
Predicting Opportunities for Improvement in Trauma Care: A 

Registry-Based Cohort Study 

Authors: Jonatan Attergrim, MD1,2,#,*, Kelvin Szolnoky, MS3,#, Lovisa Strömmer, MD, PhD4, Olof 

Brattström, MD, PhD2,5,6, Gunilla Whilke, MS2,7, Martin Jacobsson, PhD8, Martin Gerdin 

Wärnberg, MD, PhD1,2 

1Department of Global Public Health, Karolinska Institute, Stockholm, Sweden. 

2Perioperative Medicine and Intensive Care, Karolinska University Hospital, Solna, Stockholm, 

Sweden. 

3Department of Medical Epidemiology and Biostatistics Karolinska Institute, Stockholm, 

Sweden. 

4Department of Clinical Science, Intervention and Technology, Division of Surgery, Karolinska 

Institute, Karolinska University Hospital Huddinge, 14186 Stockholm, Sweden. 

5Department of Physiology and Pharmacology, Karolinska Institute, Stockholm, Sweden. 

6Department of Anesthesiology, Surgical Services and Intensive Care Medicine, Mora Hospital, 

Mora, Sweden 

7Trauma and Reparative Medicine, Karolinska University Hospital, Solna, 171 76, Stockholm, 

Sweden. 

8Department of Biomedical Engineering and Health Systems, KTH Royal Institute of 

Technology, Huddinge, Sweden. 

#These authors contributed equally to this work. 

*Corresponding author: Jonatan Attergrim (jonatan.attergrim@ki.se) 

Department of Public Global Health, Karolinska Institutet, 171 77 Stockholm 

Tel: (+46) 7287 31114 

Manuscript word count: 2891 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted August 20, 2024. ; https://doi.org/10.1101/2023.01.19.23284654doi: medRxiv preprint 

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.

https://doi.org/10.1101/2023.01.19.23284654
http://creativecommons.org/licenses/by-nc-nd/4.0/


Key point 

Question:  How does the performance of machine learning models compare to audit filters 

when screening for opportunities for improvement, preventable events in care with adverse 

outcomes, among adult trauma patients? 

Findings:  Our registry-based cohort study including 8,220 patients showed that machine 

learning models outperform audit filters, with improved discrimination and false-positive 

rates. Compared to audit filters, these models can be configurated to balance sensitivity 

against overall screening burden. 

Meaning: Machine learning models have the potential to reduce false positives when 

screening for opportunities for improvement in the care of adult trauma patients and thereby 

enhancing trauma quality improvement programs. 
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Abstract 

Importance 

Trauma quality improvement programs relies on peer review of patient cases to identify 

opportunities for improvement. Current state-of-the-art systems for selecting patient cases for 

peer review use audit filters that struggle with poor performance. 

Objective 

To develop models predicting opportunities for improvement in trauma care and compare 

their performance to currently used audit filters.  

Design, Setting and Participants 

This single-center registry-based cohort study used data from the trauma centre at Karolinska 

University Hospital in Stockholm, Sweden, between 2013 and 2023. Participants were adult 

trauma patients included in the local trauma registry. The models predicting opportunities for 

improvement in trauma care were developed using logistic regression and the eXtreme 

Gradient Boosting learner (XGBoost) with an add-one-year-in expanding window approach. 

Performance was measured using the integrated calibration index (ICI), area under the 

receiver operating curve (AUC), true positive rates (TPR) and false positive rates (FPR). We 

compared the performance of the models to locally used audit filters. 

Main outcome measure 

Opportunities for improvement, defined as preventable events in patient care with adverse 

outcomes. These opportunities for improvement were identified by the local peer review 

processes. 
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Results 

A total of 8,220 patients were included. The mean (SD) age was 45 (21), 5696 patients (69%) 

were male, and the mean (SD) injury severity score was 12 (13). Opportunities for 

improvement were identified in 496 (6%) patients. The logistic regression and XGBoost 

models were well calibrated with ICIs (95% CI) of 0.032 (0.032-0.032) and 0.033 (0.032-

0.033). Compared to the audit filters, both the logistic regression and XGBoost models had 

higher AUCs (95% CI) of 0.72 (0.717-0.723) and 0.75 (0.747-0.753), TPR (95% CI) of 0.885 

(0.881-0.888) and 0.904 (0.901-0.907), and lower FPR (95% CI) of 0.636 (0.635-0.638) and 

0.599 (0.598-0.6). The audit filters had an AUC (95% CI) of 0.616 (0.614-0.618), a TPR (95% 

CI) of 0.903 (0.9-0.906), and a FPR (95% CI) of 0.671 (0.67-0.672). 

Conclusion and Relevance 

Both the logistic regression and XGBoost models outperformed audit filters in predicting 

opportunities for improvement among adult trauma patients and can potentially be used to 

improve systems for selecting patient cases for trauma peer review. 
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Introduction 

Trauma is a leading cause of death and disability worldwide (1,2). Peer review of patient cases, 

sometimes referred to as performance improvement, is a critical component of trauma quality 

improvement programmes (3–5). This review ideally involves representatives from all 

disciplines and professions involved in trauma care to identify opportunities for improvement, 

which are preventable events in patient care with adverse outcomes (6). 

The current state-of-the-art systems for selecting patient cases for peer review uses audit 

filters, sometimes in combination with individual human screening (7). Audit filters are 

sentinel events in patient care that are associated with suboptimal care and potentially poor 

patient outcomes, such as delays in key interventions or unexpected deaths (3,8). When such 

an event occurs, it should trigger the peer review process. This process is then followed by the 

implementation of corrective actions (8). 

It has long been known that audit filters perform poorly in this context (9). Replacing filters 

with trauma mortality prediction models has failed (10–12), likely because they were not 

developed to predict opportunities for improvement. No published research has evaluated 

prediction models for opportunities for improvement. We therefore aimed to develop models 

predicting opportunities for improvement in trauma care and compare their performance to 

currently used audit filters. 

Methods 

Design 

We conducted a registry-based cohort study using all trauma patients included in both the 

Karolinska University Hospital trauma registry and the trauma care quality database between 
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2013 and 2022. The study was approved by the Swedish Ethical Review Authority (approval 

numbers 2021-02541 and 2021-03531).  

Study Setting and Population 

The trauma center at the Karolinska University Hospital in Solna, Sweden, manages 

approximately 1500 acute trauma patients each year (13). 

The Karolinska University Hospital trauma registry, part of the Swedish Trauma Registry (13), 

includes all patients admitted to the Karolinska University Hospital with trauma team 

activation, regardless of injury severity score (ISS), as well as patients admitted without 

trauma team activation but found to have ISS of more than 9. The registry includes data on 

vital signs, times, injuries and interventions and demographics according to the European 

consensus statement, the Utstein template (14). The care quality database includes data 

relevant to the peer review process, including audit filters, identified opportunities for 

improvement, and proposed corrective actions. 

The peer review process has evolved over time, but since 2017, a specialized nurse reviews 

the medical records of all trauma patients and flags patients with potential opportunities for 

improvement using a set of audit filters (Supplement E2 eTable 1) and clinical experience. A 

second nurse performs a more in-depth review of all flagged patients. Patients with suspected 

opportunities for improvement are then reviewed at a multidisciplinary conference, where the 

final decision on the presence of opportunities for improvement is made. All patients who die 

are reviewed in a separate conference that evaluates the preventability of the death and 

determines the presence of any opportunities for improvement. Before 2017, the process was 

less formalized, and a small group of clinicians involved in trauma care identified 

opportunities for improvement. 
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Eligibility Criteria 

We included all patients screened for opportunities for improvement from the trauma registry 

and trauma care quality database between 1 January 2013 and 31 December 2022. Patients 

younger than 15 years were excluded because their clinical and review pathways differ from 

those of adults. 

Outcome 

The models’ outcome is the presence of any opportunities for improvement, as determined by 

the peer review process. The identified opportunities for improvement are further grouped 

into clinical judgment errors, delays in treatment or diagnosis, missed diagnoses, technical 

errors, preventable deaths or other errors. 

Sample Size Considerations 

The relationship between the number of predictors and required sample size for different 

learners has not been well researched expect for logistic regression (15,16). We used these 

guidelines to inform the number of predictors that we could include in our models, and we 

estimated that with a sample size of 3452, which is equivalent to 80% of the available data 

from 2017–2020, would support 45 parameters, assuming a 6% event rate, a r2 of 0.11 and a 

target shrinkage of 0.9. 

Predictors 

We selected predictors based on current audit filters, standard demographics, previous 

research and expert opinion (17). The categorical predictors were gender, type of emergency 

procedure, highest level of care, reprioritization, type of trauma alarm, discharge destination 
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and death within 30 days. The continuous predictors included age, vital signs on arrival, time 

to CT and intervention, ISS and length of stay. These final set of predictors comprised 17 

variables with 45 corresponding parameters. eTable 2 (Supplement E2) shows all 17 

predictors. 

Statistical Analysis Methods 

The statistical analyses were conducted using R (18). We developed several prediction models 

around different learners, available in the supplementary material (Supplement E1 and E2), 

where we include the best-performing model: eXtreme Gradient Boosting (XGBoost), and the 

more interpretable model: Logistic Regression. XGBoost builds on the principles of gradient 

boosting, incorporating various algorithmic optimizations, including parallel tree boosting, to 

efficiently solve a range of machine learning problems such as classification and regression 

(19).  

To evaluate the models, we used an add-one-year-in expanding window approach to best 

represents how the models would have performed if implemented prospectively. The years 

2017-2022 were all used as separate validation hold-out sets in an iterative fashion. In each 

iteration, all years prior to the current validation sample were used as training data. The 

training data were then split, and 80% of the data were used for training and 20% for 

calibration. We estimated 95% confidence intervals (CIs) for all performance metrics through 

a bootstrap of 1000 resamples for each validation sample. 

Data preprocessing and imputation. We developed a preprocessor that rescaled continuous 

predictors using Yeo-Johnson’s power transformation (20) and recorded categorical 

predictors into dummy variables via one-hot encoding. Predictors with near-zero variances 

were excluded. Missing continuous predictors were imputed using the mean of the predictor, 
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and a missing indicator feature was created for each. Categorical predictors were imputed by 

introducing an ‘unknown’ category. If blood pressure or respiratory rate data were missing 

but corresponding revised trauma score categorical values were available, we imputed the 

missing data using the mean of all patients in that category. The preprocessor was initially run 

on the training sample for each split to learn metrics and prevent data leakage. The trained 

preprocessor model was then applied independently to both the training and validation 

samples. To balance the training samples, we used the adaptive synthetic algorithm (21), 

which generates synthetic data, enabling us to upsample the opportunities for improvement 

outcomes at a balanced 1:1 ratio between outcome classes. 

Model development. We developed the logistic regression and XGBoost (19) models using 

the learners as implemented in the Tidymodels framework (22). All model hyperparameters 

were optimized on the training sample of each split using five-fold cross-validation through 

iterative Bayesian optimization, encompassing all the parameters provided by the tidymodels 

framework. 

Performance measurements. The prediction models and audit filters performance were 

assessed and compared in terms of calibration, discrimination, as well as true and false 

positive rates in each validation sample. Calibration was measured using the integrated 

calibration index (ICI) (23) and discrimination was measured using the area under the 

receiver operating characteristic curve (AUC). The ICI was not calculated for the audit filters 

because they cannot estimate a probability of opportunities for improvement. 

To determine the class probability cutoff for the two prediction models model, we first 

configured them using Platt scaling on a 20% holdout sample from the training samples. We 

then determined the cutoff that produced a 95% true positive rate on this configuration 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted August 20, 2024. ; https://doi.org/10.1101/2023.01.19.23284654doi: medRxiv preprint 

https://doi.org/10.1101/2023.01.19.23284654
http://creativecommons.org/licenses/by-nc-nd/4.0/


sample and applied it to the holdout validation sample, called “TPR95%”. Additionally, we 

conducted an analysis to establish an “optimal” cutoff threshold by identifying the point on the 

ROC curve that maximizes the trade-off between sensitivity and specificity, called “balanced 

configuration”. 

Predictor importance. We calculated the predictor importance for the prediction models 

using permutation feature importance (24) on the nonresampled validation samples. The 

importance of a feature was thus calculated by taking the average AUC performance when 

shuffling a feature’s data five times and comparing it to the model’s performance on 

nonshuffled data. 

Code availability. The code used in this study is publicly available online: 

https://github.com/noacs-io/predicting-ofi-in-trauma under the MIT License. 

Results 

Participants 

Out of the 13879 patients in the registry included between January 2013 and December 2022, 

8220 (59.87%) patients had been reviewed regarding the presence of opportunities for 

improvement, which were identified in 496 (6%) patients. The most common categories of 

opportunities for improvement where clinical judgment errors (n=176, 35%) followed by 

inadequate resources (n=111, 22%). Out of the 718 deaths, 42 (6%) where considered 

possible preventable making up 9% of all opportunities for improvement. Figure 1 details 

inclusions and exclusions as well as the frequency of each category of opportunities for 

improvement. eTable 3 (Supplement E2) shows the specific opportunities for improvement. 
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Patients with opportunities for improvement (mean = 49 years, SD = 21) were slightly older 

than patients without opportunities for improvement (mean = 45 years, SD = 21). The ISS was 

greater in patients with opportunities for improvement (mean = 19, SD = 11) than in patients 

without opportunities for improvement (mean = 12, SD = 13), and patients with opportunities 

for improvement had longer times (mean = 271 minutes, SD = 323) from hospital arrival to the 

first major intervention than patients without opportunities for improvement (mean = 251 

minutes, SD = 353). Treatment frequencies also differed, with the biggest difference being 

radiological interventions, where patients with opportunities for improvement (n=32, 6%) 

had more interventions than those without opportunities for improvement (n=69, 1%). Table 

1 shows the characteristics of all included patients.  

Model Development, Specification and Performance 

The frequency of opportunities for improvement varied between 2017 and 2022, with the 

highest occurring in 2017 (n=112, 9%) and the lowest in 2018 (n=36, 3%). Annual 

characteristics are provided in eTable 4 (Supplement E2). Figure 2 provides the number of 

patients and opportunities for improvement for each year and corresponding training 

datasets. 

ISS was the most important predictor, followed by highest level of care. Figure 3 shows the 

average predictor importance for all years between 2017 and 2022 for all predictors.  

The logistic regression and XGBoost models were well calibrated with ICIs (95% CI) of 0.032 

(0.032-0.032) and 0.033 (0.032-0.033). When averaging the results from each year, the audit 

filters had an AUC (95% CI) of 0.616 (0.614-0.618), a TPR (95% CI) of 0.903 (0.9-0.906), and a 

FPR (95% CI) of 0.671 (0.67-0.672). Compared to the audit filters, both the logistic regression 

and XGBoost models had higher AUCs (95% CI) of 0.72 (0.717-0.723) and 0.75 (0.747-0.753). 
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The XGBoost based model had a significantly lower FPR (95% CI) of 0.599 (0.598-0.6) while 

still retaining a superior TPR (95% CI) of 0.904 (0.901-0.907). The logistic regression model 

similarily displayed a superior FPR (95% CI) of 0.636 (0.635-0.638), however to the cost an 

inferior TPR (95% CI) of 0.885 (0.881-0.888).  

In the TPR95% configuration, the XGBoost model achieved a TPR (95% CI) of 0.904 (0.901-

0.907) with a significantly lower FPR (95% CI) of 0.599 (0.598-0.6) compared to audit filters. 

The logistic regression model achieved a TPR (95% CI) of 0.885 (0.881-0.888) and a FPR (95% 

CI) of 0.636 (0.635-0.638). Both models demonstrated good calibration, with ICIs (95% CI) of 

0.033 (0.032-0.033) for XGBoost and 0.032 (0.032-0.032) for logistic regression. In the 

balanced configuration, the XGBoost model had a TPR (95% CI) of 0.502 (0.496-0.507) and a 

FPR (95% CI) of 0.186 (0.185-0.187). The logistic regression model showed a TPR (95% CI) of 

0.501 (0.496-0.507) and a FPR (95% CI) of 0.218 (0.217-0.219). 

Figure 3 shows annual AUC values between 2017 and 2022. eFigures 1, eFigure 2 and eFigure 

3 in the supplemental shows the annual TPR, FPR values and receiver operating characteristic 

curves between 2017 and 2022. 

Discussion 

Both the XGBoost and logistic regression prediction models outperformed audit filters in 

predicting opportunities for improvement among adult trauma patients, with XGBoost 

showing the best overall performance. The performances of both models were modest, and the 

audit filters exhibited poor performance. Unlike audit filters, these models can be configured 

towards specific goals where we tested two configuration strategies: one prioritizing a higher 

TPR with a moderate reduction in FPR, and another accepting a moderate loss in TPR for a 

substantial reduction FPR. This adaptability allows these models to better balance identifying 
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opportunities for improvement and managing the screening burden, which in combination 

with a superior overall performance offers potential advantages over traditional audit filters.  

Limitations 

Importantly, our models’ results are most likely falsely low due to two limitations. First, the 

add on year in approach to simulate prospective implementation resulted in small sample 

sizes between 2017 and 2020, leading to poorer configuration. Second, these models are only 

evaluated against opportunities for improvement identified within the current peer review 

system. The low frequency of opportunities for improvement in this study, compared to 

previous studies, suggests potential false negatives (10,25,26). These false negatives would 

favor the models and increase their performance, as they were missed by the current audit 

filter and peer review system. 

While defined as a binary variable, opportunities for improvement includes a diverse set of 

outcomes ranging from preventable deaths to lacking communication. The heterogeneity of 

these outcomes represents a range of clinical events, each likely correlating to different 

predictors. In addition, machine learning models struggle to handle rare events, and despite 

being an aggregate of all previously identified errors, the opportunities for improvement 

frequency is only 6%; as a result, opportunities for improvement is a considerable predictive 

challenge. 

Another potential risk is a “data shift”. Due to feasibility, mortality and morbidity reviews and 

corresponding corrective actions can focus only on a subset of opportunities for improvement 

at any given time. Hence, a correctly flagged opportunities for improvement might not be 

registered since the system must prioritize other areas in need of correction. If human 

resources could be removed from basic screening tasks by reducing false positives, they could 
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possibly be allocated toward more in-depth reviews, reducing the need to prioritize 

opportunities for improvement subgroups. 

Interpretation and generalisability 

While the use of audit filters when screening for opportunities for improvement remain the 

current state-of-the-art technique for trauma quality improvement programs their 

effectiveness, especially in in the mature trauma system, have long been questioned (8,9). The 

static nature of audit filters makes them less effective as the trauma system adapts, potentially 

requiring frequent changes over time. The adaptive nature of machine learning models offers a 

promising solution, allowing the models and subsequently selected patient cases to change as 

the models develop over time. While our study suggests this as a possibility, prospective 

implementation is needed for true evaluation. 

The XGBoost model in the TPR95% configuration had a similar TPR to that of the audit filters 

but achieved a 11% (n=90) reduction in the annual screening burden. This reduction in false 

positive are further highlighted when configuring toward balanced performance, reducing the 

screening burden by 72% (n=572) while identifying 46% (n=28) fewer opportunities for 

improvement annually. Although the reduction in TPR is not ideal, this trade-off should be 

considered given that trauma systems may forgo peer review altogether due to the high FPR of 

audit filters. Thus, the significant reduction in FPR could offer benefits for settings with limited 

resources. 

Additionally, the need for extra human review as a consequence of the high FPR before the 

mortality and morbidity review risks introducing bias, reducing the intended multidisciplinary 

approach. Mortality prediction models have been suggested as a solution; however they 

perform poorly and are only applicable in mortality-related cases (10). The balanced models 
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offer a potential solution where over 80% of the flagged cases contain opportunities for 

improvement. Cases can therefore be brought directly from standard trauma registries to the 

mortality and morbidity review without additional human pre-screening. The possibility to 

configure these models therefore represent a tool for high-yield selection in context that want 

to include morbidity cases while protecting the intended multidisciplinary approach of the 

final review.  

A systematic review and meta-analysis by Zhang et al. investigated the performance of 

different machine learning applications and learners in the trauma setting found that similar 

performance where often found using Logistic regression compared to more complex machine 

learning models (28). Our study showed that XGBoost had a small, but significant, 

performance advantage compared to logistic regression however both performed modestly. 

Instead, a substantial performance increase would probably require both higher quantity and 

quality of data, e.g., higher-resolution data such as vital sign series and defined, complete and 

consistent opportunities for improvement classifications. However, in doing so one sacrifices 

external validity and general feasibility compared to the models in our study, which are easily 

applicable in settings with standard registries following the Utstein template (14). 

Conclusion 

It is important to note that perfect performance is far from expected. Comparing these models 

to entire systems using a combination of quantitative screening and several human reviews, 

including a multidisciplinary review, is unfair and not the goal of this paper. Instead, we strive 

to facilitate quality improvement efforts through a combination of human and artificial 

intelligence. Compared to audit filters, these models offer increased overall performance and 

the option to balance and optimize the tradeoff between screening burden and sensitivity 
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goals, giving each trauma quality improvement program the potential to standardize and 

automate part of the review system in a way that complements human efforts. 
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Figure Legends 

Figure 1. Flowchart describing the exclusions made and the process of accessing trauma 

patients from arrival until the decision for OFI. 

Legend:  

Figure 2. Annual AUC values for each model. Sample sizes and OFI number for each training 

and test set. 

Legend: Year wise model performance and sample sizes for the expanding window add one 

year in analysis. A) Mean area under the curve (AUC) per model and year. Lines represent 95% 

confidence intervals. For any given year, the AUCs were calculated with that year as the test 

set and all preceding years, starting with 2013, as the training set. For example, for 2019 the 

AUCs were calculated using 2019 as the test set and 2013-2018 as the training set. B) 

Opportunities for improvement (OFI) and sample sizes per year. The training sample and the 

test sample sizes includes the OFI in each sample respectively. For any given year, the training 

OFI and training sample size rows are the total number of patients with OFI and total number 

of patients in all preceding years respectively. The test OFI test sample size rows are the 

number of patients with OFI and the total number of patients in a specific year. For example, 

for 2019 the training OFI is the total number of patients with OFI 2013-2018, the training 

sample size is the total number of patients 2013-2018, the test OFI is the number of patients 

with OFI in 2019 and the test sample size the number of patients in 2019. 

 

Figure 3. Average permuted variable importance for each model. 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted August 20, 2024. ; https://doi.org/10.1101/2023.01.19.23284654doi: medRxiv preprint 

https://doi.org/10.1101/2023.01.19.23284654
http://creativecommons.org/licenses/by-nc-nd/4.0/


Legend: The calculated, model-agnostic, permuted feature importance calculated using the 

AUC as the scoring metric. Variable importance is measured as AUC change when a variable is 

permuted. The model values are the average within that model between the years 2017 and 

2022. The “Mean” value is the mean of all models. 

Definition of abbreviations:  PH = pre-hospital; ED = emergency department, GCS = Glasgow 

Coma Scale, GOS = Glasgow Outcome Scale. 
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Tables 

Table 1. Demographic and clinical characteristics of patients screened for OFI 

OFI No OFI Overall 
(N=496) (N=7724) (N=8220) 

Age   
Mean (SD) 49 (22) 45 (21) 45 (21) 
Median [Min, Max] 49 [15, 97] 43 [15, 100] 43 [15, 100] 

Sex 
Female 

 
136 (27%) 

 
2388 (31%) 

 
2524 (31%) 

Male 360 (73%) 5336 (69%) 5696 (69%) 
Dead at 30 days 

Yes 
 
41 (8%) 

 
677 (9%) 

 
718 (9%) 

No 453 (91%) 7038 (91%) 7491 (91%) 
Missing 2 (<1%) 9 (<1%) 11 (<1%) 

Highest level of care 
Emergency department 

 
22 (4%) 

 
1467 (19%) 

 
1489 (18%) 

General ward 116 (23%) 2920 (38%) 3036 (37%) 
Operation Theatre 141 (28%) 1438 (19%) 1579 (19%) 
Specialist ward/Intermediate ward 50 (10%) 336 (4%) 386 (5%) 
Intensive care unit 167 (34%) 1563 (20%) 1730 (21%) 

Injury severity score 
Mean (SD) 

 
19 (11) 

 
12 (13) 

 
12 (13) 

Median [Min, Max] 17 [0, 75] 9 [0, 75] 9 [0, 75] 
Missing 0 (0%) 10 (<1%) 10 (<1%) 

Respiratory rate 
Mean (SD) 

 
19 (5) 

 
18 (5) 

 
18 (5) 

Median [Min, Max] 18 [0, 40] 18 [0, 60] 18 [0, 60] 
Missing 51 (10%) 812 (11%) 863 (10%) 

ED GCS 
Mean (SD) 

 
14 (3) 

 
14 (2) 

 
14 (2) 

Median [Min, Max] 15 [3, 15] 15 [3, 15] 15 [3, 15] 
Missing 49 (10%) 811 (11%) 860 (10%) 

ED Systolic Blood Pressure 
Mean (SD) 

 
133 (34) 

 
133 (33) 

 
133 (33) 

Median [Min, Max] 135 [0, 237] 135 [0, 285] 135 [0, 285] 
Missing 0 (0%) 13 (<1%) 13 (<1%) 

Time to first CT 
Mean (SD) 

 
76 (129) 

 
71 (159) 

 
71 (157) 

Median [Min, Max] 40 [6, 1339] 33 [0, 7073] 33 [0, 7073] 
Missing 42 (8%) 945 (12%) 987 (12%) 

Time to first major intervention 
Mean (SD) 

 
271 (323) 

 
251 (353) 

 
253 (349) 

Median [Min, Max] 143 [3, 1420] 102 [0, 2036] 106 [0, 2036] 
Missing 230 (46%) 5668 (73%) 5898 (72%) 

Emergency procedure 
Thoracotomy 

 
8 (2%) 

 
97 (1%) 

 
105 (1%) 

Laparotomy 28 (6%) 213 (3%) 241 (3%) 
Pelvis Packing 0 (0%) 5 (<1%) 5 (<1%) 
Revascularization 12 (2%) 37 (<1%) 49 (1%) 
Radiological intervention 32 (6%) 69 (1%) 101 (1%) 
Craniotomy 42 (8%) 240 (3%) 282 (3%) 
Intracranial pressure measurement 13 (3%) 90 (1%) 103 (1%) 
Other 131 (26%) 1305 (17%) 1436 (17%) 
Missing 230 (46%) 5668 (73%) 5898 (72%) 

Definition of abbreviations: OFI = Opportunity for Improvement; ED = Emergency 
Department; GCS = Glasgow Coma Scale. Time to first CT and time to first major 
intervention: Measured in minutes from arrival at the hospit 
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Table 2. Performance Metrics 

Model AUC TPR FPR ICI 

TPR95% Configuration 
XGBoost 0.75(0.747-0.753) 0.904(0.901-0.907) 0.599(0.598-0.6) 0.033(0.032-0.033) 
Logistic Regression 0.72(0.717-0.723) 0.885(0.881-0.888) 0.636(0.635-0.638) 0.032(0.032-0.032) 
Audit filters 0.616(0.614-0.618) 0.903(0.9-0.906) 0.671(0.67-0.672) - 

Performance differences between audit filters and high sensitivity models 
XGBoost 0.134(0.132-0.137) 0.001(-0.003-0.005) 0.073(0.074-0.071) - 
Logistic Regression 0.104(0.101-0.107) -0.019(-0.023--0.015) 0.035(0.036-0.033) - 

Balanced Configuration 
XGBoost 0.75(0.747-0.753) 0.502(0.496-0.507) 0.186(0.185-0.187) 0.033(0.032-0.033) 
Logistic Regression 0.72(0.717-0.723) 0.501(0.496-0.507) 0.218(0.217-0.219) 0.032(0.032-0.032) 
Audit filters 0.616(0.614-0.618) 0.903(0.9-0.906) 0.671(0.67-0.672) - 

Performance differences between audit filters and balanced models 
XGBoost 0.134(0.132-0.137) -0.401(-0.407--0.396) 0.485(0.486-0.484) - 
Logistic Regression 0.104(0.101-0.107) -0.402(-0.407--0.396) 0.453(0.455-0.452) - 
Average performance measures for the audit filters and the logistic regression and XGBoost model using the expanding window add on 
year in approach. The performance differences are calculated by subtracting the audit filter performance values from the corresponding 
model value. ICI is not calculated for audit filters since they don’t output prediction probabilities. 
Definition of abbreviations: AUC = Area under the ROC Curve; TPR = True positive rate; FPR = False positive rate; ICI = Integrated calibration 
index 
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Figures 

 

Figure 1. Flowchart describing the exclusions made and the process of trauma cases from arrival 

until opportunities for improvement decision. 
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Figure 2. AUC values for each model and year 
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Figure 3. Average permuted variable importance for each predictor between 2017 and 2022. 
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