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Abstract 

Introduction: Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease. This study 

integrates the latest ALS genome-wide association study (GWAS) summary statistics with functional 

genomic annotations with the aim of providing mechanistic insights into ALS risk loci, inferring drug 

repurposing opportunities, and enhancing prediction of ALS risk and clinical characteristics. 

Methods: Genes associated with ALS were identified using GWAS summary statistic methodology 

including SuSiE SNP-based fine-mapping, and transcriptome- and proteome-wide association study 

(TWAS/PWAS) analyses. Using several approaches, gene associations were integrated with the 

DrugTargetor drug-gene interaction database to identify drugs that could be repurposed for the 

treatment of ALS. Furthermore, ALS gene associations from TWAS were combined with observed 

blood expression in two external ALS case-control datasets to calculate polytranscriptomic scores 

and evaluate their utility for prediction of ALS risk and clinical characteristics, including site of onset, 

age at onset, and survival. 

Results: SNP-based fine-mapping, TWAS and PWAS identified 117 genes associated with ALS, with 

TWAS and PWAS providing novel mechanistic insights. Drug repurposing analyses identified five 

drugs significantly enriched for interactions with ALS associated genes, with directional analyses 

highlighting α-glucosidase inhibitors may exacerbate ALS pathology. Additionally, drug class 

enrichment analysis showed calcium channel blockers may reduce ALS risk. Across the two observed 

expression target samples, ALS polytranscriptomic scores significantly predicted ALS risk (R2 = 4%; p-

value = 2.1×10-21). 

Conclusions: Functionally-informed analyses of ALS GWAS summary statistics identified novel 

mechanistic insights into ALS aetiology, highlighted several therapeutic research avenues, and 

enabled statistically significant prediction of ALS risk. 
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Introduction 

Amyotrophic lateral sclerosis (ALS), also known as motor neurone disease, is a neurodegenerative 

disease affecting both upper and lower motor neurones, leading to progressive loss of voluntary 

muscle control, and ultimately respiratory failure within 3-5 years after disease onset (Van Es et al., 

2017). The lifetime risk of ALS is 1 in 300 and a mean age of onset of 56 years, making it the most 

common neurodegenerative midlife disease (Brown & Al-Chalabi, 2017; Johnston et al., 2006). There 

is no diagnostic test for ALS, and substantial heterogeneity in clinical presentation and speed of 

progression make diagnosis of ALS challenging (Bendotti et al., 2020). ALS is currently diagnosed 

based on a series of tests ruling out other diseases, alongside a detailed history of symptoms 

observed by a physician, and a full medical history. The U.S. Food and Drug Administration has 

currently approved three drugs for the treatment of ALS, including Riluzole, Edavarone and Relyvrio. 

However, these drugs have a limited effect on life expectancy and daily functioning (Cruz, 2018; Heo, 

2022; Miller et al., 2012). Further development of pharmacological treatments for ALS is therefore 

needed. 

There is substantial evidence that genetic factors play an important role in the aetiology of ALS. 

Between 5-20% of people with ALS have a clear family history, referred to as familial ALS, with non-

familial cases of ALS referred to as sporadic ALS (Al-Chalabi et al., 2017). Within familial cases of ALS, 

several rare genetic variants with large effect on ALS risk have been identified, such as within genes 

C9orf72 (DeJesus-Hernandez et al., 2011) and TBK1 (Freischmidt et al., 2015). Sporadic ALS cases 

also have a strong genetic aetiology, with twin-based heritability estimates between 40-60%, and 

~20% of those with the sporadic disease carrying known ALS risk variants (Al-Chalabi et al., 2010; 

McLaughlin et al., 2015; Mehta et al., 2022). In addition to the rare large effect variants associated 

with ALS, there is evidence of a substantial common genetic component to ALS risk, with SNP-based 

heritability estimates of 21% (Keller et al., 2014). The largest genome-wide association study (GWAS) 

of ALS (29,612 people with ALS and 122,656 controls) recently reported 15 genome-wide significant 

loci associated with ALS risk (van Rheenen et al., 2021), replicating previous associations and 

identifying novel risk loci. The authors analysed each significant locus to highlight likely causal 

genetic variation using statistical fine-mapping and inferred the underlying molecular mechanisms 

through the integration of functional genomic annotations such as expression quantitative trait loci 

(eQTL) data.  

Transcriptome-wide association study (TWAS), a powerful approach for the integration of eQTL data 

with GWAS summary statistics, infers up- and down-regulation of gene expression associated with 

the GWAS phenotype (Gusev et al., 2016). This approach provides valuable insights into the 

molecular mechanisms underlying genome-wide significant loci, and due to the aggregation of 

associations across variants and a reduced multiple testing burden, TWAS can identify significant 

associations within loci not previously achieving genome-wide significance in the GWAS (Dall’Aglio et 

al., 2020; Gusev et al., 2018). A key advantage of TWAS over traditional studies analysing observed 

differential gene expression in cases and controls is the gain in power by combining the large sample 

sizes of GWAS with the precious and smaller eQTL datasets. This is particularly relevant for brain-

related disorders for which the disease relevant tissue is only accessible post-mortem. The TWAS 

framework has recently been expanded to other molecular traits, such as altered protein-level data 

(pQTL), referred to as proteome-wide associations study (PWAS), uncovering unique insights into the 

downstream effects of disease associated loci (Wingo et al., 2021). 

TWAS and PWAS identify genes associated with the GWAS phenotype, but also provide the direction 

of effect on the phenotype, as well as some degree of spatiotemporal specificity depending on the 
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samples used to derive TWAS/PWAS models (Huckins et al., 2019). This contrasts with functionally 

agnostic gene association analyses, such as MAGMA (de Leeuw et al., 2015), which aggregate 

genetic associations within gene regions, thereby providing no information on direction of effect or 

spatiotemporal context. The additional information available from TWAS/PWAS can be used to 

enhance downstream analyses, such as drug repurposing analysis and prediction modelling. 

Drug enrichment analysis using unsigned gene association summary statistics is a commonly used 

approach to identify drugs for repurposing (Gaspar et al., 2018). However, no information regarding 

direction of effect is considered, so it is possible this approach might identify drugs that exacerbate 

pathological mechanisms underlying the GWAS phenotype. In contrast, TWAS/PWAS results can be 

used to provide insight into whether a given drug interacts with disease associated genes that 

reduce disease risk specifically (So et al., 2017). 

Another key application of GWAS is phenotype prediction, primarily using polygenic scores, 

calculated as the GWAS-effect size weights sum of associated alleles (Choi et al., 2020). A limitation 

of polygenic scores is their limited predictive utility, typically only capturing a fraction of the SNP-

based heritability. TWAS/PWAS results provide an alternative approach for phenotype prediction, as 

they can be used in combination with observed expression/protein data in a target sample to 

calculate omic-based scores predicting the GWAS phenotype (Marigorta et al., 2017). When using 

TWAS results in combination with observed expression in a target sample, the resulting scores can 

be referred to as polytranscriptomic scores (PTS). PTS leverage the power of GWAS and capture both 

genetic and environmental risk an individual may carry, broadening the phenotypic variance that can 

be explained over polygenic scores. 

We sought to further utilise the GWAS summary statistics from the latest ALS GWAS, along with the 

latest functional genomic annotations. Here, we perform TWAS and PWAS of ALS to identify novel 

genetic associations with ALS, identify drug repurposing opportunities for ALS, and evaluate the 

predictive utility of PTS for ALS risk and clinical characteristics. 
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Methods 

An overview of the study design is shown in Figure 1. Using the latest ALS GWAS summary statistics, 

we performed a series of analyses to identify genes associated with ALS. Gene-finding analyses 

include SNP-based fine-mapping, integration of expression and protein data (TWAS and PWAS), and 

gene association analysis using MAGMA. The results of these analyses were used for three 

downstream aims. First, identification of high-confidence gene associations with ALS was achieved 

using results of SNP-based fine-mapping, TWAS and PWAS. Second, identification of novel drug 

repurposing opportunities for ALS was based on results from TWAS and MAGMA. Third, the results 

of TWAS were used to calculate PTS, which we then evaluated in two external blood expression ALS 

case-control datasets. More information regarding these analyses is provided below. 

 

 

Figure 1. Schematic representation of study design and statistical analysis. 

 

ALS GWAS summary statistics 

We used the most recent ALS GWAS summary statistics, which are publicly available (van Rheenen 

et al., 2021). The European ancestry-only GWAS summary statistics were used to avoid linkage 

disequilibrium (LD) mismatch with external reference data downstream, all of which is derived 

within European populations. The European-only ALS GWAS included 27,205 people with ALS and 

110,881 control participants. GWAS summary statistics underwent standard quality control (see 

Supplementary Information 1). 

 

Gene finding analyses 

Fine-mapping 

The SuSiE R package was used to perform variant-level statistical fine-mapping of ALS GWAS 

summary statistics (Wang et al., 2020). SuSiE calculates the posterior inclusion probability of genetic 

variants being the casual variant for each genome-wide significant locus. SuSiE was performed 

assuming a single causal variant (L = 1) to avoid LD mismatch issues between the GWAS sample and 

1KG European reference population. As a sensitivity analysis, SuSiE was also performed allowing up 
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to 10 independent causal signals. Further information is available in the Supplementary Information 

2. 

 

TWAS/PWAS 

Expression and protein panels 

Given ALS-associated genes are primarily expressed in brain tissues (van Rheenen et al., 2021), we 

inferred differential expression/protein levels associated with ALS using a range of brain 

expression/protein panels (Table 1). Furthermore, we included blood expression panels, as these 

often have a larger sample size available than brain tissues, and blood eQTL data can be used as a 

proxy for brain tissues due to the moderate correlation between eQTL effects across tissues (GTEx 

Consortium, 2015). TWAS and PWAS were performed using FUSION software 

(https://github.com/gusevlab/fusion_twas). Most panels were previously derived and are publicly 

available via the FUSION website, though we generated novel TWAS models from post-mortem 

primary motor cortex RNA-seq and genotype data from the King’s College London (KCL) and Medical 

Research Council London Neurodegenerative Diseases Brain Bank, herein referred to as ‘KCL Brain 

Bank’ (Iacoangeli et al., 2021; Jones et al., 2021). KCL Brain Bank contains a mixture of people with 

ALS and controls, and FUSION software was used to generate the TWAS models after stringent 

quality control (see Supplementary Information 3). 

 

Table 1. Expression and protein panels used for TWAS and PWAS.  

Type Software Panel N individuals N genes 

Expression FUSION Brain – Amygdala (GTEx) 119 2513 

Expression FUSION Brain – Anterior cingulate cortex BA24 (GTEx) 135 3326 

Expression FUSION Brain – Caudate basal ganglia (GTEx) 172 4884 

Expression FUSION Brain – Cerebellar hemisphere (GTEx) 157 5885 

Expression FUSION Brain – Cerebellum (GTEx) 188 7050 

Expression FUSION Brain – Cortex (GTEx) 183 5425 

Expression FUSION Brain – Frontal cortex BA9 (GTEx) 157 4388 

Expression FUSION Brain – Hippocampus (GTEx) 150 3437 

Expression FUSION Brain – Hypothalamus (GTEx) 156 3423 

Expression FUSION Brain – Nucleus accumbens basal ganglia (GTEx) 181 4830 

Expression FUSION Brain – Putamen basal ganglia (GTEx) 153 4175 

Expression FUSION Brain – Substantia nigra (GTEx) 100 2191 

Expression FUSION Brain – Spinal cord vervical c-1 (GTEx) 115 3033 

Expression FUSION Blood (GTEx) 558 7832 

Expression FUSION Brain – DLPFC (CMC) 452 5226 

Expression FUSION Brain – DLPFC (CMC) 452 7771 

Expression FUSION Blood (NTR) 1247 2437 

Expression FUSION Blood (YFS) 1264 4699 

Expression FUSION Brain – DLPFC (PsychENCODE) 1321 14750 

Expression FUSION Brain – Motor cortex (KCL Brain Bank) 158 906 

Expression SMR Brain – DLPFC (PsychENCODE) 1321 24560 

Expression SMR Brain – Basalganglia (MetaBrain) 574 18406 

Expression SMR Brain – Cerebellum (MetaBrain) 723 18417 

Expression SMR Brain – Cortex (MetaBrain) 6601 18414 

Expression SMR Brain – Hippocampus (MetaBrain) 206 18406 

Expression SMR Brain – Spinalcord (MetaBrain) 285 18417 

Expression SMR Blood (eQTLGen) 31684 19250 

Protein FUSION Brain – DLPFC (ROSMAP) 376 1477 

Protein FUSION Brain – DLPFC (Banner) 152 1148 

Protein SMR Brain – DLPFC (ROSMAP) 376 7809 
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Note. SMR = Summary-based Mendelian Randomisation; GTEx = Genotype-Tissue Expression study; 

DLPFC = Dorsolateral Prefrontal Cortex. 

 

FUSION/SMR: 

We performed TWAS and PWAS using both FUSION and summary-based mendelian randomisation 

(SMR) methods to utilise the resources available for each of these methods and compare results 

across methods (see Supplementary Information 4). Both SMR and FUSION test whether genetic 

variants associated with the GWAS phenotype are also associated with differential gene expression 

or protein levels, using a subsequent colocalisation analysis to test whether the overlapping 

association is driven by the same causal variant. Further details can be found in Supplementary 

Information 4. False discovery rate (FDR) correction for multiple testing was performed across all 

expression panels for FUSION and SMR separately. 

 

MAGMA gene association analysis 

MAGMA v1.10 was also used to calculate gene associations (de Leeuw et al., 2015). MAGMA 

estimates gene associations by calculating the mean association of variants within gene regions, 

accounting for LD using Brown’s method. We defined gene locations using the NCBI37.3 locations 

file on the MAGMA website (https://ctg.cncr.nl/software/magma), using a 35 kb upstream and 10 kb 

downstream gene window, to allow for regulatory regions around each gene. We used the 1KG 

Phase 3 European LD reference available on the MAGMA website.  

 

Defining high-confidence genes 

We used the following criteria to define genes associated with ALS with ‘high confidence’: Gene 

contains all variants within SuSiE 95% credible set, FDR significant TWAS/PWAS association and 

colocalised (coloc software PP4/(PP3 + PP4) > 0.8), FDR significant SMR association and colocalised 

(HEIDI p-value > 0.05). The threshold used to define colocalisation by coloc was chosen to highlight 

the probability that the association is driven by the same causal variant (PP4) rather than due to 

linkage (PP3). TWAS will have already determined an association in the locus for both traits and we 

can ignore the posterior probability of models where there is no association for either or both traits. 

Significant MAGMA gene associations are not considered high confidence as results are liable to 

confounding due to LD.  

 

Drug repurposing analysis 

Enrichment methods 

We tested for enrichment of drug-gene interactions using three approaches: MAGMA, Gene Co-

regulation Score Regression (GCSC), and TWAS-based Gene Set Enrichment Analysis (TWAS-GSEA).  

MAGMA gene-set enrichment analysis is based on MAGMA estimated gene associations and binary 

drug-gene interaction data (de Leeuw et al., 2015). GCSC regression is a method that leverages gene 

co-regulation to test for and enrichment of TWAS associations within gene-sets or associated with 
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gene-properties (Siewert-Rocks et al., 2022). TWAS-GSEA is based on TWAS estimated gene 

associations and directional drug-gene interaction data (Pain et al., 2019).  

A key distinction between these methods is that MAGMA and GCSC do not account for the direction 

of association between the gene, the GWAS phenotype, and the drug. Therefore, when testing for 

an enrichment of genes that interact with a given drug, they fail to test whether the drug would 

decrease risk of ALS. In contrast, TWAS-GSEA does consider the direction of association between the 

gene, phenotype, and drug. As a result, enriched drugs using this method are suggested to induce 

expression changes reducing risk of ALS. Further details on these methods and their differences are 

provided in the Supplementary Information 5.  

 

Drug-gene interaction data 

DrugTargetor is a tool for identifying drugs that interact with genes associated with a GWAS 

phenotype (Gaspar et al., 2018). DrugTargetor uses a drug-gene interaction dataset drawn from a 

range of sources including ChEMBL, PHAROS, PDSP Ki database and NCBI PubChem BioAssay 

(https://github.com/hagax8/drugtargetor/blob/master/wholedatabase_for_targetor). The 

DrugTargetor dataset indicates whether a drug interacts with a given gene’s expression or protein 

product, and whether the interaction leads to an increase or a decrease in activity. We used 

MAGMA, GCSC and TWAS-GSEA to test for enrichment of drugs based on the DrugTargetor drug-

gene interaction dataset. Binary gene sets indicating drug-gene interactions were used for MAGMA 

and GCSC, as these methods do not account for the direction of effect. For TWAS-based enrichment, 

we coded drug-interactions as -1 or 1 to indicate whether the drug decreased (labelled as 

'DECREASED_EXPRESSION', 'NEGATIVE_RESPONSE', or 'OPPOSITE_RESPONSE') or increased (labelled 

as 'INCREASED_EXPRESSION' or 'POSITIVE_RESPONSE') the activity of the gene. Otherwise, drug-

gene interactions were coded as 0 where there was no directional evidence of drug-gene 

interaction. Drug enrichment analyses were restricted to drugs interacting with at least 2 genes with 

available association statistics. 

 

Anatomical Therapeutic Chemical (ATC) enrichment analysis 

After estimating enrichment of specific drugs, we tested whether drugs with specific level 3 ATC 

(pharmacological subgroup) codes were enriched. This was carried out using the non-parametric 

Wilcoxon test, testing whether drugs within a given ATC group were enriched for association 

compared to all other drugs available in DrugTargetor. A one-sided test was used for MAGMA and 

GCSC, but a two-sided test was used for TWAS-GSEA to test direction and significance of ATC group 

enrichments. FDR correction was used to account for multiple testing when determining statistical 

significance. ATC enrichment was restricted to ATC groups containing at least 5 drugs with drug 

enrichment statistics available. 

 

Polytranscriptomic scoring (PTS) 

Target gene expression datasets 

To assess the utility of PTS for predicting ALS risk and clinical features, we used two whole blood 

gene expression datasets from the Gene Expression Omnibus. These datasets are a part of the same 

Gene Expression Omnibus series (GSE112681) but separated due to the use of two array platforms 
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to measure gene expression. The datasets corresponding to each platform are termed GPL6947 and 

GPL10558. These datasets both consist of people diagnosed with ALS and controls, and were 

originally used for a differential gene expression study of ALS (Van Rheenen et al., 2018). The 

expression and phenotype data were downloaded using GEOquery. The expression data was 

averaged across probes for each gene using the limma R package ‘avereps’ function (Ritchie et al., 

2015), and values were then log2 transformed. The following phenotypes were available for both 

datasets: ALS case-control status, site of onset (spinal vs bulbar), age at onset (years), and survival. 

 

Calculation of Polytranscriptomic Scores 

An analogous approach to calculating polygenic scores can be used to calculate PTS. Polygenic scores 

are typically calculated as the sum of alleles weighted by their GWAS effect size. In contrast, PTS are 

calculated as the sum of observed expression values weighted by their TWAS effect size. Specifically, 

PTS were calculated as the sum of gene expression Z-scores, weighting each gene by the 

corresponding TWAS Z-score. 

Analogous to the commonly used LD-based clumping and p-value thresholding for calculating 

polygenic scores, we accounted for the non-independence of nearby TWAS associations by clumping 

based on a predicted gene expression correlation matrix, and applied a range of p-value thresholds 

to select different numbers of genes to be included in the PTS. The predicted expression correlation 

matrix was generated by predicting expression into the European subset of the 1KG reference 

sample using the SNP-weights in the corresponding TWAS models, and then calculating the Pearson 

correlation between all genes within a 500kb window. We removed TWAS associations if they had a 

high Pearson correlation with a lead gene (r > 0.95). This clumping and thresholding approach was 

carried out using the IFRisk script (https://github.com/opain/Inferred-functional-risk-scoring) and is 

consistent with a previous study generating TWAS-based risk scores (Pain et al., 2021).  

We generated PTS using TWAS results from all panels combined, and TWAS results from brain panels 

and blood panels separately. We also generated PTS using only TWAS associations that showed 

evidence of colocalisation (PP4 > 0.8). We only considered the colocalisation PP4 value to define 

colocalisation for this analysis as the PP4-PP3 ratio may be unstable for genes at lower TWAS p-value 

thresholds. We averaged TWAS Z-scores for a given gene if the gene was in multiple panels after 

clumping.  

 

PTS association analysis 

We compared ALS PTS between people with ALS and healthy controls (binary) and compared the ALS 

PTS across clinical characteristics within people diagnosed with ALS alone, including spinal versus 

bulbar site of onset (binary), age at onset (continuous) and survival (continuous). We used linear 

regression to test the PTS association for all outcomes, converting the observed R2 to the liability 

scale for binary outcomes. For case-control analysis, we assumed a population prevalence of 1/300. 

For spinal-bulbar onset analysis, when converting to the liability scale we assumed an arbitrary 

population prevalence of 0.5 to aid comparison with future studies. We included sex as a covariate 

throughout.  

We performed regression within each gene expression platform (GPL6947 and GPL10558) 

separately, and then meta-analysed results using inverse variance weighting. 
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Observed differential expression analysis 

In addition to TWAS, which infers differential expression associated with ALS risk, we also estimated 

the observed evidence of differential expression associated with ALS within the GPL6947 and 

GPL10558 ALS case-control cohorts. This was carried out to enable comparison of TWAS-inferred 

and observed differential expression, as this can highlight observed differential gene expression that 

is a consequence of the disease (Marigorta et al., 2017). 

We tested the Pearson correlation between ALS case-control status and observed expression levels 

within the GPL6947 and GPL10558 cohorts separately, and subsequently meta-analysed using 

inverse-variance weighting. FDR correction was used to account for multiple testing when 

determining statistical significance. 
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Results 

Gene discovery 

We performed SNP fine-mapping, TWAS and PWAS based on ALS GWAS summary statistics to define 

a set of high-confidence genes associated with ALS.  

SNP-based fine-mapping, with an assumption of a single causal signal, identified five high-confidence 

genes (details in Supplementary Information 6 and Tables S1-S2). TWAS using FUSION and SMR 

identified 108 genes with significant differential expression in ALS and strong evidence of 

colocalisation (Tables S3-S4). PWAS using FUSION and SMR identified altered levels of 7 proteins in 

ALS and strong evidence of colocalisation, three of which were also identified as high confidence 

using TWAS (Figure 2, Tables S5-S6). Across SNP fine-mapping, TWAS and PWAS analyses, 117 

unique genes were identified as high-confidence associations. Further details of gene discovery 

results are in the Supplementary Information 6 and Figure S1. 

 

Figure 2. TWAS and PWAS associations for high-confidence ALS-associated genes defined using PWAS. Results are only 
shown for brain tissue expression and protein panels. Results are separated by the method and external data used. FUSION 
and SMR results are shown for all panels, with each point coloured according to the Z-score of association. Red indicates an 
increased expression/protein level in people diagnosed with ALS, and blue indicates decreased expression/protein level in 
people diagnosed with ALS. Results have a black outline if the association was FDR significant, and are in a black square if 
the association was FDR significant and showed evidence of colocalisation.  

 

Drug repurposing for ALS 

We used MAGMA, GCSC and TWAS-GSEA to test for enrichment of ALS-associated genes that 

interact with specific drugs (Figure 3). GCSC identified five significantly enriched drugs, including 

acarbose (FDR = 1.03×10-11), voglibose (FDR = 2.09×10-10), sertindole (FDR = 5.99×10-7), 

oxybuprocaine (FDR = 8.31×10-5), and ethambutol (FDR = 2.95×10-3). MAGMA and TWAS-GSEA did 

not identify any significantly enriched drugs after multiple testing correction. Of the genes identified 

by GCSC, TWAS-GSEA found nominally significant evidence across multiple expression panels that 

acarbose and voglibose induce an expression signature that may increase risk of ALS. Although non-

significant, TWAS-GSEA results for sertindole and ethambutol indicated these drugs induced an 

expression profile that was associated with a reduced risk of ALS.  
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Figure 3. Drug enrichment results for ALS using MAGMA, GCSC and TWAS-GSEA. Each point is coloured according to the Z-
score of enrichment. For TWAS-GSEA, positive Z-scores (red) indicates the drug reduces risk of ALS, whereas negative Z-
scores (blue) indicate the drug increases risk of ALS. Results have a black outline if the association was nominally significant, 
and are in a black square if the association was FDR significant.  

 

We then tested for enrichment of ATC classes based on the drug associations from MAGMA, GCSC 

and TWAS-GSEA (Figure 4). Using MAGMA results identified 2 significant ATC categories, including 

‘antidepressants’ (FDR = 3.55×10-6) and ‘antipsychotics’ (FDR = 3.02×10-3). Using GCSC results, only 

the ATC group ‘selective calcium channel blockers with mainly vascular effects’ was significantly 

enriched (FDR = 0.026).  

Using TWAS-GSEA results there were 22 FDR significant ATC enrichments across all panels, 

representing 15 unique ATC codes, 4 of which were significant across more than one expression 

panel. The most enriched ATC group reducing ALS risk was ‘selective calcium channel blockers with 

mainly vascular effects’, which was FDR significant using two expression panels, consistent with 

results of GCSC. The most enriched ATC group increasing ALS risk was ‘antiepileptics’, FDR significant 

across five expression panels. The ‘antipsychotics’ ATC group was significantly enriched using TWAS 

results from two panels, but the direction of enrichment was opposite: while antipsychotics 

associated with a decreased ALS risk based on PsychENCODE dorsolateral prefrontal cortex (DLPFC) 

data, they associated with an increased risk based on GTEx substantia nigra data. Other ATC groups 

enriched according to TWAS-GSEA are shown in Figure 4. 
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Figure 4. ATC enrichment for ALS based on results of MAGMA, GCSC and TWAS-GSEA. Each point is coloured according to 
the Z-score of enrichment. For TWAS-GSEA, positive Z-scores (red) indicate the drugs reduces risk of ALS, whereas negative 
Z-scores (blue) indicate the drugs increases risk of ALS. Results have a black outline if the association was nominally 
significant, and are in a black square if the association was FDR significant. 

 

Prediction using Polytranscriptomic Scores (PTS) 

Using inferred differential gene expression results from the ALS TWAS, we generated PTS in two ALS 

case-control target samples with observed whole blood expression, stratifying PTS by either brain or 

blood TWAS gene expression panels, and by evidence of colocalisation (PP4 > 0.8) (Figure 5).  

We found strong evidence that the ALS PTS can predict ALS case-control status (max. liability R2 = 

4%; p-value = 2.1×10-21). The ALS PTS also showed evidence of being associated with an increase in 

likelihood of spinal onset ALS. PTS associations with age of onset and survival time were 

inconsistent. Partitioning PTS to TWAS associations from either blood or brain expression panels, or 

by evidence of colocalisation did not substantially affect the predictive utility of the PTS. However, 

restricting to colocalised associations from blood-based TWAS results consistently reduced the 

predictive utility of the PTS. PTS association results for each target sample are separately shown in 

Supplementary Figures 2-5. The number of genes in the PTS available in each target sample varied 

(Table S7). 
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Figure 5. PTS association ALS risk and patient characteristics. Y-axis shows the percentage variance explained signed by the 
direction of association, on the liability scale for binary outcomes and on observed scale for continuous outcomes. P-values 
are shown above each bar, with nominally significant (p<0.05) associations highlighted in red. Results are shown when 
deriving PTS using all TWAS panels, only blood panels and only brain panels. Results are also shown when deriving PTS 
using only TWAS associations that showed evidence of colocalisation (PP4 > 0.8). 

 

Comparison of predicted and observed differential expression in ALS 

We compared the predicted differential expression from TWAS to observed differential expression in 

the GPL6947 and GPL10558 ALS case-control blood expression cohorts (Figure 6). Of the 108 high-

confidence genes identified using TWAS (FUSION or SMR), 44 genes were statistically significant in 

the observed differential expression analysis (Figure S6). Of the 36 high-confidence genes from 

TWAS using blood expression panels specifically, 18 genes had significant observed differential 

expression, with 8 genes showing a consistent direction of effect (ATXN3, BTBD1, DHRS11, GGNBP2, 

MTAP, RNF24, TBK1, ZNHIT3) and 10 genes showing a discordant direction of effect (CAMLG, FNBP1, 

LY6G5C, NCR3, NDST2, PSMB10, PTBP2, SAR1B, SDHA, ZNF142).   
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Discussion 

This study has provided novel and mechanistic insights into the genes underlying ALS genetic risk. 

Furthermore, using these insights, we have identified drugs that could be used to treat ALS and 

derived an ALS PTS able to predict ALS risk. Collectively these results provide a key advance in our 

understanding of ALS aetiology, highlight novel research avenues for pharmacological treatment of 

ALS, and offer a new and non-invasive biomarker of ALS risk. 

We used a combination of SNP fine-mapping, TWAS and PWAS analyses to define a set of high-

confidence genes associated with ALS risk. By integrating eQTL and pQTL data we have uncovered 

novel molecular insights regarding ALS, aiding future experimental studies to further characterise 

the role of specific variants and genes in ALS. For example, we found that ALS risk leads to an 

increased expression of the SCFD1 gene in brain tissues, which is consistent with a previous study 

(Iacoangeli et al., 2021), as well as inferring increased levels of the SCFD1 protein in brain tissues 

accompanied by a decreased expression of the SCFD1 gene in the blood. Furthermore, we infer ALS 

is associated with decreased expression of the CAMLG gene, supporting previous findings (Dangond 

et al., 2004), which we expanded on by showing an increased level of the CAMLG protein in people 

with ALS. Further validation of this finding is required, but one plausible explanation is that the ALS 

risk variant increases the post-translational stability of the CAMLG protein, leading to reduced 

expression of the gene due to a negative feedback loop. Our study also identified many novel ALS 

genes, such as TMEM175. Our study highlights genetic risk for ALS confers a reduced level of the 

TMEM175 protein in the DLPFC. TMEM175 is a lysosomal ion channel, previously linked to 

Parkinson’s disease, and a deficiency of TMEM175 has been found to cause decreased mitochondrial 

respiration, altered lysosomal pH and impaired autophagy (Jinn et al., 2017). Together these findings 

suggest TMEM175 deficiency may also increase risk of ALS, providing a new insight into the aetiology 

of ALS. 

We then explored several strategies for the identification of drugs that could be repositioned for 

treating ALS. We leveraged the molecular insights from our TWAS analysis to identify drugs and drug 

classes that interact with differentially expressed genes in people with ALS, and furthermore indicate 

whether these drugs might reverse the ALS-risk associated expression profile. We identified five 

drugs that are enriched for interactions with genes differentially expressed in people with ALS. By 

using directional information from TWAS and a drug-interaction database, we highlighted that two 

of the enriched drugs, acarbose and volgibose, will likely exacerbate ALS-risk associated differential 

expression. These drugs are both α-glucosidase inhibitors used to treat diabetes. This finding 

suggests opposing pathology of diabetes and ALS, as has been previously indicated using population 

studies (Dupuis et al., 2008; Kioumourtzoglou et al., 2015; Zhang et al., 2022) and a mendelian 

randomisation study (Zhang et al., 2022), with less favourable lipid profiles and type II diabetes 

associated with reduced risk of ALS. However, another study in mice with the c9orf72 mutation 

indicated the type II diabetes medication metformin might have therapeutic potential for ALS (Zu et 

al., 2020), indicating ALS risk may be moderated differentially across classes of diabetes medication. 

Another enriched drug was sertindole, with directional TWAS enrichment suggesting this drug could 

counteract ALS pathology. Sertindole is an atypical antipsychotic with a strong affinity for dopamine 

D2, serotonin 5-HT2A, serotonin 5-HT2C, and alpha-1-adrenergic receptors (Lindström & Levander, 

2006). It has been found to trigger autophagy in neuronal cells, which can lead to cell death. Further 

research is needed to understand the potential therapeutic process induced by sertindole.  

Beyond enrichment of individual drugs, our analyses provided a broader insight into which classes of 

drugs might be relevant to ALS. The most strongly enriched drug class predicted to have therapeutic 
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benefits for ALS was selective calcium channel blockers, drugs primarily used to treat hypertension. 

Several studies show an association between hypertension and ALS, with a recent mendelian 

randomisation study supporting a causal role between prescription of calcium channel blockers and 

reduced risk of ALS (Xia et al., 2022), supporting the results of this study and highlighting a novel 

therapeutic avenue for ALS. In addition, we identified antiepileptic drugs were strongly enriched for 

interactions with ALS associated genes, however their direction of effect is predicted to exacerbate 

ALS risk. This finding is novel and should be further investigated to understand the implications for 

our understanding of ALS aetiology. One antiepileptic drug (ezogabine) has been found to have 

potential therapeutic effects on ALS (Wainger et al., 2021), so further investigation of which 

antiepileptics might increase risk for ALS is needed.  

To further utilise our novel ALS differential expression results from TWAS, we combined our results 

with observed blood expression data from people diagnosed with ALS and controls to calculate PTS. 

We then evaluated whether PTS could predict ALS risk and clinical characteristics. Looking across 

two independent target expression datasets, the association between ALS PTS and case-control 

status was highly significant, explaining up to 4% of ALS risk on the liability scale. This suggests 

blood-based PTS can provide a key advance in our ability to diagnose and predict ALS risk and could 

be used in combination with other risk factors as a non-invasive clinical biomarker of ALS risk. 

Furthermore, the PTS was associated with site of onset, suggesting ALS PTS might help guide the 

prognosis of people with ALS. This finding also indicates that differential expression inferred by 

TWAS is concordant with differential expression observed in people with ALS and controls associated 

with ALS. However, the target sample expression data was collected after diagnosis of ALS and 

possibly pharmacological treatment, which may confound our PTS association results. Therefore, 

further research regarding the predictive utility of ALS PTS in other contexts is required.  

In addition to evaluating the predictive utility of the PTS, we contrasted the genetically-inferred 

differential expression from TWAS with observed differential expression in the ALS case-control gene 

expression datasets. Many genes were identified as significantly associated with ALS risk using both 

approaches, though a large proportion showed discordant directions of effect. Observed differential 

expression associated with ALS may reflect the gene’s causal role in ALS pathology, but differential 

expression within people with ALS may also be a consequence of the disease. Given genetically-

inferred differential expression is not susceptible to reverse causation, discordance between 

inferred and observed expression may help distinguish the molecular mechanisms by which these 

associations occur. A previous study regarding Crohn’s disease demonstrated genes showing 

discordant genetically-inferred and observed differential expression are more likely to be triggered 

in response to immune stimuli (Marigorta et al., 2017). A possible example of this from our study is 

the gene SAR1B, which was inferred to be downregulated in those with ALS using TWAS but was 

observed to upregulated in those with ALS. This could indicate that SAR1B is upregulated in those 

with ALS as a protective response to ALS pathology, and genetic variation in this locus is associated 

with ALS because it reduces the extent to which SAR1B can be upregulated. SAR1B has been 

reported to provide protection against inflammatory processes (Sané et al., 2019), consistent with 

the notion that SAR1B upregulation is a protective response to ALS pathology. 

This study should be considered in the context of several limitations. First, in this study we only 

consider common genetic variation associated with ALS. However, the genetic architecture of ALS 

includes a combination of common and rare genetic variation. Considering the implicated genes and 

pathways from both sources of ALS risk will provide further insight into possible therapeutic avenues 

and improve risk prediction. Second, we only consider ALS GWAS summary statistics and functional 

genomic annotation data based on European ancestry individuals. The expansion of ALS and 
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functional genomic studies in diverse populations will improve the generalisability of the prediction 

models across populations, as well as strengthen insights into causal mechanisms. Third, although 

large advances have been made in developing functional genomic datasets, such as eQTL studies, 

the current samples sizes prohibit the use integration of distal regulatory elements (e.g., trans 

eQTLs). Furthermore, the eQTL and pQTL datasets used in this study are based on bulk tissue 

samples, and integration of single cell-based panels in the future will enable further mechanistic 

understanding of ALS (Yao et al., 2020).  

In conclusion, this study provides novel mechanistic insights into the genes associated with ALS, drug 

enrichment analysis has highlighted several therapeutic research avenues, and our findings indicate 

PTS may be a powerful predictor of ALS risk.   
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Supplementary Information 

1. GWAS quality control 

GWAS summary statistics underwent quality control to extract variants present in the 1000 

Genomes (1KG) phase 3 reference sample (1000 Genomes Project Consortium, 2015), remove 

ambiguous variants, remove variants with missing data, flip variants to match the reference, retain 

variants with a minor allele frequency (MAF) > 0.01 in the European subset of 1KG Phase 3, retain 

variants with a MAF > 0.01 in the GWAS sample, remove variants with a discordant MAF (> 0.2) 

between the reference and GWAS sample, remove variants with association p-values >1 or ≤ 0, 

remove duplicate variants, and remove variants with sample size > 3SD from the median sample 

size. 

 

2. Fine-mapping 

Independent genome-wide significant loci were defined using LD-based clumping (r2 < 0.1, 500kb 

window), applying SuSiE to all variants within 500kb of each lead variant. 

Fine-mapping is particularly sensitive to LD mismatch between GWAS summary statistics and the LD 

reference. Given we did not have estimates of LD from the original samples in the ALS GWAS, we set 

the number of causal signals within each locus to 1 (i.e., L = 1), as when L = 1 fine-mapping does not 

consider LD estimates at all and is therefore more robust. The limitation of the L = 1 assumption is 

that fine-mapping will be less powerful in loci where multiple causal signals are present. 

As a sensitivity analysis, we ran fine-mapping using the default L = 10 parameter, allowing up to 10 

independent causal signals within each locus, using the European ancestry subset of the 1KG 

reference to calculate LD.  

 

3. KCL Brain Bank 

The KCL Brain Bank dataset previously underwent quality control and standard eQTL analysis 

(Iacoangeli et al., 2021; Jones et al., 2021). We used a broader version of the dataset to previous 

publications without age and sex matching between individuals with and without ALS diagnosis as 

we are not trying to identify associations with ALS. Using GenoPredPipe 

(https://github.com/opain/GenoPred/tree/master/GenoPredPipe) and the 1KG Phase 3 reference, 

we identified individuals in KCL Brain Bank of European ancestry and calculated 10 genetic principal 

components. The final dataset consisted of 153 individuals, including 103 individuals diagnosed with 

ALS and 50 controls. The expression data was controlled for ALS status, gender, age, post-mortem 

delay, RIN (RNA integrity), surrogate variables and genetic principal components. We used only 

HapMap3 variants when generating TWAS weights to improve overlap with external datasets. The 

weights were created using FUSION software, implemented using a publicly available pipeline 

(https://github.com/opain/Calculating-FUSION-TWAS-weights-pipeline). 

Post-mortem tissue samples from King’s College London were collected under the ethical approval 

of the MRC London Neurodegenerative Diseases Brain Bank and under the regulations of the Human 

Tissue Act UK 2014. All post-mortem tissue was donated to the MRC London Neurodegenerative 

Diseases Brain Bank under standard ethical and Human Tissue Act procedures, with informed 

consent provided by the next of kin. Data generated from this material were anonymized and 
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analysed on a high-performance computing cloud 

(https://www.maudsleybrc.nihr.ac.uk/facilities/rosalind/) with data protection protocols in 

accordance with Department of Health Policy (UK) and the security standards set by the National 

Data Guardian. Ethical approval to process and analyse post-mortem samples stored at King’s 

College London was provided by a local ethics committee at the Institute of Psychiatry, Psychology & 

Neuroscience, King’s College London, and the MRC London Neurodegenerative Diseases Brain Bank. 

 

4. FUSION/SMR 

FUSION software implements an approach often referred to as TWAS, which infers differential 

expression/protein levels associated with the GWAS phenotype using multi-variant models 

predicting expression or protein levels (Gusev et al., 2016). These multi-variant models are not 

available for all eQTL datasets, partly because deriving these multi-variant models currently requires 

individual-level gene expression and genotype data.  

SMR also infers differential expression/protein levels associated with the GWAS phenotype (Zhu et 

al., 2016), but aims to provide evidence for causal role of a given SNP on a trait mediated through 

gene expression. SMR only considers the genetic variant most strongly predicting expression or 

protein levels, thereby explaining less variance in expression/protein levels than FUSION multi-SNP 

models for genes which have secondary eQTL/pQTL effects. A current advantage of SMR over 

FUSION is that it can be applied using only eQTL summary statistics which are more widely available. 

Both FUSION and SMR include an analysis to determine whether the overlapping genetic association 

for the phenotype and the gene expression is driven by the same causal variant (pleiotropy) or 

whether different causal variants that are in LD are driving the associations (linkage). FUSION uses 

the coloc package to perform Bayesian colocalisation (Giambartolomei et al., 2014). SMR uses the 

frequentist HEIDI test. 

 

5. Drug enrichment methods 

MAGMA gene-set enrichment analysis is based on MAGMA estimated gene associations and binary 

drug-gene interaction data (de Leeuw et al., 2015). This approach does not consider the direction of 

ALS-gene or drug-gene associations, so it identifies drugs that interact with genes enriched for 

association with ALS but does not indicate whether enriched drugs will decrease risk of ALS. MAGMA 

gene set enrichment analysis estimates the non-independence of gene associations by using an LD-

based correlation matrix and a generalised least square model.  

Gene co-regulation score (GCSC) regression is a method that leverages gene co-regulation to test for 

and enrichment of TWAS associations within gene-sets or associated with gene-properties (Siewert-

Rocks et al., 2022). Like MAGMA, GCSC does not consider the direction of effect between the gene 

and the phenotype. GCSC was run using default settings and the publicly available co-regulation 

matrices, based on GTEx v7 expression (https://github.com/ksiewert/GCSC). We restricted the 

analysis to GTEx brain tissues and GTEx whole blood, consistent with gene expression panels 

included in our TWAS analysis. As currently required for use of the GCSC coregulation matrices, we 

performed a TWAS using the GTEx v7 expression panels as input for the GCSC analysis. 

TWAS-based gene-set enrichment analysis (TWAS-GSEA) is based on TWAS estimated gene 

association and directional drug-gene interaction data (Pain et al., 2019). This approach does 
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consider the direction of ALS-gene and drug-gene associations, so enriched drugs using this method 

are suggested to induce expression changes reducing risk of ALS. TWAS-GSEA estimates the non-

independence of gene associations using a predicted expression correlation matrix and a linear 

mixed model, using the lme4qtl R package (Ziyatdinov et al., 2018). 

These three approaches have different advantages and limitations and are therefore complimentary. 

MAGMA gene associations have no clear mechanistic link to the phenotype and the enrichment 

analysis does not consider direction of effect. However, MAGMA will generally test for enrichment 

across more genes that TWAS-based enrichment as it considers ALS-associated genes acting via any 

mechanism (not only differential expression) and is not dependent on external eQTL datasets which 

are often limited in sample size thereby reducing coverage of the genome. GCSC has the advantage 

of pooling expression associations across expression panels, thereby improving coverage and 

statistical power to detect enrichment. TWAS-GSEA does not pool information across expression 

panels but does allow for the direction of effect in the TWAS to be considered, and is thereby able to 

highlight drugs that consistently reduce risk-associated differential expression.  

 

6. Gene discovery results 

SNP-based fine-mapping results assuming a single causal signal (L = 1) are summarised in Table S1. 

LD-based clumping identified 16 independent genome-wide significant associations, which were 

carried forward for fine-mapping analysis centred on the lead variant +/- 500kb. Within three loci a 

single variant was present in the 95% credible set. Within four loci the 95% credible set was 

contained within a given gene, with one 95% credible set within two overlapping genes. SNP-based 

fine-mapping results allowing for up to 10 causal signals (L = 10) are shown in Table S2, indicating 

the presence of multiple causal signals underlying genome-wide significant locus on chromosome 9, 

with 95% credible sets contained within the C9orf72 and MOB3B genes.  

TWAS using FUSION identified 197 FDR-significant and colocalised associations for ALS, including 101 

unique genes (Table S3). TWAS using SMR identified 44 FDR significant associations passing the 

HEIDI test (indicating colocalisation), including 29 unique genes (Table S4). Across FUSION and SMR, 

108 unique genes were identified as significant and colocalised, of which 22 were found by both 

TWAS and SMR. 

PWAS using FUSION with ROSMAP and Banner pQTL data identified 8 FDR-significant and colocalised 

associations, including 6 unique genes, and thereby 2 were significant and colocalised according to 

both ROSMAP and Banner (Table S5). SMR using ROSMAP pQTL data identified 4 significant and 

colocalised associations, of which 3 were in common with FUSION PWAS results (Table S6). Of the 7 

unique genes implicated using PWAS analysis, 3 were in common with TWAS results. 

Across SNP fine-mapping, TWAS and PWAS analyses, 117 unique genes were identified as high-

confidence associations. 
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Supplementary Figures 

 

Figure S1a. High-confidence gene list for ALS defined using results of SNP fine-mapping, TWAS and PWAS. MAGMA and 
NearestGene results included for comparison. Results are separated by the method and external data used. Genes 
containing the 95% credible set from SNP fine-mapping (L = 1) are indicated using a green box. FUSION and SMR results are 
shown for all panels, with each boxed coloured according to the Z-score of association. Red indicates an increased 
expression/protein level in people diagnosed with ALS, and blue indicates decreased expression/protein level in people 
diagnosed with ALS. FUSION and SMR results have a black outline if the association was FDR significant, and are in a black 
square if the association was FDR significant and showed evidence of colocalisation. MAGMA associations are also shaded 
according to Z-score, although MAGMA cannot infer the direction of the effect, with FDR significant genes outlined in black. 
Genes nearest to lead variants within genome-wide significant loci are indicated using a green point. 

 . CC-BY 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted January 18, 2023. ; https://doi.org/10.1101/2023.01.18.23284589doi: medRxiv preprint 

https://doi.org/10.1101/2023.01.18.23284589
http://creativecommons.org/licenses/by/4.0/


 

Figure S1b. High-confidence gene list for ALS defined using results of SNP fine-mapping, TWAS and PWAS. MAGMA and 
NearestGene results included for comparison. Results are separated by the method and external data used. Genes 
containing the 95% credible set from SNP fine-mapping (L = 1) are indicated using a green box. FUSION and SMR results are 
shown for all panels, with each boxed coloured according to the Z-score of association. Red indicates an increased 
expression/protein level in people diagnosed with ALS, and blue indicates decreased expression/protein level in people 
diagnosed with ALS. FUSION and SMR results have a black outline if the association was FDR significant, and are in a black 
square if the association was FDR significant and showed evidence of colocalisation. MAGMA associations are also shaded 
according to Z-score, although MAGMA cannot infer the direction of the effect, with FDR significant genes outlined in black. 
Genes nearest to lead variants within genome-wide significant loci are indicated using a green point. 
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Figure S2. PTS association with ALS cases vs. controls split by target expression platform. Y-axis shows the variance 
explained on the liability scale assuming a prevalence of 1/300, signed by the direction of association. P-values are shown 
above each bar, with nominally significant associations highlighted in red. Results are shown when deriving PTS using all 
TWAS panels, only blood panels and only brain panels. Results are also shown when deriving PTS using only TWAS 
associations that showed evidence of colocalisation (PP4 > 0.8). 

 

 

Figure S3. PTS association with site of onset in people with ALS split by target expression platform. Y-axis shows the 
variance explained on the liability scale assuming a prevalence of 50%, signed by the direction of association. P-values are 
shown above each bar, with nominally significant associations highlighted in red. Results are shown when deriving PTS 
using all TWAS panels, only blood panels and only brain panels. Results are also shown when deriving PTS using only TWAS 
associations that showed evidence of colocalisation (PP4 > 0.8). 
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Figure S4. PTS association with age of onset in people with ALS split by target expression platform. Y-axis shows the 
variance explained on the observed scale, signed by the direction of association. P-values are shown above each bar, with 
nominally significant associations highlighted in red. Results are shown when deriving PTS using all TWAS panels, only blood 
panels and only brain panels. Results are also shown when deriving PTS using only TWAS associations that showed evidence 
of colocalisation (PP4 > 0.8). 

 

 

Figure S5. PTS association with site of onset in people with ALS split by target expression platform. Y-axis shows the 
variance explained on the oserved scale, signed by the direction of association. P-values are shown above each bar, with 
nominally significant associations highlighted in red. Results are shown when deriving PTS using all TWAS panels, only blood 
panels and only brain panels. Results are also shown when deriving PTS using only TWAS associations that showed evidence 
of colocalisation (PP4 > 0.8). 
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Figure S6. Comparison of observed and predicted (TWAS) differential expression associated with ALS risk. Showing only 
genes that were identified as high-confidence using TWAS (FUSION or SMR) and FDR significant observed differential 
expression. Results have a black outline if the association was FDR significant. TWAS results are highlighted in a black 
square if the association was FDR significant and showed evidence of colocalisation.  
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