Initiative, 2022). In brief, PC-relate was used as implemented in Hail 797 
within each assigned genetic ancestry group in UKB and the maximal set of unrelated samples 798 
were identified via the maximal independent set algorithm implemented in Hail. 799 
 800 
To assess the goodness of fit of mtDNA PCs for the prediction of top-level mtDNA haplogroups, 801 
we fit a multinomial model with top-level haplogroup as the response variable and the first 30 802 
mtDNA PCs as explanatory variables as implemented in the nnet v7.3-17 package in R (Venables 803 
& Ripley, 2002). We only included samples belonging to haplogroups with at least 30 samples in 804 
UKB. For assessment of the predictive power of mtDNA PCs for “level 2” haplogroups, we fit 805 
multinomial models using a similar approach within each top-level haplogroup, with “level 2” 806 
haplogroups as the response variable. In all cases, a null model was fit in parallel with the same 807 
response variable with only an intercept term. We computed McFadden’s pseudo-R2 for each 808 
model via the following formula: 809 
 810 

𝑝𝑠𝑒𝑢𝑑𝑜𝑅! = 1 −
𝑙𝑜𝑔	𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑

𝑛𝑢𝑙𝑙	𝑚𝑜𝑑𝑒𝑙	𝑙𝑜𝑔	𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑 811 

 812 
Correlations between mtCN, mtCNcorr, blood cell composition, heteroplasmies, and disease 813 
phenotypes 814 
 815 
We obtained common disease diagnoses from UKB via a previously curated set of phecodes and 816 
ICD10 codes corresponding to major common diseases (Pan UKBB Initiative, 2022) along with 817 
demographic variables (age, sex) and blood cell composition phenotypes (Methods). We 818 
obtained mtCNraw, mtCNcorr, common (N > 500) case-only heteroplasmies (Methods), and three 819 
major blood cell composition traits (platelet crit, monocyte count, and neutrophil count) and 820 
performed z-score transformation for each. To test for associations with disease phenotypes, we 821 
used a logistic regression model via the glm function in R, including age, sex, age2, age2*sex, 822 
age*sex, top-level haplogroup, and genetic ancestry group assignment as covariates: 823 
 824 

𝑑𝑖𝑠𝑒𝑎𝑠𝑒	𝑝ℎ𝑒𝑛𝑜𝑡𝑦𝑝𝑒	~	𝑡𝑟𝑎𝑖𝑡 + 𝑎𝑔𝑒 + 𝑠𝑒𝑥 + 𝑎𝑔𝑒! + 𝑎𝑔𝑒! ∗ 𝑠𝑒𝑥 + 𝑎𝑔𝑒 ∗ 𝑠𝑒𝑥 + 𝑝𝑜𝑝825 
+ 𝑡𝑜𝑝	𝑙𝑒𝑣𝑒𝑙	ℎ𝑎𝑝𝑙𝑜𝑔𝑟𝑜𝑢𝑝 826 

 827 
We included haplogroups with at least 30 individuals represented in UKB. Odds ratios were 828 
obtained as exp	(𝛽"#$%"), and the 95% CI was obtained as  exp	(𝛽"#$%" ± 1.96 ∗ 𝑆𝐸"#$%"). 829 
 830 
Derivation of mtDNA coverage discrepancy phenotypes: 831 
 832 
We obtained mtDNA intervals corresponding to the 7s DNA, heavy strand origin, CSBII, CSBIII, 833 
and the light strand promoter (LSP) (Falah et al., 2017; Tan et al., 2016; Xuan et al., 2006). We 834 
computed per-individual median mtDNA coverages within the regions corresponding to the first 835 
third of the 7s DNA (“7s DNA”), the region between CSBII and the heavy strand origin (“7s DNA 836 
primer”), and the region between CSB III and the LSP (“7s RNA primer”). To generate coverage 837 
discrepancy phenotypes, we regressed DNA primer coverage onto either 7s DNA coverage or 7s 838 
RNA primer coverage. To avoid coverage discrepancies attributable to inherited mtDNA variation 839 



 

within the regions of interest, we included indicator variables for all top-level haplogroups with 840 
at least 30 samples as well as their interactions with 7s DNA or 7s RNA primer coverage. The 841 
residuals from the following model were used as the coverage discrepancy phenotype for GWAS: 842 
 843 

7𝑠	𝐷𝑁𝐴	𝑝𝑟𝑖𝑚𝑒𝑟	𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒	~	(7𝑠	𝑅𝑁𝐴	𝑝𝑟𝑖𝑚𝑒𝑟	𝑜𝑟	7𝑠	𝐷𝑁𝐴	𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒) + ℎ𝑎𝑝𝑙𝑜𝑔𝑟𝑜𝑢𝑝844 
+	(7𝑠	𝑅𝑁𝐴	𝑝𝑟𝑖𝑚𝑒𝑟	𝑜𝑟	7𝑠	𝐷𝑁𝐴	𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒) ∗ ℎ𝑎𝑝𝑙𝑜𝑔𝑟𝑜𝑢𝑝 845 

 846 
Relatedness analyses in UKB: 847 
 848 
Relatedness was computed and sibling-sibling and parent-offspring pairs were inferred as 849 
previously described in UKB (Karczewski et al., 2022). For the assessment of transmission of all 850 
QC-pass mtDNA variants, we restricted to only variants found in 5 or more samples. 851 
 852 
Determination of chrM:302 length heteroplasmy composition: 853 
 854 
To construct length heteroplasmy profiles, we obtained all post-QC variant calls made at position 855 
chrM:302. We defined a “reference” call at chrM:302 for each sample as 1 −856 
𝑠𝑢𝑚(ℎ𝑒𝑡𝑒𝑟𝑜𝑝𝑙𝑎𝑠𝑚𝑦	𝑜𝑓	𝑎𝑛𝑦	𝑎𝑙𝑙𝑒𝑙𝑒	𝑎𝑡	𝑐ℎ𝑟𝑀: 302). All samples without variant calls at 857 
chrM:302 were assigned a reference fraction of 1, with samples with a depth of < 100 at chrM:302 858 
(after local re-alignment during variant calling) excluded. For each sample, we combined all 859 
heteroplasmies from calls other than reference, chrM:302:A,AC, chrM:302:A,ACC, and 860 
chrM:302:A,ACCC into an “Other” category. Any calls with a missing value for a chrM:302 allele 861 
were imputed as a heteroplasmy of 0 for the purposes of visualizations and analyses. 862 
 863 
Associations between pathogenic variant carrier status and continuous phenotypes in UKB: 864 
 865 
We obtained continuous phenotypes available in UKB corresponding to classic symptoms of 866 
MELAS – diabetes-like symptoms (elevated triglycerides (ID 30870), elevated hemoglobin A1c (ID 867 
30750)) and hearing impairment (via the speech-reception-threshold estimate (IDs 20019 and 868 
20021)) – as well as the results from the visual acuity test for analysis of known pathogenic 869 
variants for Leber’s hereditary optic neuropathy (logMAR from visual acuity test (IDs 5201 and 870 
5208)). All obtained phenotypes were filtered to samples with available mtDNA variant calls and 871 
corrections were applied for age, sex, age2, age2*sex, age*sex, and genetic ancestry group 872 
assignment by obtaining residuals from the following linear regression model using 873 
residuals(lm(model)) in R:  874 
 875 

𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑚𝑒𝑛𝑡	~	𝑎𝑔𝑒 + 𝑠𝑒𝑥 + 𝑎𝑔𝑒! + 𝑎𝑔𝑒! ∗ 𝑠𝑒𝑥 + 𝑎𝑔𝑒 ∗ 𝑠𝑒𝑥 + 𝑝𝑜𝑝 876 
 877 
As blood biomarkers tend to have log-normal distributions, corrections were applied after log 878 
transformation of HbA1c and triglyceride levels. Post-correction, all measurements were 879 
returned to their original scale by adding the pre-correction dataset-wide means for each 880 
measurement modality. Final estimates for the speech-recognition-threshold and vision logMAR 881 
were generated by averaging measurements for the left and right ear and eye respectively. 882 
 883 



 

Carriers of known pathogenic mtDNA variants were defined as individuals carrying the variant 884 
post-QC at any fraction. We defined a set of controls as individuals with none of the ten known 885 
pathogenic mtDNA variants tested. Only samples which could be accurately inferred as reference 886 
for all ten variants were labeled as controls – the sample was excluded if, for any of the ten 887 
variants, it had a coverage of below 100 at the site or showed a QC-fail variant call (Methods). 888 
 889 
Comparisons between residual phenotype values among variant carriers versus global controls 890 
were performed only for variant-phenotype pairs with more than 10 defined phenotype values 891 
among variant carriers. P-values were obtained by performing a two-sample t-test between 892 
phenotype values among variant carriers and the set of global controls, and q-values were 893 
obtained by applying the Benjamini-Hochberg procedure. 894 
 895 
Creation of mutational spectrum categories: 896 
 897 
Heteroplasmic SNV mutation types in AllofUs were constructed using the set of QC-pass 898 
heteroplasmic SNVs. For each SNV type, the set of individuals without any heteroplasmic variants 899 
was identified as those with no QC-pass variant call of that type; these individuals were included 900 
as zeros in estimates of the mean SNV count of each type. 901 
 902 
chrM:302 length heteroplasmy inference in single cells: 903 
 904 
We used the BedTools (Quinlan & Hall, 2010) intersect tool (v2.29.2) to identify read alignments 905 
completely spanning the chrM:300-318 locus in the mtscATAC-seq data from Walker et al., 2020, 906 
obtained with Massachusetts General Hospital IRB approval under protocol #2016P001517. We 907 
then iterated over these reads and classified their chrM:302 length variant by extracting the poly-908 
C/G tracts using a regular expression, ‘AA(CCC+[CT]CC+)GC’, anchored on the two constant bp on 909 
either side of the variant region to detect the canonical variant structure of two poly-C/G tracts 910 
with or without a single intervening A/T. Alleles in matching reads were classified based on the 911 
length of their poly-C/G tracts, while alleles in the reads that did not match the regular expression 912 
were classified as NA. Next, we filtered out any reads with cell barcodes that were not in the 913 
published list of cell calls, and further restricted our analysis to only the cells with at least 20 914 
reads at the chrM:300-318 locus. For each of these high coverage cells, we calculated the fraction 915 
of reads showing each of the top three most common length variants (G6AG8, G6AG9, and G6AG10) 916 
and aggregated any other detected alleles into the remainder (other) for display as a stacked bar 917 
plot. We also estimated bulk heteroplasmy by summing the allele counts from the high coverage 918 
cells and re-calculating the fractions for the top three length variants, again with all other alleles 919 
being aggregated into the remainder “other” category. 920 
 921 
UKB GWAS approach: 922 
 923 
All GWAS was performed in UKB using approaches as performed in the Pan UKBB initiative (Pan 924 
UKBB Initiative, 2022). In brief, ancestry assignment was performed by projecting UKB samples 925 
into genotype PC-space constructed from reference samples from 1000 Genomes (1KG) phase 3 926 
and the Human Genome Diversity Project (HGDP) and subsequently using a random forest 927 



 

classifier to assign continental labels trained on the 1KG+HGDP reference data. Within each 928 
ancestry group, PCA was performed among unrelated samples with related samples projected 929 
onto this PC-space. Further sample QC was performed excluding samples as described as part of 930 
the Pan UKBB initiative (Pan UKBB Initiative, 2022), including removal of ancestry outliers using 931 
a centroid-based metric, individuals with high genotype missingness, sex discordance, and sex 932 
chromosome aneuploidies. Variant QC was also performed on UKB-provided imputed v3 variants 933 
as part of the Pan UKBB initiative (Pan UKBB Initiative, 2022), including only those with INFO 934 
scores > 0.8 on autosomes and the X-chromosome. Association tests were performed only on 935 
variants with a minor allele count (MAC) > 20. 936 
 937 
For GWAS, SAIGE v1.1.5 (Zhou et al., 2018) was used to perform association tests within each 938 
assigned ancestry group using the first 10 per-population PCs, age, age*sex, age2, and age2*sex 939 
as covariates (referred to as “baseline”). Ancestry groups were only included if at least 50 940 
individuals had the phenotype defined. The use of the SAIGE GRM-based approach allowed for 941 
the inclusion of related samples in the GWAS, and we enabled leave-one-chromosome-out fitting 942 
in all steps. For all continuous phenotype GWAS (case-only mtDNA heteroplasmy traits and 943 
mtCN), phenotypes were inverse rank normalized prior to genetic analysis. 944 
 945 
For all main mtDNA heteroplasmy analyses, top-level mtDNA haplogroup was included as an 946 
additional set of covariates in the GWAS model as a set of 24 indicator variables with haplogroup 947 
A as reference. Any samples belonging to top-level haplogroups with fewer than 30 samples 948 
represented were excluded. The same GWAS model was used for sensitivity analysis of case-only 949 
heteroplasmies after removing calls with AD alt < mean nucDNA coverage, after correction for 950 
local variant coverage, after correction for CSBII coverage, and after correction for technical or 951 
blood trait covariates (Methods). For the main mtCN analyses, we used only the baseline 952 
covariates to perform genetic associations with mtCNraw and mtCNcorr. 953 
 954 
We performed two additional sensitivity analyses for case-only heteroplasmy GWAS: (1) inclusion 955 
of 30 mtDNA PCs as covariates in the GWAS model instead of top-level haplogroup for 7 variants 956 
which showed relatively high heterogeneity across level 2 haplogroups, and (2) inclusion of mtCN 957 
as a covariate in the GWAS model for all case-only heteroplasmies in addition to top-level 958 
haplogroup. We also tested the effects of including top-level haplogroup indicator variables as 959 
additional covariates in GWAS for mtCNraw and mtCNcorr. 960 
 961 
AllofUs GWAS approach: 962 
 963 
We performed GWAS in AllofUs as replication for our main case-only heteroplasmy analyses in 964 
UKB. Ancestry inference was performed upstream by the AllofUs Data and Research Center 965 
(DRC). In brief, AoU samples were projected into the PCA space of genotypes from chromosomes 966 
20 and 21 from HGDP and 1KG, and a random forest classifier trained to identify ancestry labels 967 
in 1KG+HGDP was used to assign AoU samples continental ancestry labels. 968 
 969 
We performed sample and variant QC after WGS variant calls were imported into Hail. Multi-970 
allelic sites were split and sites with very low pre-computed AF were removed (MAF > 0.0001 971 



 

retained). For sample QC, samples flagged by the DRC as population outliers for several metrics 972 
or identified as related by the DRC were excluded. For variant QC, we removed any variants 973 
filtered by the DRC, which occurred in brief because of no high-quality genotypes for the variant 974 
(defined as GQ >= 20, DP >= 10, AB >= 0.2 for heterozygotes), excess heterozygotes, or a low 975 
quality score for the variant. We further removed any variants not in Hardy-Weinberg equilibrium 976 
(one-sided p <= 1e-10) and variants with a call rate <= 0.95. Finally, we removed any variants with 977 
MAC < 20 in each assigned ancestry group. 978 
 979 
We next extracted covariates relevant for our GWAS model. We used a SQL query to obtain date 980 
of birth in the controlled data repository and used the provided QC flat files to obtain sex assigned 981 
at birth. As date of sample collection was not provided, approximate age was constructed for all 982 
analyses by subtracting the year of birth from the year 2021. To address residual stratification 983 
within assigned ancestry groups, we produced PCs within each ancestry group using a very similar 984 
approach as used in UKB (Methods) as we found that the provided PCs did not appropriately 985 
handle stratification among positive control phenotypes like height, blood glucose, diastolic 986 
blood pressure, and systolic blood pressure (Supplementary note 4). We included 20 987 
recomputed PCs, in addition to approximate age, age2, age*sex, and age2*sex as covariates in 988 
the final GWAS model. We did not perform genetic analysis for the MID group as less than 400 989 
samples with available WGS data were assigned MID. 990 
 991 
We used Hail with the hl.linear_regression_rows() method to perform GWAS after 992 
all QC. As described in Methods, we performed genetic analysis for all QC-pass case-only mtDNA 993 
heteroplasmies with homoplasmic calls set to missing. As this analysis is intended for replication, 994 
we included any variants found in 300 or more samples across any ancestry group, resulting in 995 
41 variants for genetic analysis. Of these, 36 were also analyzed in UKB; 3 UKB variants were not 996 
sufficiently common in AoU for genetic analysis. As in UKB, for the analysis of case-only mtDNA 997 
heteroplasmies, top-level mtDNA haplogroup was included as covariates in the GWAS model as 998 
a set of 27 indicator variables in addition to age, sex, and PC covariates. Samples belonging to 999 
top-level haplogroups with fewer than 30 samples in AoU were excluded. All case-only mtDNA 1000 
heteroplasmy phenotypes were inverse rank normalized prior to analysis. 1001 
 1002 
See the AllofUs genotype quality report for more information on upstream genotype data and 1003 
sample QC, ancestry inference, and relatedness inference 1004 
(https://support.researchallofus.org/hc/en-1005 
us/article_attachments/7237425684244/All_Of_Us_Q2_2022_Release_Genomic_Quality_Repo1006 
rt.pdf). 1007 
 1008 
Heritability estimation and enrichment analyses for mtCN: 1009 
 1010 
Stratified linkage disequilibrium score regression (S-LDSC, Finucane et al., 2015) was used for 1011 
heritability estimation and enrichment analyses for mtDNA copy number in UKB as performed 1012 
previously (Gupta et al., 2021). In brief, we analyzed EUR summary statistics in UKB, restricting 1013 
variants to those in HapMap3 (HM3). We estimated overall SNP-heritability controlling for 97 1014 
annotations corresponding to coding regions, enhancer regions, minor allele frequency bins, and 1015 



 

others (Gazal et al., 2017, referred to as baselineLD v2.2). For enrichment analyses, we obtained 1016 
gene-sets corresponding to (1) the top 10% of genes specifically expressed in major tissues from 1017 
GTEx (Finucane et al., 2018) and (2) genes producing protein products that localize to each major 1018 
organelle with high confidence using COMPARTMENTS (Binder et al., 2014). Variants were 1019 
mapped to each gene with a 100kb symmetric window and LD scores for each gene-set 1020 
annotation were computed using the 1000G EUR reference panel 1021 
(https://alkesgroup.broadinstitute.org/LDSCORE/). Heritability enrichment for all gene-sets was 1022 
tested using S-LDSC atop the baseline v1.1 model, controlling for 53 annotations including coding 1023 
regions and 5’ and 3’ UTRs (Finucane et al., 2015). 1024 
 1025 
Cross-ancestry meta-analysis in UKB and AllofUs: 1026 
 1027 
We conducted a fixed-effect meta-analysis across ancestries in each cohort (UKB and AoU) based 1028 
on inverse-variance weighted betas and standard errors (de Bakker et al., 2008). For each 1029 
ancestry, we excluded low-confidence variants defined as MAC <= 20 in either biobank. We 1030 
computed effect size heterogeneity P-values across ancestries using Cochran's Q-test (Cochran, 1031 
1954). All computation was done using Hail v0.2. 1032 
 1033 
All visualizations of main GWAS (e.g., mtCN, coverage discrepancy traits, heteroplasmy traits) are 1034 
of cross-ancestry meta-analyses after restriction to the set of “high quality” variants as defined 1035 
previously (Pan UKBB Initiative, 2022). 1036 
 1037 
Identification of LD-independent lead SNPs and locus definitions: 1038 
 1039 
Clumping was performed using Plink v1.90 (Purcell et al., 2007) in Hail Batch for GWAS results 1040 
obtained in UK Biobank after filtering to high quality variants. We used significance thresholds of 1041 
1 for both the index and clumped SNPs, set the LD threshold for clumping at 0.1, and set the 1042 
distance threshold at 500kb. We used single ancestry and multi-ancestry LD reference panels 1043 
corresponding to the ancestry groups included in the final multi-ancestry meta-analyses for each 1044 
mtDNA phenotype as well as for blood cell traits. Reference panels were constructed by randomly 1045 
sampling 5000 individuals from all samples within any given set of ancestry groups in the UK 1046 
Biobank. For the single-ancestry LD panels corresponding to ancestry groups with less than 5000 1047 
individuals (EAS and MID), the full sample available for each ancestry group was used. More 1048 
details on the LD reference panels can be found as part of the Pan UKBB project (Pan UKBB 1049 
Initiative, 2022). Clumping output files from Plink were converted to Hail Tables and then 1050 
combined into MatrixTables using the multi-way-zip-join method as implemented in Hail.  1051 
 1052 
We defined distinct loci conservatively by starting with genome-wide significant LD-independent 1053 
lead SNPs and merging any SNPs within 2 Mb of one another. 1054 
 1055 
Replication of previous mtCN GWAS with our study: 1056 
 1057 
We performed a comparison of significant loci identified in a previous GWAS of mtCN in UKB 1058 
(Longchamps et al., 2021) with our own by performing LD clumping on previously released 1059 



 

summary statistics as described (Methods) using 1KG phase 3 EUR reference data for LD. We 1060 
defined distinct loci as described (Methods), merging any SNPs within 2 Mb of one another, 1061 
arriving at 96 loci previously identified. We defined a replicated locus with mtCNraw or mtCNcorr 1062 
as one where our GWAS showed a signal at p < 5*10-5 or 5*10-8 within 2 Mb of the most 1063 
significant variant identified in the previous study within each locus. 1064 
 1065 
Bidirectional Mendelian randomization between UKB mtCN and neutrophil count: 1066 
 1067 
GWAS effect sizes and LD-independent loci from the UKB cross-ancestry meta-analysis for raw 1068 
mtCN and fully corrected mtCN were obtained. Summary statistics and LD-independent loci from 1069 
GWAS among EUR for neutrophil count (ID 30140) were obtained from the Pan UKBB project 1070 
(Pan UKBB Initiative, 2022). Sites for comparison were restricted to those passing variant QC as 1071 
performed in UKB (Methods). For each mtCN phenotype, neutrophil count and mtCN GWAS 1072 
effect sizes were obtained for all mtCN genome-wide significant variants, and vice-versa, mtCN 1073 
and neutrophil count GWAS effect sizes were obtained for all neutrophil count genome-wide 1074 
significant variants. We assessed the relationship between pre- and post-correction mtCN GWAS 1075 
effect sizes and neutrophil count GWAS effect sizes via inverse-variance weighted linear 1076 
regression using weights corresponding to &

'((*"+,)!
∗ &
'((./0"#123%4)!

, where effect size standard 1077 

errors were obtained from the respective GWAS. 1078 
 1079 
Fine-mapping in UKB: 1080 
 1081 
To identify putative causal variants in associated loci, we conducted statistical fine-mapping of 1082 
mtDNA traits in UKB using cross-ancestry meta-analysis summary statistics. While we previously 1083 
showed that fine-mapping a meta-analysis is often miscalibrated due to heterogeneous 1084 
characteristics of constituent cohorts (e.g., genotyping or imputation) (Kanai et al., 2022), a 1085 
within-cohort cross-ancestry meta-analysis like the present study is a notable exception given no 1086 
such heterogeneity systematically exists across ancestries. 1087 
 1088 
We used FINEMAP-inf and SuSiE-inf which model infinitesimal effects (Cui et al., 2022), with 1089 
cross-ancestry meta-analysis summary statistics (Methods) and a covariate-adjusted in-sample 1090 
dosage LD matrix (Kanai et al., 2021). We defined fine-mapping regions based on a 3 Mb window 1091 
around each lead variant and merged regions if they overlapped as described previously (Kanai 1092 
et al., 2021). We excluded the major histocompatibility complex (MHC) region (chr 6: 25–36 Mb) 1093 
from analysis due to extensive LD structure in the region. For each method, we allowed up to 10 1094 
causal variants per region and derived posterior inclusion probabilities (PIP) of each variant using 1095 
a uniform prior probability of causality. To achieve better calibration, we computed min(PIP) 1096 
across the methods and derived up to 10 independent 95% credible sets (CS) from SuSiE-inf as 1097 
described elsewhere (Kanai et al., 2021). All reported PIP are min(PIP) between the two methods. 1098 
 1099 
Enrichment of functional categories among fine-mapped variants: 1100 
 1101 



 

We computed functional enrichment of fine-mapped variants across the mtDNA traits in UKB. 1102 
We first annotated each variant with seven functional categories (pLoF, missense, synonymous, 1103 
5' UTR, 3' UTR, promoter, cis-regulatory element [CRE], and non-genic) as described previously 1104 
(Kanai et al., 2021). We then estimated functional enrichment for each category as a relative risk 1105 
(i.e., a ratio of proportion of variants) between being in an annotation and fine-mapped (PIP ≤ 1106 
0.01 or PIP > 0.1). That is, a relative risk = (proportion of variants with PIP > 0.1 that are in the 1107 
annotation) / (proportion of variants with PIP ≤ 0.01 that are in the annotation). 95% confidence 1108 
intervals are calculated using bootstrapping with 5,000 replicates. We note that, to increase 1109 
statistical power, we combined pLoF/missense and 5'/3' UTR into single categories respectively 1110 
and used a more lenient threshold (PIP > 0.1 vs. > 0.9) compared to our previous analysis (Kanai 1111 
et al., 2021). 1112 
 1113 
Gene- and variant-prioritization: 1114 
 1115 
To nominate genes using GWAS results, we used the following approach to balance clarity with 1116 
confidence in the gene assignment. 1117 
 1118 

1. If the locus had a credible set, for each credible set (CS): 1119 
a. Filter to variants in the credible set and retain variants from the CS that are either 1120 

minimal PIP, coding, or have PIP > 0.7 1121 
b. If the variant has PIP > 0.9 and is a coding variant for a gene, assign that gene to 1122 

the CS 1123 
c. Otherwise assign genes within 3kb of the variant or, if no genes are within 3kb, 1124 

assign the nearest gene to the CS 1125 
2. If the locus had multiple credible sets and at least one had a variant with PIP > 0.1, we 1126 

retained assignments only corresponding to variants with PIP > 0.1 1127 
3. If the locus did not have a credible set, we assigned the gene with a boundary nearest to 1128 

the most significant variant in the locus 1129 
 1130 
If a variant is inside a gene body (but is non-coding), we consider that gene to be nearest. For 1131 
case-only heteroplasmy GWAS, when the same locus was significant across multiple 1132 
heteroplasmy phenotypes, we performed manual integration to arrive at a set of genes 1133 
supported by the most compelling genetic evidence across variants for each locus. The SSBP1 1134 
locus was particularly complex, so we assign SSBP1 (which harbors the max PIP variant) and 1135 
provide visualization of the full locus (Supplementary figure 9K). We do not use fine-mapping 1136 
evidence from variants with PIP > 0.1 that are not assigned to a credible set. All assignments were 1137 
manually reviewed. In all GWAS visualizations, we label the strength of evidence supporting the 1138 
gene assignment (e.g., if supported by moderate or high-PIP fine-mapped variants, coding 1139 
variants). 1140 
 1141 
Colocalization with eQTLs: 1142 
 1143 
We conducted colocalization of fine-mapped variants of mtDNA phenotypes and cis-eQTL 1144 
associations from GTEx v8 (Aguet et al., 2020) and eQTL catalogue release 4 (Kerimov et al., 2021) 1145 



 

as described previously (Kanai et al., 2021). Briefly, we retrieved fine-mapping results of cis-eQTL 1146 
associations that were fine-mapped using SuSiE (Wang et al., 2020) with covariate-adjusted in-1147 
sample dosage LD matrices (Kanai et al., 2021). We then computed a posterior inclusion 1148 
probability of colocalization for a variant as a product of PIP for GWAS and for cis-eQTL (CLPP = 1149 
PIPGWAS × PIPcis-eQTL) (Hormozdiari et al., 2016). When displaying colocalization across 1150 
heteroplasmy traits, we indicate colocalization if we see colocalization PIP > 0.1 for the assigned 1151 
gene and any variant in the credible set for any tissue and for any heteroplasmy trait. 1152 
 1153 
Replication of UKB heteroplasmy results in AllofUs: 1154 
 1155 
To perform replication analysis in AllofUs, we used LD-independent lead SNPs from all case-only 1156 
heteroplasmy GWAS originally performed in UKB (Methods). We filtered association statistics 1157 
from AoU (Methods) to these lead variants and compared effect sizes when the variants were 1158 
identified in AoU with MAC > 20. We used Deming regression implemented in the deming v1.4 1159 
package in R to assess the relationship between effect sizes for these lead SNPs in cross-ancestry 1160 
meta-analyses in the two biobanks while accounting for standard errors in both (Deming, 1943; 1161 
Zhou et al., 2022). We coded alleles such that effect sizes were always positive in UKB. 1162 
 1163 
Assessment of LD with known polymorphic and reference NUMTs: 1164 
 1165 
We collated an extensive database of polymorphic and reference NUMT intervals using BLAST, 1166 
known reference NUMTs (Calabrese et al., 2012; Li et al., 2012), and published polymorphic 1167 
NUMTs inferred using mate-pair mapping discordance (Dayama et al., 2014; Wei et al., 2022). To 1168 
search for regions of homology to the mtDNA within the reference nucDNA, we used BLASTn with 1169 
the GRCh37 reference genome with a word size of 11, an expect threshold of 0.05, short queries 1170 
enabled, and default values for the other parameters. In total, we obtained 4,736 overlapping 1171 
reference and polymorphic NUMT intervals. We constructed a 20kb window around each 1172 
nucDNA NUMT region (10kb up, 10kb down) and then conservatively tested for LD R2 > 0.1 1173 
between any SNP in the window and each lead variant at genome-wide significance for our UKB 1174 
case-only heteroplasmy GWAS using in-sample genome-wide EUR LD matrices generated in UKB 1175 
(Pan UKBB Initiative, 2022). All LD values used to examine individual loci in either biobank was 1176 
computed in-sample – for example, in AoU we computed LD using the post-QC genotype 1177 
MatrixTable (Methods) used for GWAS with the Hail function hl.ld_matrix(). 1178 
 1179 
Multiple alignment of POLG2 protein sequence: 1180 
 1181 
POLG2 homologs were detected via best bi-directional BlastP hit (Expect < 1e-3) from human 1182 
and were aligned via MUSCLE (Edgar, 2004). 1183 
  1184 
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