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Abstract
With the advent of healthcare-based genotyped biobanks, genome-wide association studies
(GWAS) leverage larger sample sizes, incorporate patients with diverse ancestries and
introduce noisier phenotypic definitions. Yet the extent and impact of phenotypic
misclassification on large-scale datasets is not currently well understood due to a lack of
statistical methods to estimate relevant parameters from empirical data. Here, we develop a
statistical method and scalable software, PheMED, Phenotypic Measurement of Effective
Dilution, to quantify phenotypic misclassification across GWAS using only summary statistics.
We illustrate how the parameters estimated by PheMED relate to the negative and positive
predictive value of the labeled phenotype, compared to ground truth, and how misclassification
of the phenotype yields diluted effect-sizes of variant-phenotype associations. Furthermore, we
apply our methodology to detect multiple instances of statistically significant dilution in
real-world data. We demonstrate how effective dilution biases downstream GWAS replication
and heritability analyses despite utilizing current best practices, and provide a dilution-aware
meta-analysis approach that outperforms existing methods. Consequently, we anticipate that
PheMED will be a valuable tool for researchers to address phenotypic data quality issues both
within and across cohorts.

Introduction

Interpreting and integrating the results from different genome-wide association (GWA) studies
can be challenging, as we anticipate different degrees of phenotypic data quality across studies
and populations. In particular, phenotypic misclassification can significantly bias the effect size
estimates from GWA studies, as the mislabeled phenotype inflates the similarity between the
cases and controls, resulting in diluted effect sizes1. While we anticipate phenotypic
misclassification when leveraging noisier phenotypic definitions from large population- and
healthcare-based biobanks, these dilution-driven systematic biases can arise even when two
phenotypes appear to share identical definitions. For example, in the context of healthcare
disparities, prior literature has emphasized that African American patients face higher rates of
misdiagnosis than European Americans2,3, which would lead to diluted effect sizes in African
ancestry GWA studies, as genetically-inferred ancestry is correlated with the social construct of
race. Consequently, researchers would greatly benefit from tools to estimate the level of
phenotypic dilution across different cohorts, as including poor quality phenotypes can corrupt
downstream replication and validation analyses.

While methodologies that address phenotypic dilution do exist, the utility of these tools is limited
due to various methodological constraints. For example, they typically leverage individual level
data4–8, possibly with knowledge of a gold standard phenotype9, or assume perfect specificity
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and require knowledge of the true but often unknown prevalence within the sample1. In contrast,
we introduce a novel methodology, PheMED (Phenotypic Measurement for Effective Dilution), to
assess the relative dilution between GWA studies without the above limitations. Furthermore,
since PheMED only uses summary statistics, our method is applicable even when researchers
do not have access to individual level data. To develop the theory for this new tool, PheMED, we
leverage the fact that phenotypic misclassification bias shrinks the estimated effect size of SNPs
across all tests by the same multiplicative value10. And since a GWA study typically comprises
more than 200,000 approximately independent tests of common genetic variants 11, we can
learn the effective dilution by comparing summary statistics across studies.

At this juncture, we outline the main contributions in our work. First, we review how the effective
dilution relates to the positive and negative predictive value of the labeled phenotype10,12 and
extend the analysis even when a gold standard phenotype is unavailable. Since reported
sample sizes obscure the number of correctly labeled cases and controls, we propose a dilution
adjusted effective sample size, allowing researchers to better compare the contribution of
different cohorts with varying levels of data quality. We demonstrate how effective dilution is
distinct from genetic correlation, can confound heritability estimates and diminish power in GWA
studies. Furthermore, we bolster the relevance of our theoretical results by applying our
approach to multiple use-cases within the literature, such as cross-ancestry and cross-cohort
analyses. We demonstrate that in many cases, directly comparing GWA studies for the same
phenotype is problematic due to differences in rates of misclassification between study
populations.

Since phenotypic misclassification dilutes the effect sizes in a study, meta-analysis using
standard inverse-variance weights (IVW) 13 incorrectly assumes that the effect sizes from
different studies come from the same distribution. To address this issue, we propose a
methodological extension of the IVW meta-analysis using dilution-adjusted weights (DAW), to
adjust the weight of each study according to its effective dilution. We show that directly
incorporating the estimated effective dilution into the statistical test can substantially increase
performance and rescue the loss of power on real-world data. We perform simulations,
indicating that DAW increases power in GWA studies without increasing the false positive rate.
Consequently, we anticipate that our proposed methodology, PheMED, for measuring effective
dilution will provide a valuable tool when comparing the results of similar phenotypes on account
of data quality heterogeneity. This, in turn, will both aid in evaluating phenotyping strategies
across populations and allow for dilution-aware meta-analyses.

Results
Estimating effective dilution from the data
When we misclassify cases as controls, the similarity between the two groups increases,
resulting in diluted effect size estimates. We can measure the effective dilution, which we define
as - the Phenotypic (φ) Measured Effective Dilution (or relative effective dilution in short) -φ

𝑀𝐸𝐷
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between the different studies, through a maximum likelihood approach across randomly
selected approximately independent loci (see Methods).

Briefly, denote                       as the output of the normal probability distribution function for an

observation given mean and variance parameters, and . Mathematically, our log-likelihoodβ, µ σ2

function has the form,

where i indicates the corresponding SNP, k indicates the corresponding study and , theβ
𝑖𝑘

,  σ
𝑖𝑘

estimated effect sizes and standard errors, are estimated values available in the summary
statistics for each study. Intuitively, equation (1) tells us that we leverage the additional
parameter to shrink (or grow) all of the true effect sizes of study k based on the quality of theφ

𝑘
phenotypic data. Under the general setting of k studies, we find the value for the = (φ

𝑀𝐸𝐷
) that maximizes the likelihood in equation (1). To ensure uniqueness of the solution,φ

1
,  ...,  φ

𝑘
we impose a normalization constraint on , where = 1, and the other valuesφ

𝑀𝐸𝐷
φ

1
φ

2
 ...,  φ

𝑘
measure the relative effective dilution in reference to Study 1. We note that this framework
allows for the possibility that no change in our effect sizes is required, since can equal 1. Weφ

𝑘
can directly test the null hypothesis of no dilution, or using a bootstrap approach andφ

𝑘
 =  1,

report an approximate p-value (see Methods). Importantly, as demonstrated later in this work,
incorporating additional studies decreases the uncertainty of the estimates and thusφ

𝑘
increases power to reject the null hypothesis (see Supplement). Consequently, PheMED
provides us with a pipeline where we can input summary statistics and output effective dilution
values, their p-values and confidence intervals for each study (Fig. 1a).

In addition, we can leverage the estimated effective dilution ( ) to compute aφ
𝑀𝐸𝐷

dilution-adjusted effective sample size: (See supplement for derivation).𝑁
φ

𝑒𝑓𝑓

 =  𝑁
𝑒𝑓𝑓

/φ2
𝑀𝐸𝐷

This notion of a dilution-adjusted sample size can then be used to compare different
phenotyping strategies and inform the researcher regarding the strategy that yields the greatest
dilution-adjusted effective sample size, . We note that if the samples are overlapping, a𝑁

φ
𝑒𝑓𝑓

separate non-overlapping sample must be used to estimate the dilution for each strategy (see
Methods, Fig 1b). In the following sections, we discuss the theoretical implications of andφ

𝑀𝐸𝐷
,

explain its connection to phenotypic misclassification in further detail.
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a

b

Fig. 1 | PheMED Pipeline. a) GWAS summary statistics for studies 1, 2 and 3 (where nstudies ≥ 2)
were used as input for PheMED to estimate effective dilution values ( ), confidence intervalsφ
(CI) and corresponding p-values. In this example, study 3 exhibits statistically significant
effective dilution ( ) compared to study 1. Study 1 was internally used asφ = 1. 3,  𝑝 = 0. 003
reference ( ). b) In order to optimally increase power for GWAS, phenotyping strategiesφ

1
 =  1

have to increase sample size ( ) while containing phenotypic dilution ( ). PheMED provides𝑁
𝑒𝑓𝑓

φ

researchers with a tool to estimate each study’s dilution-adjusted effective sample size ( )𝑁
φ

𝐸𝑓𝑓

which can be used as an optimization parameter; higher results in higher power. In this𝑁
φ

𝐸𝑓𝑓

example, Phenotyping Strategy 2 strikes a good balance of flagging potential cases without
overdiluting the phenotype. If there are overlapping samples among the different phenotyping
strategies, PheMED has to be run separately for each phenotyping strategy against summary
statistics from a non-overlapping sample (“Reference Study”).
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Interpreting the effective dilution
In the supplement, we provide a derivation relating the effect sizes, of twoβ

𝑑𝑖𝑙𝑢𝑡𝑒𝑑,1
,  β

𝑑𝑖𝑙𝑢𝑡𝑒𝑑,2

(possibly) diluted GWA studies. Specifically, we demonstrate that,

.                                                     (2)β
𝑑𝑖𝑙𝑢𝑡𝑒𝑑,2

 ≈  
(𝑃𝑃𝑉

2
 + 𝑁𝑃𝑉

2
 − 1)

(𝑃𝑃𝑉
1
 + 𝑁𝑃𝑉

1
 − 1)  β

𝑑𝑖𝑙𝑢𝑡𝑒𝑑,1

where PPV and NPV stand for the positive and negative predictive value of the labels under the
phenotype. The numerator (or denominator), PPV + NPV - 1, found in equation (2) is often
referred to the ‘markedness’ or Δp of the possibly imperfectly labeled phenotype in the
corresponding study14. Observe that the multiplicative factor relating the two GWA studies, only
depends on the positive and negative predictive values of the diluted phenotype in the
respective studies. We note that the derivation in the supplement depends on the assumptions
from Beesley et al.1,12 , where effect sizes are small and the mislabeling is independent ofβ

other confounders.

Let the factor relating be defined asβ
𝑑𝑖𝑙𝑢𝑡𝑒𝑑,1

,  β
𝑑𝑖𝑙𝑢𝑡𝑒𝑑,2

(3)φ
𝑀𝐸𝐷

 =
(𝑃𝑃𝑉

1
 + 𝑁𝑃𝑉

1
 − 1)

(𝑃𝑃𝑉
2
 + 𝑁𝑃𝑉

2
 − 1) ,          

so that, . By this definition, increasing relative effective dilutionβ
𝑑𝑖𝑙𝑢𝑡𝑒𝑑,2

 ≈ β
𝑑𝑖𝑙𝑢𝑡𝑒𝑑,1

/φ
𝑀𝐸𝐷

corresponds to a smaller expected effect size estimate in the second study. Importantly, the
dilution depends on the relative misclassification between the studies. Studies with large but
equivalent misclassification do not result in dilution of effect size estimates.

In the special case where we have a gold standard phenotype, from equation (2) our algorithm
estimates the markedness (Δp) of the diluted phenotype. In practice, however, two similar
phenotypes may in fact be slightly different, as different samples could possess different
degrees of gene-environment interaction or misclassified patients could have a different
diagnosis and such misclassification might not be representative of a typical control patient.
Alternatively, different studies could adjust for different confounders. Nevertheless, for the
purposes of our work, we simply refer to the correction factor as .φ

𝑀𝐸𝐷

Furthermore, as evidenced by equations (2)-(3), since phenotypic misclassification can bias our
effect size estimates and we often suspect different levels of phenotypic misclassification across
different studies, we will demonstrate the importance of computing the effective dilution for a
variety of use-cases even when the aforementioned assumptions may not be fully met.
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Heritability and co-heritability in the presence of dilution

Since the relative effective dilution , impacts the estimates of the effect sizes, , in aφ
𝑀𝐸𝐷

β

GWAS, it will affect the heritability estimates. Intuitively, heritability refers to the variance
explained by the risk allele predictors, and when our effect sizes are small, (e.g. our log odds
ratios are near 0), the risk alleles capture very little information about our phenotype, which
translates to low heritability values.

Mathematically, assuming standardized genotype, standardized normal phenotype, and no
linkage disequilibrium, the SNP-heritability is a simple function of the effect sizes15–17 :

.ℎ2 =  
𝑗

∑ β
𝑗
2

For case/control studies considered here, indicates the heritability on the liability scale.ℎ2 

Therefore diluting the effect sizes by a factor of according toφ
𝑀𝐸𝐷

, reduces the heritability by a factor of .ℎ2 =  
𝑗

∑ (β
𝑗
/φ

𝑀𝐸𝐷
)2 = 1

φ
𝑀𝐸𝐷

2
𝑗

∑ β
𝑗
2 (φ

𝑀𝐸𝐷
)2

Yet, surprisingly, dilution does not affect the genetic correlation, , between studies. Given the𝑟
𝑔

same assumptions, the genetic correlation between two traits is the correlation between the
effect sizes18. Since is based on correlation, which is scaling invariant, dilution does not affect𝑟

𝑔

, as .𝑟
𝑔

𝑟
𝑔
 =  𝑐𝑜𝑟(β

1
,  β

2
 ) = 𝑐𝑜𝑟(β

1
,  β

2
 /φ

𝑀𝐸𝐷
) 

Thus estimates of genetic correlation are independent of the effective dilution (Fig. S1).

Importantly, when evaluating the similarity between summary statistics from two studies, and𝑟
𝑔

capture complementary and statistically independent features of the data. reflects theφ
𝑀𝐸𝐷

𝑟
𝑔

correlation in effect size estimates, while reflects the relative scaling between the effectφ
𝑀𝐸𝐷

size estimates.

Simulation results
We evaluate this approach in the GWAS setting through simulation, consisting of 100,000
SNPs, where 90% of SNPs correspond to null effects and the remaining 10% of SNPs have
very modest effect sizes. We specify different values for the PPV, NPV, expected size of true
effects and sample sizes for the diluted and gold standard GWAS studies (See Methods for
details). In particular, we find the maximum likelihood approach performs well in inferring the
true effective dilution value, (Fig. 2A), and produces well-calibrated p-values under theφ

𝑀𝐸𝐷

null model of no dilution (Fig. 2B)
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a b

c

Fig. 2 | Measuring effective dilution in simulation. Panel a compares the estimated effective
dilution with the true value in simulated GWA studies over 2,000 trials. The true effectiveφ

𝑀𝐸𝐷

dilution is defined as the ratio of the markedness values between the two GWA studies. The
gray dashed line indicates when the estimated value for the effective dilution equals the true
value. Standard errors of means for all parameter choices are too small to be visualized in this
figure. Panel b compares the distribution of 2,000 computed p-values when there is no dilution
between the two studies on the y-axis, with the expected uniform distribution of p-values on the
x-axis, since the null hypothesis is true. The gray dashed line indicates that the expected
p-value equals the observed p-value on the y-axis. Panel c describes a simulation study for
computing 95% confidence intervals to estimate for different GWA studies. One analysis,φ

𝑀𝐸𝐷
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in orange, estimates between 2 GWA studies, whereas the other analysis, in blue, canφ
𝑀𝐸𝐷

also leverage additional information from a third GWA study to estimate between the 2φ
𝑀𝐸𝐷

aforementioned GWA studies. The vertical green line indicates the true value for . Theφ
𝑀𝐸𝐷

table of parameters on the left indicates the PPV for Studies 2 and 3. The bar plot to the right
indicates the standard error in each simulation scenario. Study 1 is simulated so that it has PPV
= 1 and all studies have NPV = 1. For ease in visualization, we only provide the confidence
intervals for 50 of the 2,000 different simulations.

Subsequently, we investigate the width of our confidence intervals as we increase the number of
GWA studies in our pool. In particular, we find that the confidence intervals for measuring
effective dilution narrow as we include more studies (Fig. 2c, Table S1). Thus, as we reduce our
uncertainty regarding the true effect sizes, we attain greater precision regarding the range of
plausible values for the effective dilution between phenotypes from different GWA studies in our
simulations. Notably, for our simulation study, the standard errors for the mean effective dilution

shrunk between 10-21% across the five simulation scenarios, ( for all𝑝 <  5. 74 × 10−10

simulation scenarios, one-sided chi-square test for the variance).

Applications: Use cases for effective dilution
We briefly describe three real-world use cases where we use our method to evaluate: (a)
different phenotypic definitions within the same cohort, (b) cross-ancestry differences within the
same cohort (same phenotypic definition), and (c) differences across discrete cohorts. For each
of our use cases, we estimate the effective dilution between the different GWA studies with our
proposed method PheMED.

Different phenotypic definitions within the same cohort. First, we consider effective dilution
between two separate GWA studies using the presence of one (1; lenient) or at least two (2+;
strict) phecode counts for bipolar disorder in the Million Veteran Program (MVP), leveraging
non-overlapping patients (and controls) for each analysis. As expected from our prior work19, we
observe significant effective dilution in the more lenient definition (

, bootstrapped difference of means, see Methods for details)φ
𝑀𝐸𝐷

 =  1. 52,  𝑝 = 1. 35 × 10−13

(Fig. 3, Tables S2, S3). In a similar thematic fashion, we measure the effective dilution between
two GWA studies with different severity levels in the MVP, where the lenient case definition only
requires the presence of at least two obesity phecodes, while the stringent case definition
requires the presence of at least two morbid obesity phecodes, where patients have a BMI
exceeding 35. Since these GWA studies came from overlapping samples, we estimate the
effective dilution between the two phenotypes by estimating effective dilution of both against an
independent study (see Methods). In this case as well, we identify significant effective dilution in

the more lenient definition ( , bootstrapped difference ofφ
𝑀𝐸𝐷

 =  1. 16,  𝑝 = 7. 30 × 10−6

means; Fig. 3, Tables S2,S3).
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Cross-ancestry differences within the same cohort. We estimate effective dilution for
schizophrenia (2+ phecodes) in individuals of African (AFR) and Hispanic (HIS) ancestry when
compared to individuals of European (EUR) ancestry in the same cohort (MVP). We find

significant effective dilution for AFR ( ) but not HIS (φ
𝑀𝐸𝐷

 = 2. 41,  𝑝 = 1. 59 × 10−9

; Fig. 3, Tables S2, S3) ancestry individuals. Notably, the finding ofφ
𝑀𝐸𝐷

 = 1. 07,  𝑝 =. 63

significant effective dilution for AFR ancestry patients, aligns with existing literature indicating
that Black patients with mood disorders are more likely to be misdiagnosed with
schizophrenia2,3; as we anticipate a correlation between the distinct concepts of
genetically-inferred ancestry and race20,21. However, we caution that hidden confounders, such
as socioeconomic status and other environmental factors, can bias heritability estimates of a
trait and dilute effect sizes as well22,23.

Differences across independent cohorts. In addition to the aforementioned analyses, we
consider effective dilution across different cohorts, leveraging an existing Major Depressive
Disorder GWA study from FinnGen along with a multi-cohort meta-analyzed GWA study from
the Psychiatric Genomic Consortium (PGC)24, which includes 127,552 self-reported cases from
the UK Biobank (Fig. 3, Tables S2, S3). As we anticipate self-reported data to be less accurate
than coded diagnoses in electronic medical records, we observe statistically significant effective

dilution between the studies ( ). We also compute effectiveφ
𝑀𝐸𝐷

 =  1. 33,  𝑝 = 1. 34 × 10−21

dilution between an existing schizophrenia GWA study from the PGC25,26 and a GWA study from
Release 4 of the MVP (Fig. 3, Tables S2, S3) where we attain a significant effective dilution

value ( ), supporting the existence of data qualityφ
𝑀𝐸𝐷

 =  1. 69,  𝑝 =  1. 05 × 10−121

heterogeneity between the different studies. And finally, we assess the effective dilution
between two GWA studies for Alzheimer’s disease: a) a study which consists of a large
percentage of proxy cases (individuals with family history of the disease) from the UK Biobank27

(denoted ALZ Proxy), and b) a study that doesn’t utilize a proxy case definition (FinnGen28;
denoted ALZ Traditional). When comparing studies that incorporate different percentages of
traditional cases, we identified a significant effective dilution value ( ),φ

𝑀𝐸𝐷
 =  1. 27,  𝑝 =  0. 028

supporting the notion that proxy cases have lower positive predictive value than labels derived
from a healthcare-based diagnostic code definition. Note that we anticipate the effective dilution
between the proxy case phenotype from the UK Biobank and FinnGen to be higher than 1.27,
as the meta-analyzed GWA study used above (ALZ Proxy) includes a substantial percentage of
cases that were ascertained very rigorously (e.g. with definitive diagnoses using CERAD
scores).

We wish to stress the perhaps surprisingly extreme values of effective dilution that were found
above. To conceptualize this, suppose that our labeled phenotypes had a perfect negative
predictive value and we meet the assumptions such that we can interpret effective dilution as a
ratio of values between the different studies. To achieve effective dilution values of 2.41, that∆𝑝
would suggest that our positive predictive value is less than half of the reference study. These
findings highlight the utility of computing the effective dilution as a quality control metric when
comparing GWA studies using different phenotypic definitions both within and across cohorts.
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Fig. 3 | Effective dilution across different use cases. Examples of effective dilution (φ
𝑀𝐸𝐷

)

for different use cases: different phenotypic definitions within the same cohort (orange; e.g. BD
1 Phecode vs. 2 Phecodes), cross-ancestry analyses (blue; e.g. SCZ AFR vs. EUR) and
cross-cohort analyses (green; e.g. SCZ PGC vs. MVP). For a full list of values and confidence
intervals see Table S2. *p < 0.05. **p < 0.01. ***p < 0.001. ****p < 0.0001. Note that the “ALZ
Proxy” GWAS encompasses a mixture of both proxy cases from the UK Biobank as well as
more conventionally defined cases; however, for notational simplicity, we denote this study as
“ALZ Proxy”. In contrast the Alzheimer’s GWA Study from FinnGen only utilizes conventionally
defined cases, and we denote this study as “ALZ Traditional”.

Jointly measuring effective dilution over multiple GWA summary
statistics increases precision of estimationφ

𝑀𝐸𝐷

Here, we illustrate the advantage of jointly measuring effective dilution across multiple studies
on real-world data. Similar to our simulations from Fig. 2c, we also observe narrower confidence
intervals when we compute effective dilution through a joint tri-ancestry analysis as opposed to
separate bi-ancestry analyses. The width of our 95% confidence interval (95% CI) for estimating

from the AFR GWAS shrinks from (1.65, 5.26) to (1.59, 3.83). We observe similar, but lessφ
𝑀𝐸𝐷

dramatic decrease in width for the 95% CI for estimating from the HIS GWAS, where theφ
𝑀𝐸𝐷

confidence interval shrinks from (0.83, 1.63) to (0.82, 1.42), (Fig. 4).
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a b

Fig 4 | Reduced variability when jointly estimating effective dilution over multiple studies.
Empirical bootstrap distribution of effective dilution for (a) African ancestry and (b) Hispanic
ancestry for 2,000 circular bootstrap samples where the bi-ancestry analysis is highlighted in
orange and the tri-ancestry analysis is highlighted in blue. 95% confidence intervals
corresponding to these distributions are plotted below the x-axis. When adding a third ancestry
into the analysis, Hispanic and African for (a) and (b) respectively, the confidence intervals for

shrink.φ
𝑀𝐸𝐷

Impact of dilution on heritability estimates
Since heritability provides us with a theoretical upper bound for the performance of leveraging
polygenic risk scores to describe phenotypic variation29,30, computing accurate heritability
estimates provides insight regarding the potential clinical relevance for generating polygenic risk
scores in a clinical setting. As such, we follow up with heritability analysis across cohorts. We
find that significant dilution can lead to incompatible SNP heritability (h2

SNP) estimates for the
same trait (Fig. 5), even when accounting for 95% confidence intervals (95% CI), as predicted
by our theoretical derivation. This, in turn, affects heritability estimates for downstream inverse
variance weighted (IVW) meta-analyses, resulting in loss of information regarding the “true”
SNP effect sizes compared to optimally phenotyped cohorts (Fig. 5). Phenotypic
misclassification can lead to extreme variability in h2

SNP estimation and for many traits heritability
estimates have been historically inconsistent (see Table S4 for examples). We anticipate that
systematic bias due to misclassification is playing at least a partial role in contributing to these
inconsistencies as evidenced in our own schizophrenia and bipolar disorder examples (Fig. 5).
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a

b

Fig 5 | Confidence intervals for SNP-heritability across GWA studies for (a) two different
definitions of Bipolar Disorder in the Million Veteran Program (MVP) and (b) Schizophrenia in
the PGC and MVP cohorts. In both cases, using a diluted phenotype will yield incompatible
(non-overlapping) confidence intervals for heritability and performing a meta-analysis of a
diluted and non-diluted phenotype will inappropriately shrink the SNP-heritability. Assumed
population prevalence for computing heritability on the liability scale was 2% for Bipolar Disorder
and 1% for Schizophrenia. Effective sample sizes ( ) are provided for𝑛

𝑒𝑓𝑓 
=  4

1/𝑛
𝑐𝑎𝑠𝑒𝑠

 + 1/𝑛
𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑠

each study.

Effective dilution is independent from and complimentary to
genetic correlation
Subsequently, we run LD-score regression to compute the genetic correlation between our traits
with significant effective dilution on our EUR ancestry cohorts. As displayed in Fig. 6, we
observe that our schizophrenia and bipolar disorder studies can yield both high genetic
correlation and significant values for effective dilution as well. Our computational results support
the theoretical results derived earlier in our work, that a given trait can both have high genetic
correlation and significant dilution with respect to another similar but more precise definition of
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the trait. In addition, estimates for genetic correlation from LDSC can yield implausible values for
modest sample sizes, whereas we can attain robust estimates from effective dilution on the
same sample size with PheMED. Consequently, we recommend that researchers measure both
the effective dilution, through PheMED, and compute the genetic correlation between different
GWA studies to assess the validity of comparing the results from different studies.

Fig 6 | Visualization illustrating that genetic correlation ( ) does not correspond to effective𝑟
𝑔

dilution . The x–axis plots the genetic correlation and 95% confidence intervals (95% CI),(φ
𝑀𝐸𝐷

)

while the y-axis plots the effective dilution and 95% CI. Ideally, GWAS for the same trait should
have genetic correlation near 1 and effective dilution near 1 (corresponding to horizontal and
vertical dashed gray lines).

Effective dilution can compromise validation and replication efforts
We also note that since effective dilution influences the effect size estimates, we anticipate that
dilution can change power estimates for SNP replication in an independent sample. We provide
a mathematical derivation illustrating how dilution is inversely related to power (Supplementary
Note) and provide a visualization of the results in Fig. 7a. In particular, for replication of a single
index SNP, we plot different power curves corresponding to 5% significance, where we fix the
standard error to be 0.0125. We find that the SNP association effect size necessary for 80%
power varies substantially as we change the effective dilution. For example, in the presence of
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no dilution, the effect size necessary for 80% power is 0.031. But with an effective dilution of 2,
the effect size must be at least 0.062 to achieve the desired 80% power for replication.
Naturally, our analysis can be extended to other significance levels as desired towards
accurately estimating the power for replication.

a                                                                         b

Fig. 7 | Dilution affects power for replication and PRS validation. a. We plot power curves
for replicating SNPs with different true log odds ratios (x-axis) with different effective dilution
values in different colors. We set the standard error to be fixed at 0.0125 and defined the
significance threshold to be at 5% using a one-sided Z test. The gray dashed line signifies 80%
power. To achieve 80% power with no effective dilution, we require the true effect to be 0.031. In
contrast, if we have an effective dilution value of 2, the true effect would need to be 0.062. b.
We plot how effective dilution, , can bias the observed PPV from a polygenic risk scoreφ

𝑀𝐸𝐷

model compared to a validation cohort with no dilution. The x-axis denotes . The y-axisφ
𝑀𝐸𝐷

indicates the PPV from the polygenic risk score model in the diluted cohort and the dashed gray
line identifies the PPV from the polygenic risk score model under no dilution. For simplicity, we
fix the NPV of the labeled phenotype at 1 and allow the PPV of the labeled phenotype to vary.

Phenotype dilution can also affect the performance of polygenic risk scores (PRS). After training
a PRS model on a perfectly encoded phenotype, dilution in the validation dataset can
substantially reduce the PPV and NPV of the predictor (Supplementary Note). In Fig. 7b, we
plot the observed PPV from a PRS model as a function of , where the optimalφ

𝑀𝐸𝐷

As expected, when there is no dilution,𝑃𝑃𝑉
𝑃𝑅𝑆,𝑂𝑝𝑡𝑖𝑚𝑎𝑙

 = 𝑁𝑃𝑉
𝑃𝑅𝑆,𝑂𝑝𝑡𝑖𝑚𝑎𝑙

 =  0. 60. 𝑃𝑃𝑉
𝑃𝑅𝑆,𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑
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= However, even for modest levels of dilution, where = 1.33, we find that our𝑃𝑃𝑉
𝑃𝑅𝑆,𝑇𝑟𝑢𝑒

. φ
𝑀𝐸𝐷

observed PPV from the PRS model, , a 5% decrease from .𝑃𝑃𝑉
𝑃𝑅𝑆,𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑

 =  0. 55 𝑃𝑃𝑉
𝑃𝑅𝑆,𝑂𝑝𝑡𝑖𝑚𝑎𝑙

Accounting for effective dilution in meta-analysis
When different studies possess effect-size heterogeneity due to phenotypic misclassification
bias, the assumptions of the standard fixed-effect meta-analysis using inverse variance weights
(IVW) or Stouffer’s z-score method with sample-size weights (weighted Z) is violated.
Consequently, just as we can use our knowledge of to compute more robust power φ

𝑀𝐸𝐷

computations and PRS validation metrics, we can also employ to meta-analyze diluted φ
𝑀𝐸𝐷

phenotypes. Here, we propose the dilution adjusted weights (DAW) meta-analysis methodology,
an extension of the fixed effects meta-analysis framework, where we account for effect size
heterogeneity by adjusting the weights of each study according to their effective dilution (see
Methods for details). We compare the performance of our new methodology against four other
meta-analysis techniques, including IVW13, Weighted Z13, random effects meta-analysis
(REMA)31 and MTAG32.

We first compare the number of FDR-significant hits for five different use-cases and find that
DAW consistently identifies more FDR-significant loci than competing meta-analysis
methodologies (Fig. 8, Methods). Furthermore, we find that DAW is consistently competitive or
outperforms competing methodologies when comparing the number of significant hits that are
validated through an independent cohort as well (Supplement Tables S5-S11). We then
perform a simulation analysis, where we both demonstrate that DAW controls the Type I error
rate and flags more significant hits than competing meta-analysis methodologies (Fig. S2, S3).
We also apply our meta-analysis methodology to transcriptome-wide association studies and
DAW increases power in that setting as well (Fig. S4, Methods). Finally, we stress that DAW
corrects dilution at the GWA summary statistics level; notably, since publicly available GWA
summary statistics often reflect an aggregation of multiple cohorts and varying phenotype
definitions, researchers ideally should generate separate GWA summary statistics for different
phenotypic definitions and run PheMED to assess the data quality of the phenotypes, as
illustrated earlier in Fig 1b.
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Fig 8 | Number of FDR Significant Hits (y-axis) found by different meta-analysis methodologies
(x-axis) for different use-cases (facets). The gray dashed line indicates the maximum number of
FDR significant hits identified by the best performing methodology for each use case. To assess
the number of hits, only approximately LD-independent SNPs were used (see methods for
details on the clumping procedure). Note that for SCZ Cross-Ancestry, MTAG was not
performed as a cross-ancestry analysis violates the assumptions of the model.

Discussion
Whenever we compare phenotypes from different data sources, we should anticipate data
quality heterogeneity. In particular, we recommend caution when leveraging large samples from
biobank data, as the true effective sample size can be much smaller, depending on the level of
dilution from the data acquisition process. Consequently, we develop a new method, PheMED,
to detect relevant differences in phenotype misclassification errors across GWA studies for the
same trait, using only summary statistics from the GWA study and without the requirement of an
existing gold standard phenotype. The main underlying assumption for our approach is that
common SNP-trait association effect sizes are comparable across populations and ancestries in
well-controlled studies at the genome level, although there are exceptions, e.g. ancestry-specific
associations at specific loci33. We showcase several real-world scenarios where our
methodology benchmarks phenotypic quality governed by different sources of misclassification
errors, such as different phenotypic definitions and healthcare disparities within the same
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cohort, as well as cross-cohort heterogeneity. In particular, we find instances of statistically
significant dilution in all of the aforementioned use-cases, suggesting different levels of data
quality across different GWA studies. We demonstrate that our methodology produces narrower
confidence intervals for the effective dilution when jointly estimating the effective dilution across
multiple studies that share the same phenotype. We refer to this as ‘transitive inference’.
Furthermore, we introduce the dilution-adjusted effective sample size to help researchers
identify the optimal phenotyping strategy that will produce the greatest power in detecting
statistically significant results.

Currently, when justifying the inclusion of a cohort as part of a meta-analysis or establishing
consistency between a newer study and a prior analysis, the current accepted practice is to
verify that there is a high genetic correlation between the two studies34–36. We illustrate that the
aforementioned quality check is insufficient, as two GWA studies can simultaneously share both
high genetic correlation and strong levels of effective dilution, resulting in diluted effect sizes and
heritability estimates from the meta-analysis. We note that prior work has emphasized that
cross-study heterogeneity, due to imperfect genetic correlation, can affect heritability
estimates37. In contrast, our results indicate that heritability can be affected even with perfect
genetic correlation on account of phenotypic misclassification.

We emphasize that measuring the effective dilution can also aid researchers in assessing
performance of polygenic risk scores and estimating power for replication on external cohorts,
as misclassified phenotypes can bias these metrics. Previous work has described how
phenotypic misclassification can reduce power38,39, but employing such results in practice
requires direct knowledge of unknown misclassification probabilities. Nevertheless, all of these
aforementioned studies underscore the potential utility of leveraging our methodology to infer
the effective dilution of odds ratios from the summary statistics to compute accurate heritability
and power computations for GWA studies.

At this juncture, we review the limitations in using PheMED. First, interpreting the effective
dilution as a ratio of markedness values (NPV + PPV - 1) can be problematic if the phenotypic
misclassification depends on other confounders, if the studies address different phenotypes or if
the studies adjust for different confounders. Furthermore, when jointingly modeling multiple
studies, at least one pair of studies must have no sample overlap. In spite of these limitations, we
can relate effective dilution estimates from PheMED to a meaningful metric (ratio of
markedness) when interpreting the practical significance of different values for the effective
dilution. Furthermore, we present a deterministic method for computing the effective dilution to
assess if GWA studies are indeed comparable to one another for heritability, meta and
replication analyses. And in contrast to prior methods in the literature, estimating the effective
dilution through PheMED does not depend on a gold standard GWA study9, does not require us
to assume values for unknown performance metrics for a phenotype in a given GWA study1, and
only uses summary statistics to detect effective phenotypic dilution.

Finally, we wish to highlight the utility of leveraging PheMED estimates for meta-analysis,
through our newly proposed dilution-adjusted weights (DAW) algorithm. First, our approach
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allows us to overcome limitations associated with violations of the principal assumptions of
existing methods. For example, fixed effects meta-analysis techniques such as inverse variance
weights (IVW) and Stouffer’s z-score method (weighted Z) assume that the population effect
sizes are fixed across studies. In practice when meta-analyzing diluted phenotypes, the effect
size will depend on the quality of the data. Furthermore, even meta-analysis techniques that aim
to account for effect size heterogeneity, like random effects, apply the same effect size shinkage
across all studies. In truth, the level of shrinkage for high quality studies should be smaller than
for low quality studies. A couple of common real-world examples of these violations include: a)
the equal treatment of phenotypes based on self-reported data vs. multiple coded diagnoses in
a patient’s electronic health record (EHR), and b) disregarding the potential for algorithmic bias
through non-random healthcare disparities cryptically embedded in EHR for e.g. AFR ancestry
individuals40–43. When leveraging single ancestry studies, we also considered a multi-trait
meta-analysis methodology, MTAG32, since different studies for the same trait can be
considered as different correlated traits on account of measurement error. Specifically when
compared with MTAG, DAW allows for transitive inference which increases the precision of our
approach with an increasing number of studies, and affords more flexibility by enabling the
utilization of summary statistics with low heritability and/or sample sizes because it is not built on
top of LDSC. Consequently, we demonstrate both on real-world data and through simulation that
DAW meta-analysis consistently achieves higher power for detecting true effects compared to
all of the aforementioned methodologies without increasing the false positive rate in simulations.
Therefore, we maintain that the DAW meta-analysis framework is a much needed step towards
making our analyses more robust against the aforementioned implicit biases that compromise
data quality across studies.

In consideration of our findings, we anticipate that PheMED will serve as a valuable approach
for integrating GWA studies with phenotypic quality heterogeneity to guide algorithmic
phenotyping and correct for diluted phenotypes that can further bias downstream analyses.

Methods
Modeling effective dilution

We assume that the standard errors (provided in the GWA summary statistics) are fixed
parameters. Without loss of generality, we standardize our GWA studies by stipulating that

, so that all effect sizes are measured in reference to the first study. Our approachφ
1
 =  1

allows us to solve the general problem: given N GWA summary statistics, setting the first study
in the list to be the reference study, produce N - 1 effective dilution values, where the ith value
relates the effective dilution of the ith study relative to a reference study.

To achieve this goal, we optimize the log-likelihood as the effect sizes come from approximately
normal distributions.
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The basic rationale behind this maximum likelihood formulation is that we are applying a
study-specific transformation to the overall study means , for the ith effect (SNP). Here,µ

𝑖
φ

𝑘
represents how much the true mean for the effect size of the ith SNP shrinks or grows based on
the relative phenotypic misclassification rates for study k. For a derivation that phenotypic
misclassification is a multiplicative transformation of our means, we refer the reader to the
supplement.

Computationally, we express as a function of (as the estimated means from the dataµ φ, β, σ
are the result of an inverse-variance weights meta-analysis after we know how to transform the
GWA summary statistics with ). We optimize both of these functions by using the Nedler-Meadφ
algorithm as implemented in Scipy, initializing 44.α =  1

→

Data Processing: Identifying Approximately Independent Loci

To estimate dilution, we identify approximately independent loci by randomly assigning a p-value
from a uniform distribution to each SNP so that the loci do not contain any information regarding
the effect sizes for any of the GWA studies. From these randomly assigned p-values, we
clumped lead SNPs in PLINK45 using the European 1k Genomes reference panel46. In particular,
we required that all SNPs in the same clump must have an R2 of at least 0.5 with the lead SNP
and be at most 250 kbp away from the lead SNP. We emphasize that our methodology does not
require strict independence as we leverage blocked bootstrapping (described later), which is
robust to any remaining spatial dependency in our analysis. Furthermore, to ensure robustness
for GWA studies that leverage additional ancestries, we performed additional clumping with the
surviving SNPs on the African ancestry 1k Genomes reference panel to ensure that the loci
were approximately independent across ancestries. For measuring effective dilution in the
multi-ancestry schizophrenia GWA studies, we also repeated this procedure for Hispanic
ancestry patients as well.

Estimating Effective Dilution from Studies with Sample Overlap using an Independent
Study
Here, we show that we can still estimate the effective dilution between the two studies with
sample overlap provided we have access to a third independent study, as performed on our
obesity GWA studies with overlapping samples. In particular, suppose that studies 1 and 2 have
possible sample overlap, while study 3 has no overlap between studies 1 and 2.

Using the maximum likelihood formulation (5) from the text, we can estimate the effective
dilution between studies 1 and 3,

.φ
𝑀𝐸𝐷,1,3

 =
(𝑃𝑃𝑉

1
 + 𝑁𝑃𝑉

1
 − 1)

(𝑃𝑃𝑉
3
 + 𝑁𝑃𝑉

3
 − 1)  

Similarly, we can use the maximum likelihood formulation to estimate the effective dilution
between studies 2 and 3,

.φ
𝑀𝐸𝐷,2,3

 =
(𝑃𝑃𝑉

2
 + 𝑁𝑃𝑉

2
 − 1)

(𝑃𝑃𝑉
3
 + 𝑁𝑃𝑉

3
 − 1)  
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By dividing these two quantities, we attain an estimate for the effective dilution between studies
1 and 2, as

.φ
𝑀𝐸𝐷,1,3

 /φ
𝑀𝐸𝐷,2,3

 =
(𝑃𝑃𝑉

1
 + 𝑁𝑃𝑉

1
 − 1)

(𝑃𝑃𝑉
2
 + 𝑁𝑃𝑉

2
 − 1)  =   φ

𝑀𝐸𝐷,1,2

As noted in the text, estimating separately for each pair of studies will result in greaterφ
𝑀𝐸𝐷

uncertainty regarding the true estimate for the effective dilution. Consequently, when our
samples have minimal sample overlap, we recommend using joint estimation. However, if
samples from independent data are unattainable, this approach provides us with a robust tool to
estimate effective dilution even in the presence of sample overlap.

Evaluating hypothesis test, computing confidence intervals and p-values
To compute confidence intervals for the effective dilution, , we create 2,000 circular blockedφ
bootstrap samples, and construct empirical 95% confidence intervals for . We employ anφ
automated procedure to compute the size of the blocks so that our confidence intervals are
robust to the spatial dependence between nearby SNPs47. For computing p-values, we
considered a combination of three different approaches. From the 2,000 bootstrap samples, in
the event we had at least 10 bootstrap samples with effective dilution values greater than 1 and
10 bootstrap samples with effective dilution values less than 1, we could invoke the central limit
theorem to estimate the p-value directly from the bootstrap samples. For small p-values, (e.g. p
< .01) we considered two additional techniques.

First, we can test if the empirical distribution for the effective dilution from the 2,000 bootstrap
samples resembles an approximate normal distribution using the Shapiro-Wilk test, D’Agostino’s
K2 Test, and the Anderson-Darling Test. Prior to performing the aforementioned tests, if the
mean estimated effective dilution parameter exceeded 1 we transformed the effective dilution
distribution by taking its reciprocal for convenience, so that the null hypothesis (of no dilution)
would always be greater than the observed estimate. Provided that the p-values indicated
insufficient evidence to reject the normal distribution assumption for all tests (p > .05), we then
used the method of moments to fit a normal distribution to the bootstrapped distribution of the
effective dilution and computed a two-sided p-value to ascertain how likely we would observe
such an extreme observation for dilution assuming that our null hypothesis of no effective
dilution was actually true.

Alternatively, we leverage Extreme Value Theory to fit the tail of our empirical bootstrap
distribution to a General Pareto Distribution48. We fit the parameters of the General Pareto
Distribution using maximum likelihood estimation49 and can compute estimated p-values along
with confidence intervals for these p-values using a similar approach that has been previously
described in the literature48. In particular, we computed confidence intervals for our p-values by
exploiting the asymptotic bivariate normality of the maximum likelihood estimator. After
estimating our covariance matrix, we simulated 10,000 bivariate normal variables to compute
expected values for the aforementioned p-values. For the p-values listed in the main table that
are significant at the .05 level, we selected the larger p-value of the two methodologies, with the
exception that if we had strong evidence that the empirical distribution did not follow a normal
distribution, we selected the p-value generated from Extreme Value Theory.

Meta-analysis
With the known effective dilution weights, we apply the following transformation so that effects
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across studies share the same mean. That is, if , thenβ
𝑖,𝑘

 ∼ 𝑁(µ
𝑖
/φ

𝑘
,  σ

𝑖,𝑘
2)

, so that the observed ith effect now shares the same mean across allφ
𝑘
β

𝑖,𝑘
 ∼ 𝑁(µ

𝑖
,  φ

𝑘
2σ

𝑖,𝑘
2)

studies k. We can then perform an inverse-variance weights meta-analysis using the observed
effect size and estimated variance . Note that while we estimate using onlyφ

𝑘
β

𝑖,𝑘
 φ

𝑘
2σ

𝑖,𝑘
2 φ

𝑘

approximately independent loci, we can apply the proposed weighting to all SNPs in the
meta-analysis. In the Supplementary Results section, we describe an extension of
Dilution-Adjusted Weights, called Transformed Effects Meta-Analysis to infer both linear and
non-linear hidden transformations that can bias the summary statistics produced from GWA
studies.

When benchmarking the meta-analysis methodologies on use-cases, we ran MTAG using the
code from the MTAG GitHub32, where we specified options indicating perfect genetic correlation
and no sample overlap. We leveraged the MetaFor package for the Random Effects
Meta-Analysis31. To implement the Weighted Z methodology, we utilized the effective sample
size for weighting as recommended in METAL13. For assessing the number of significant hits,
we treated the extended MHC locus, chr6 25-33 Mbp as one locus. For a theoretical discussion
outlining various assumptions of different methodologies, we refer the reader to the Supplement.

Simulations
To validate our theoretical derivation in Fig. 2a, for each simulated GWA study, we aggregated
patients into four groups: true positive phenotypes, false positive phenotypes, false negative
phenotypes and true negative phenotypes. For each independent SNP, we modeled the total
allele counts for each of these four groups as a Binomial random variable (which depends on
the number of patients in the group, the true status of the phenotype, and the conditional
probability of possessing the effect allele given the true status of the phenotype). Subsequently,
we computed the log odds ratio between the labeled phenotypes. For simplicity, within each
GWA study we set the number of labeled cases and controls to be equal to each other. We
denoted the study with higher markedness as the “gold” study and the study with lower
markedness as the “diluted” study. Possible values for different parameters are listed as follows:
PPVgold = {0.8,0.9,1}, NPVgold = {0.8,0.9,1}, PPVdiluted = {0.6,0.7,0.8,0.9}, NPVdiluted =
{0.6,0.7,0.8,0.9}, Ncontrols,Ncases = {20,000}. For each study, we generated 100,000 independent
SNPs, of which 10% of the SNPs corresponded to true effects. For both studies, we specified a
common heritability parameter that corresponds to the typical effect size of a true effect, h2 =
{0.025}, which is described in greater detail below. We model the minor allele frequencies for
controls, Pr(Minor Allele|True Control) for each SNP using independent identically distributed
uniform random variables bounded from 0.05 to 0.5.

We then generate probabilities, Pr(Minor Allele|True Case) for each SNP, and define the
where𝑃𝑟(𝑀𝑖𝑛𝑜𝑟 𝐴𝑙𝑙𝑒𝑙𝑒|𝑇𝑟𝑢𝑒 𝐶𝑎𝑠𝑒) = 𝑃𝑟(𝑀𝑖𝑛𝑜𝑟 𝐴𝑙𝑙𝑒𝑙𝑒|𝑇𝑟𝑢𝑒 𝐶𝑜𝑛𝑡𝑟𝑜𝑙) +  β

*
/𝐻,

) and𝐻 =  1/𝑃𝑟(𝑀𝑖𝑛𝑜𝑟 𝐴𝑙𝑙𝑒𝑙𝑒|𝑇𝑟𝑢𝑒 𝐶𝑜𝑛𝑡𝑟𝑜𝑙) +  1/(1 −  𝑃𝑟(𝑀𝑖𝑛𝑜𝑟 𝐴𝑙𝑙𝑒𝑙𝑒|𝑇𝑟𝑢𝑒 𝐶𝑜𝑛𝑡𝑟𝑜𝑙)

.β
*
 ∼ 𝑁(0,  ℎ2)
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We leveraged a similar approach in Fig. 2c, to assess the reduction in variance when jointly
analyzing the effective dilution across multiple studies.

For the p-value calibration simulation in Fig. 2b, where there is no dilution between the two
GWA studies, we generated summary statistics for 100,000 independent SNPs, of which 10% of
them correspond to true effects. For SNPs with true effects (log odds ratios),

.β  ∼ 𝑁(0,  0. 022)

Alternatively for null effects = 0. We then modeled the reported GWA estimates for andβ β
𝐺𝑊𝐴𝑆

SE such that , and SE is treated as a known quantity, whereβ
𝐺𝑊𝐴𝑆

∼ 𝑁(β,  𝑆𝐸2) 𝑆𝐸 =  1/ 𝑁
𝑒𝑓𝑓

,

𝑁
𝑒𝑓𝑓

 =  20, 000.

We construct simulated pairs of GWA study summary statistics 2,000 times and for each pair of
GWA studies we estimate the effective dilution and compute a p-value by
creating 2,000 bootstrap samples on the SNPs in the simulated GWA summary statistics.
Specifically we estimate the effective dilution for each bootstrap sample and compute the
p-value as,

, where𝑝 =  
2×𝑚𝑖𝑛(#(φ

𝑀𝐸𝐷,
 > 1), #(φ

𝑀𝐸𝐷,
 < 1)) 

𝑁
𝑡𝑟𝑖𝑎𝑙𝑠

𝑁
𝑡𝑟𝑖𝑎𝑙𝑠

 =  2, 000.

For the meta-analysis simulations, to generate the distribution of effect sizes for SNPs in an
undiluted study, 90% of SNPs had a true effect size of 0, whereas for the other 10% of SNPs

, for some parameter represented as the inverse of the sample size parameterβ ∼ 𝑁(0,  ℎ2) ℎ2,  
in the simulation .Since phenotypic misclassification bias is an approximately linear
transformation, each study has a dilution factor and true effect sizes for that study were divided
by the dilution factor. With the true study-specific effect sizes, we could then simulate the
observed effect size and standard error by adding an independent normal random variable with
mean 0 and variance equal to the square of the standard error to attain our simulated GWA
studies. In simulation, we meta-analyzed 5 GWA studies where each study had an effective
sample size N = [500, 2,500] and effective dilution = [1, 1.5, 2]. For simulation, we used a
method of moments approach to compute the covariance matrix as detailed in the MTAG
supplement. On both simulation and real-world data examples, we set the correlation between
different studies to equal 1. In particular for simulation, we utilized the version of MTAG that
uses the SNP standard errors (as opposed to sample size) when assigning weights for each
study. For simulations, we used a method of moments approach to perform random effects
meta-analysis 50 .

GWAS Data Sources
For data sources excluding the Schizophrenia (“SCZ AFR”, “SCZ EUR”, “SCZ HIS”) and Bipolar
Disorder (e.g. “BD 1 Phecode”, “BD 2+ Phecodes”) GWA studies from the Million Veteran
Program (MVP), we leveraged existing GWA summary statistics. Cases as defined from the
MVP Schizophrenia GWAS were required to have 2 or more schizophrenia phecodes, 295.1.
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The Alzheimer’s disease GWA study (“ALZ Traditional”) and the Depression GWA Study (“MDD
FinnGen”) come from Release 7 of FinnGen28, where we selected the “wide definition” for
Alzheimer’s disease based on diagnoses as listed through cause of death, hospital discharge,
insurance reimbursement, and medication reimbursement. Controls were excluded for
dementia, memory loss, severe traumatic brain injury, neurological diseases, and psychiatric
diseases. For details see, https://risteys.finngen.fi/endpoints/G6_AD_WIDE_EXMORE.
GWA summary statistics for the Alzheimer’s disease study leveraging predominantly proxy
cases from the UKBiobank (“ALZ Proxy”) are publicly available through the GWAS catalog
https://www.ebi.ac.uk/gwas/studies/GCST9002715827. For details on the depression phenotype,
see https://risteys.finngen.fi/endpoints/F5_DEPRESSIO
Other GWA studies used in this work for Major Depressive Disorder (“MDD PGC”) and
Schizophrenia (“SCZ PGC”) are available through the Psychiatric Genomic Consortium24,51,52.
For the obesity (“Obesity”) and morbid obesity (“Morbid Obesity”) phenotypes, corresponding to
PheCodes 278.1 and 278.11, we leveraged a beta release of the gwPheWAS project from
August 15th, 2022, which encompasses GWA studies in MVP for over 1,700 phenotypes. In
particular to compute the effective dilution between the European ancestry GWA studies for
obesity and morbid obesity, as they had overlapping samples, we utilized an African ancestry
obesity GWA study from the gwPheWAS project as well. All GWA studies from the gwPheWAS
project were adjusted for age, sex, and the first 10 population specific principal components.

To benchmark the meta-analysis methodologies, for depression, we leveraged the East Asian
ancestry GWAS from the Psychiatric Genomics Consortium 53 for validation and the FinnGen
and European ancestry Psychiatric Genomics Consortium GWAS 54 for the meta-analysis. For
(BD), we validated the meta-analysis of our bipolar disorder (BD) GWA studies from the MVP
with an existing BD GWAS from the Psychiatric Genomics Consortium 34. For alcohol
dependence, we leveraged Release 7 of FinnGen to attain an Alcohol Dependence GWAS
along with European and African ancestry Alcohol Dependence GWA studies came from the
Psychiatric Genomic Consortium 55, where we used the African ancestry GWAS for validation.
For details on the FinnGen alcohol dependence phenotype, see
https://risteys.finngen.fi/endpoints/F5_ALCOHOL_DEPENDENCE. Finally, we validated the
cross-ancestry schizophrenia GWA studies from the MVP with the European ancestry
schizophrenia GWAS from the Psychiatric Genomic Consortium56

Genotyping, quality control and imputation. MVP Genotyping, initial quality control, and
imputation is handled by the MVP Data Team as previously described57,58. For completeness,
we provide a brief overview of the methodologies employed. This study leveraged release 4 of
the MVP, which contains genotyping data from blood samples for more than 650,000
individuals. The MVP 1.0 custom Genotyping array was used for genotyping, where the APT
software 2.11.3 was used for genotype calling. Genotype quality control metrics encompass:
sex check, rare heterozygous adjustment, plate normalization and sample labeling. The MVP
Data Team performed ancestry-specific principal component analysis using PLINK 2.059 and
computed relatedness (kinship coefficient) with KING 2.160. Ancestry was computed using
HARE61 (genetically inferred ancestry leveraging the top 30 principal components and
ADMIXTURE62) and SHAPEIT463 version 4.1.3 was used to phase genotypes. Pre-imputation
QC filtered out variants that had significant missingness (> 20%), were monomorphic, or had
substantial variation in frequency across batches. The MVP Data Team imputed genotypes with
the reference panel from 1,000 Genomes (except for African individuals, where the Sanger
Institute African Genome Resources Panel64 using Minimac465 was used for imputation). We
then performed follow-up quality control filters where we only included samples with sample call
rates exceeding 98.5%, required that that the sample heterozygosity rates deviate at most four
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standard deviations from the samples’ heterozygosity rate mean and filtered out related
samples/samples with cryptic relationship by leveraging a cut-off value of .0884 for the kinship
coefficient (first we removed samples with multiple relationships; subsequently, we filtered out
samples with the highest missingness rates from the remaining relationship pairs). We
performed variant-level filtering retaining SNPs such that the MAF exceeded 0.005, the
effective minor allele count was at least 30, the variant call rates exceeded 95%, the
Hardy-Weinberg equilibrium test p-value exceeded 5 × 10-8, and the imputation R2 exceeded
0.4. For binary traits, we leveraged logistic regression for performing the GWAS analysis with
PLINK 2.0. We performed separate analyses on different genetic ancestries and adjusted for
confounders, including sex, age and the top 20 principal components.

Heritability.
We estimated SNP heritability and genetic correlation using the LDSC package66,67. Heritability
for case-control phenotypes were computed on the liability scale. For Bipolar Disorder, assumed
population prevalence was 2% and for Schizophrenia, assumed population prevalence was 1%.
To compute the heritability and genetic correlation estimates, the 1k Genomes Project -
European Project was used to construct the reference panel.

TWAS Data Sources and Pipeline
From the MVP, we leveraged individual level imputed gene expression data to perform
transcriptome-wide association studies (TWAS) on European ancestry patients with BD 1
Phecode, BD 2+ Phecodes, SCZ 1 Phecode, and SCZ 2 + Phecodes. Genetically regulated
gene expression (GReX) was imputed for the dorso-lateral prefrontal cortex (DLPFC, brain)
homogenate for each individual by leveraging an EpiXcan 68 transcriptomic model based on the
PsychENCODE cohort 69,70 trained as previously described 71.

In order to estimate individually imputed GReX, we first perform QC of MVP genotypes. We
utilize the same sample-level QC as described above (see “Genotyping, quality control and
imputation”) and filter variants based on MAF and variant imputation (MAF >= 0.01, population
specific R2 >= 0.6). We also limit variants to biallelic SNPs. Next, we convert genotypes to
dosages for use in linear combinations with transcriptomic model gene-SNP weights. We
substitute missing genotypes with twice the SNP MAF (representing the population average).
This replaces traditional filtering of SNPs by missingness to maximize genotypic information in
GReX estimation. To ensure confident GReX estimation, we limit genes to those with a 0.01 or
greater prediction performance R2. Finally, we perform TWAS with estimated GReX by utilizing a
logistic regression (logit link function) with covariates for sex, age, and top ten principal
components.

For validation, we used TWAS summary statistics generated from the same transcriptomic
imputation model applied to the summary statistics from PGC for BD 35 and SCZ 72 with the
S-PrediXcan approach 73. Similar to the GWAS setting, we created randomly assigned p-values
for each gene, and clumped lead genes, where we required that all genes in the same clump
must have an R2 of at least 0.5 with the lead gene and either overlap with the lead gene or be at
most 250 kbp away from the lead gene. We excluded patients that had exactly 1 SCZ phecode
and 1 BD phecode from the analysis.
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Code Availability
The PheMED GitHub Repo can be downloaded from
https://github.com/DiseaseNeuroGenomics/PheMED

Data Availability
Summary statistics will become available on dbGaP when paper is accepted.
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