Association of IL-6 -174G/C and IL-10- 1082G/A Polymorphisms and Risk of 1 **Chronicity of Hepatitis B Infection in Sudanese End Stage Renal Disease** 2 **Patients** 3 Omer B. Mohamedsalih¹, Waleed A. Hussain^{2*} 4 5 ¹ Department of Molecular biology, Faculty of Medical Laboratory Sciences Alneelain University, Khartoum- Sudan. 6 ² Department of Immunology and Molecular biology, Faculty of Medical Laboratory Sciences 7 8 Alneelain University, Khartoum- Sudan. *Corresponding author: Waleed Abdelateif Hussain 9 waleed.86h@gmail.com 10 +249912257223 11 Department of Immunology and Molecular biology, Faculty of Medical Laboratory Sciences 12 Alneelain University, Khartoum- Sudan. 13 14 Abstract

Background: Overt hepatitis B virus (HBV) infection is defined as infection with detectable 16 17 surface antigen (HBsAg) in patient's blood. End stage renal disease (ESRD) patients who are on maintenance hemodialysis (HD) are considered to be strong candidates for HBV infection due to 18 19 prolonged vascular access via HD procedure. In addition, the differences in host immune response can be one of the reasons for the various clinical presentations of HBV infection. Polymorphisms 20 21 of genes encoding the pro-inflammatory and anti-inflammatory cytokines, which are responsible for regulation of the immune response, can affect the clinical presentation of the infection. 22 23 Particularly, the polymorphisms of the genes encoding cytokines such as interleukin 6 (IL6) and interleukin 10 (IL10). 24 Aim: This current study aimed to compare serum levels and allelic variant of IL-6 -174G/C and 25

- IL-10- 1082G/A polymorphisms in patients with overt hepatitis B and end stage renal disease 26 hepatitis B patients in Khartoum State- Sudan. 27
- Method: Case control study has been conducted to detect the IL-6 -174G/C and IL-10- 1082G/A 28 29 polymorphisms using SSP-PCR and serum level of IL6 and IL10 using ELISA in 68 from
- Hepatitis B patient (37 overt hepatitis B patients and 31 end stage renal disease hepatitis B patients 30

31	Result: The result showed that there was no statistically difference in IL6 (174G/C) and IL10 $(1082C(A), A)$			
32	(1082G/A) Allelic frequencies (P. value = ./38, .194 respectively), Serum level (P. value = 0.36, 170 respectively) between two groups. In addition there is no significant correlation between the			
24	H = (174 G/C) and $H = 10 (1082 G/A)$ and sorum level in study groups			
54	1L0 (1740/C) and 1L10 (10820/A) and serum level in study groups.			
35	Conclusion: The Allelic Variant of IL-6 -174G/C and IL-10- 1082G/A Polymorphisms and			
36	serum levels could not play apart in complication of hepatitis B in end stage renal disease			
37	patients.			
38 39 40 41	Keywords: IL-6 -174G/C, IL-10- 1082G/A, Polymorphisms, End Stage Renal Disease, Chronic Hepatitis B, Khartoum, Sudan.			
42				
43				
44				
45				
40				
48				
49				
50				
51				
52				
53				
54				
55				
56				
57				
58				
59				
60				
61				

62 Introduction

Hepatitis B virus (HBV) is a hepatotropic, small, enveloped DNA virus that belongs to the
Hepadnaviridae family and causes an acute or chronic infection in humans. Chronic hepatitis B
virus (HBV) infection represents a major global health problem, affecting an estimated 257-291
million persons worldwide and is associated with substantial morbidity and mortality because of
clinical complications, such as liver cirrhosis and hepatocellular carcinoma [1].

In Sudan a recent systematic review and meta-analysis including 14 studies with 5848 participants have been conducted, revealing that HBV seroprevalence rates ranged from 5.1 to 26.8% with an overall pooled prevalence of 12.1%. According to study findings, Khartoum State had the highest prevalence of HBV infection in Sudan with a proportion of 12.7% [2].

Among many groups susceptible to HBV infection, patients with end-stage renal disease (ESRD) who are on maintenance haemodialysis (HD) are considered to be strong candidates for HBV infection due to prolonged vascular access via HD procedure at HD units where the nosocomial transmission of this virus is well documented (Ayatollahi, 2016) [3]. In addition, the impaired immune response of HD patients puts this population under serious risk of Hepatitis B [4].

Unlike the appearance of this infection in immune-competent individuals, HBV infection usually tends to be chronic in HD patients due to the immunosuppressive nature of ESRD [5]. Chronic HBV infection has three distinct states of chronicity, which can be differentiated serologically. The first one is chronic Hepatitis B characterized by detectable HBsAg in the serum for six months or more known as overt Hepatitis B. The second is an inactive HBV carrier in which the HBsAg is detectable in the serum with negative HBeAg. The third one is an unusual clinical entity known as occult Hepatitis B infection (OBI) [6].

85 The challenges in the area of HBV-associated disease like ESRD are the dearth of knowledge in predicting outcome and progression of HBV infection and need to understand them 86 87 molecular, cellular, immunological, and genetic basis of assorted disease manifestations related to 88 HBV infection. The differences in host immune response can be one of the reasons for the various clinical presentations of HBV infection. Polymorphisms of genes encoding the pro-inflammatory 89 and anti-inflammatory cytokines, which are responsible for regulation of the immune response, 90 can affect the clinical presentation of the infection. Particularly, the polymorphisms of the genes 91 encoding cytokines such as interleukin IL-6 and IL-10 [7]. 92

93 Material and methods

94 Study design and Sample collection

A case control study was conducted at Khartoum state, Sudan. Blood specimen from chronic
hepatitis B patient (37 overt hepatitis B patients as control group and 31 end stage renal disease
hepatitis B patients as case group) was collected in EDTA Containers and store at -20 °c until

- 98 processing.
- 99 Laboratory work
- 100 **DNA extraction**

101 The DNA was extracted from 300 μ l of blood sample using (G-spinTM 102 Total DNA Extraction Mini Kit, intron biotechnology – Korea) according to manufacture 103 instruction.

104 Determination of DNA quality and purity

Part of the DNA solution mixed with loading dye 5 in 1 and DNA quality and purity determined using gel electrophoresis. DNA transferred into 1 ml Eppendorf tube [8].

DNA storage: DNA was transferred into 1ml Eppendorf tube and preserved at -20°C until PCR
 process.

109 Polymerase chain

110 Interleukin-6 (-174G/C) and Interleukin-10(-1082 G/A) genotyping

The SSP-PCR (sequence-specific primer-polymerase chain reaction) method applied for 111 genotyping; PCR mixture of 20 µl prepared from master mix tubes (5X FIREPOL[®], Solis bioDyne 112 - Estonia) for each sample. Genomic DNA amplified in two different PCRs for each 113 polymorphism; each reaction employed ageneric antisense primer and one of the two allele-114 115 specific sense primers (see table 3.1, 3.2). To assess the success of PCR amplification in both reactions. The PCR reaction carried out in a Thermal Cycler (Techne, UK), with the following 116 programs: 1min at 95C followed by 35 cycles of 30 sec at 95°C, 30 sec at 58°C, 30 sec at 72°C, 117 118 with 5min at 72°C as final extension [9].

for Interleukin-10 genotyping, 1min at 95C followed by 35 cycles of 30 sec at 95°C, 30
sec at 55.5°C, 30 sec at 72°C, with 5min at 72°C as final extension for Interleukin-6 genotyping
[8].

- 122
- 123

- 124
- 125

126 Table (1) Primer Sequences Used for the IL-6 SSP Genotyping Method:

Primer position	Primer sequence	Product size
IL6(-174) C primer	5'-CCC CTA GTT GTG TCT TGC C-3'	240bp
IL6(174) G primer	5'-CCC CTA GTT GTG TCT TGC G-3'	240bp
IL6 Generic	5'-GCC TCA GAG ACA TCA CCA GTC C-3'	240bp

127

128 Table (2) Primer Sequences Used for the IL-10 SSP Genotyping Method:

Primer position	Primer sequence	Product size
IL-10 common (reverse)	5'-CAGCCCTTCCATTTTACTTTC-3'	550 bp
		Ĩ
IL-10 G (forward)	5'-TACTAAGGCTTCTTTGGGAG-3'	550 bp
		eee op
IL-10 A (forward)	5'-CTACTAAGGCTTCTTTGGGAA-3'	550bp
		1

130 **Demonstration of PCR product:**

Five µl of the PCR product (ready to load) was electrophoresed on 1.5% agarose gel, and stained with ethidium bromide, 1X TBE buffer will be used as a running buffer. The Voltage applied to the gel will be 100 volt with time duration of 30 minutes. 100 pb DNA ladder will be used as molecular weight marker with each patch of samples Finally, PCR product will be demonstrated by gel documentation system [8].

136 IL10 and IL6 serum level estimation

- 137 Patients serum were tested for the presence of IL-6 and IL-10 using commercially available ELISA
- sets for human IL-10 (ELISA MAX Standard set, #430601, BioLegend), IL-6 (ELISA MAX
- 139 Standard set, #430501, BioLegend), following the protocols supplied by the manufacturers.
- 140 Data analysis:

The data analyzed using the SPSS computer program version 21. Independent sample – T.
 Test was used to determine the difference in genotype frequencies among study groups, the mean

and stander deviation was applied for Serum level and ANOVA test with mean to correlate thegenotype frequencies and serum level. The data presented in tables and figures.

145 **Result**

In the present study we compare Serum levels and Allelic Variant of IL-6 -174G/C and IL10- 1082G/A Polymorphisms in 31 Patients with Overt Hepatitis B and 37 End Stage Renal
Disease Hepatitis B patients. The study was carried out in Khartoum state in Sudan.

Table 4.1 show that there was no statistically difference in IL6 (174G/C) Genotypes (CC,
CG and GG) frequencies between overt Hepatitis B patients and end stage renal disease (ESRD)
hepatitis B patients (P. value = 0.738).

Table 4.2 show that there was no statistically difference in IL10 (1082G/A) Genotypes (AA, GG and GA) frequencies between overt Hepatitis B patients and end stage renal disease hepatitis B patients (P. value = 0.194).

Table 4.3 show that there was no statistically difference in IL6 serum levels between overt Hepatitis B patients and end stage renal disease hepatitis B patients (P. value = 0.36)

Table 4.4 show that there was no statistically difference in IL10 serum levels between overt
Hepatitis B patients and end stage renal disease hepatitis B patients (P. value = 0.179).

 159
 Table 4.5 show that there was no statistically significant correlation between IL6

160 (174G/C) and serum level in Overt Hepatitis B patients and end stage renal disease hepatitis B

161 patients (P. value = 0.536, 0.449 respectively).

Table 4.6 show that there was no statistically significant correlation between IL10 (1082G/A) and serum level in Overt Hepatitis B patients and Overt Hepatitis B patients (P. value = 0.092, 0.229 respectively).

166

- 167 Figure 4.1: A representative Agarose (2%) gel electrophoresis of SS-PCR product (550bp) for
- 168 genotyping of Interleukin-10(-1082 G/A); M: 50bp DNA marker, Lane 1, 3: represent
- 169 Heterozygous mutant individuals (GA), Lane 2: represent Homozygous mutant individual (AA).

170

- 171 **Figure 4.2:** A representative Agarose (2%) gel electrophoresis of SS-PCR product (200bp) for
- genotyping of Interleukin-6 (-174G/C); M: 100bp DNA marker, lane 1: represent invalid sample,
- 173 Lane 2, 4: represent Homozygous mutant individuals (CC), lane3: represent Homozygous wild
- individual (GG) and lane5, 6, 7: represent Heterozygous mutant (GC).

175

177	Table 4.1 IL6	(174G/C)	Genotypes	frequencies	among study groups.
-----	---------------	----------	-----------	-------------	---------------------

Study groups	IL6 Genotype frequency		Total	P. value	
	CC	GG	GC		
ESRD Hepatitis B patients	5	11	15	31	
	(16%)	(36%)	(48%)	(100%)	0.738
Overt Hepatitis B patients	6	15	16	37	
	(16%)	(41%)	(43%)	(100%)	

178

179 Table 4.2 IL10 (1082G/A) Genotypes frequencies among study groups.

Study groups	IL10 Genotype frequency		Total	P. value	
	AA	GG	GA	-	
ESRD Hepatitis B patients	4	19	8	31	
	(13%)	(61%)	(26%)	(100%)	0.194
Overt Hepatitis B patients	2	21	14	37	
	(5%)	(67%)	(38%)	(%)	

180 Table 4.3 IL6 Serum Level among study groups.

Study groups	IL6 Serum Level	P. value
	(Mean \pm STD)	
ESRD Hepatitis B patients	15.390 ±18	
Overt Hepatitis B patients	9.325 ±10	0.36

181

182 Table 4.4 IL10 Serum Level among study groups.

Study groups	Serum Level	P. value
	(Mean \pm STD)	
ESRD Hepatitis B patients	6.304 ± 4	
Overt Hepatitis B patients	3.670 ±6	0.179

184Table 4.5 Correlation between IL6 (174G/C) polymorphisms and serum level in study

185 groups.

186	Study groups	IL6 Ser	um Level		P. value
107		(Mean =	± STD)		
107		CC	GG	GC	
188	ESRD Hepatitis B patients	5.2 ±5	11.7±14	8.5±8.2	.449
189					
190	Overt Hepatitis B patients	6.8±9	18±20	16±19	.536

191 Table 4.5 Correlation between IL10 (1082G/A) polymorphisms and serum level in study

192 **groups.**

Study groups	IL10 Serum Level			P. value
	(Mean \pm STD)			
	CC	GG	GC	
ESRD Hepatitis B patients	11±13	3.5 ±5.4	2.8± 6.2	.229
Overt Hepatitis B patients	2.70 ± 1.9	6 ± 4.7	8.7 ± 4.1	.092

194 **Discussion**

Hepatitis B virus (HBV) infection commonly induces immune reactive inflammation,
which results in continuous liver tissue damage and progression of liver fibrosis to cirrhosis or
hepatocellular carcinoma especially in immunocompromised patients like End stage renal disease
patients [10].

Cytokines and particularly IL6 and IL10 are key regulatory elements of innate immunity against HBV infection and can affect the stage of disease. Immune dysfunction and the impaired hepatitis B vaccination response are complications of chronic renal failure that are tightly associated with inflammation induced by uremia and blood-membrane contacts [11].

Interleukin IL-6 are counter regulated by IL-10 with a large inter-individual variability. Part of the variability of cytokine production is genetically determined since polymorphisms in the cytokine gene promoters lead to high or low production [12].

The aim of this study was to compare Allelic variant of IL-6 -174G/C and IL-10- 1082G/A Polymorphisms and their serum levels in patients with overt hepatitis B and end stage renal Disease hepatitis B patients in Khartoum State- Sudan, the result illustrated that the Allelic Variant of IL-6 -174G/C and IL-10- 1082G/A Polymorphisms could not play apart in complication of chronic Hepatitis B in End stage renal disease patients, this finding is similar to meta- analysis by Ye Feng et al who conclude that the IL-6 -174G/C polymorphism has no significant correlation with the susceptibility risk of ESRD, and may not be a risk factor for ESRD [13].

Also Buckham et al. and Kandil et al. suggest that, there is no correlation between IL-6 gene polymorphism and ESRD [14, 15].

In return regarding the role of IL-6 -174G/C polymorphism in Chronic hepatitis B (CHB)
and HBV related liver disease the meta-analysis done by Chang Lei et al illuminated that the IL-6
-174G/C polymorphism did not play part in susceptibility to CHB [16].

In regard to the influence of IL-10- 1082G/A Polymorphisms on immune function of CHB the study by Zhang et al showed no significant difference between IL-10- 1082G/A Polymorphisms and patient with CHB [17]. In contrast many experimental and meta-analysis studies suggest that there is association between IL-6 -174G/C and IL-10- 1082G/A Polymorphisms and their serum level and immune function of CHB patient with ESRD but all these finding awaits more verification because we do not know how the intronic variant affect the expression and level of theses cytokines.

225	We believe that our study has some limitation. Firstly, the sample size is relatively small,				
226	the race subgroups are missed and the collected data are not comprehensive. Finally, the influence				
227	of these promoters polymorphism on gene expression was not directly analyzed.				
228	Conclusion				
229	We conclude that the allelic variant of IL-6 -174G/C and IL-10- 1082G/A polymorphisms				
230	and serum levels could not play apart in chronicity of hepatitis B in end stage renal disease patients.				
231	Recommendations				
232	1. Direct evaluation of gene expression for these promoters polymorphism.				
233	2. Conduct more studies regarding the intronic variant effect on gene expression and level of				
234	theses cytokines.				
235	Acknowledgment				
236	Thanks to Allah almighty who enable me to stand and attend this moments, our thanks				
237	extend to all concerned persons who co-operated with me in this regard.				
238	Conflict of interest statement				
239	All authors have no competing interest declared.				
240	Funding				
241	This work did not receive any specific grant from funding agencies in the public,				
242	commercial, or not-for-profit sector.				
243	Ethical consideration				
244	This study was approved by the Ethical Committee of Scientific Research Deanship				
245	Alneelain University, and informed consent obtained from each participant before sample				
246	collection.				
247					
248					
249					
250					
251					
252					
253	References				

254	[1] Lim, J. K., Nguyen, M. H., Kim, W. R., Gish, R., Perumalswami, P., & Jacobson,
255	I. M. (2020). Prevalence of Chronic Hepatitis B Virus Infection in the United
256	States. The American journal of gastroenterology, 115(9), 1429–1438.
257	[2] Badawi, M.M., Atif, M., & Mustafa, Y. (2018). Systematic review and meta-analysis
258	of HIV, HBV and HCV infection prevalence in Sudan. Virology Journal, 15.
259	[3] Ayatollahi, J., Jahanabadi, S., Sharifyazdi, M., Hemayati, R., Vakili, M., &
260	Shahcheraghi, S.H. (2016). The Prevalence of Occult Hepatitis B Virus in the
261	Hemodialysis Patients in Yazd, Iran. Acta medica Iranica, 54 (12), 784-787.
262	[4] Saijo, T., Joki, N., Inishi, Y., Muto, M., Saijo, M., & Hase, H. (2015). Occult
263	hepatitis B virus infection in hemodialysis patients in Japan. Therapeutic apheresis and
264	dialysis : official peer-reviewed journal of the International Society for Apheresis, the
265	Japanese Society for Apheresis, the Japanese Society for Dialysis Therapy, 19(2), 125–
266	130.
267	[5] Fontenele, A. M., Filho, N. S., & Ferreira, A. S. (2013). Occult hepatitis B in patients
268	on hemodialysis: a review. Annals of hepatology, 12(4), 527-531.
269	[6] Musa, M. D., & Ateya, H. K. (2020). Prevalence of overt and occult hepatitis B virus
270	infections among 135 haemodialysis patients attending a haemodialysis centre at Al-
271	Nasiriyah city, Iraq. Iranian journal of microbiology, 12(5), 475-482.
272	[7] Tunçbilek S. (2014). Relationship between cytokine gene polymorphisms and chronic
273	hepatitis B virus infection. World J Gastroenterol, 20:6226-35.
274	[8] Sharif OM, Hassan R, Mohammed Basbaeen AA, Mohmed AH, Ibrahim IK.
275	(2019). Interleukin-10 (1082G/A) Polymorphism is Associated with Susceptibility of
276	Acute Myeloid Leukemia Patients in Sudanese Population. Asian Pac J Cancer Prep,
277	20(7):1939-1943.
278	[9] Sarhang H. Azeez and Suhaila N. Darogha. (2019). Proinflammatory cytokine IL-6
279	-174G/C (rs1800795) gene polymorphism among patients with chronic renal
280	failure. Invest Clin.; 60(3), 221 - 232.
281	[10] Tan, A., Koh, S., & Bertoletti, A. (2015). Immune Response in Hepatitis B Virus
282	Infection. Cold Spring Harbor perspectives in medicine, 5(8), a021428.

283	[11] Zhang PA, LiY, Yang XS. (2006). Associated study on interleukin 10 gene
284	promoter polymorphisms related to hepatitis B virus infection in Chinese population.
285	Zhonghua Yi Xue Yi Chuan Xue Za Zhi. 2006; 23(4): 410-14.
286	[12] Girndt, M., Sester, U., Sester, M., Deman, E., Ulrich, C., Kaul, H., & Köhler,
287	H. (2001). The interleukin-10 promoter genotype determines clinical immune function
288	in hemodialysis patients. Kidney international, 60 (6), 2385-91.
289	[13] Feng Y, Tang Y, Zhou H, Xie K. (2017). A meta-analysis on correlation between
290	interleukin-6 -174G/C polymorphism and end-stage renal disease. Renal Failure,
291	39(1):350-356.
292	[14] Buckham TA, McKnight AJ, Benevente D, Courtney AE, Patterson CC,
293	Simmonds M. (2010). Evaluation of five interleukin genes for association with end-
294	stage renal disease in white Europeans. Am J Nephrol; 32:103-108.
295	[15] Kandil MH, Magour GM, Khalil GI, Maharem DA, Nomair AM. (2013).
296	Possible association of interleukin-1beta (-511C/T) and interleukin-6 (-174G/C) gene
297	polymorphisms with atherosclerosis in end stage renal disease Egyptian patients on
298	maintenance haemodialysis. Egypt. J Med Hum Genet; 14:267-275.
299	[16] Chang, L., Lan, T., Wu, L., Li, C., Yuan, Y., & Liu, Z. (2015). The association
300	between three IL-6 polymorphisms and HBV-related liver diseases: a meta-
301	analysis. International journal of clinical and experimental medicine, 8(10), 17036-
302	17045.
303	[17] Zhang PA, LiY, Yang XS. (2006). Associated study on interleukin 10 gene
304	promoter polymorphisms related to hepatitis B virus infection in Chinese population.
305	Zhonghua Yi Xue Yi Chuan Xue Za Zhi. 2006; 23(4): 410-14.