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Abstract:  
 
Long COVID is recognized as a significant consequence of SARS-COV2 infection. While the 
pathogenesis of Long COVID is still a subject of extensive investigation, there is considerable 
potential benefit in being able to predict which patients will develop Long COVID. We 
hypothesize that there would be distinct differences in the prediction of Long COVID based on 
the severity of the index infection, and use whether the index infection required hospitalization or 
not as a proxy for developing predictive models. We divide a large population of COVID patients 
drawn from the United States National Institutes of Health (NIH) National COVID Cohort 
Collaborative (N3C) Data Enclave Repository into two cohorts based on the severity of their initial 
COVID-19 illness and correspondingly trained two machine learning models: the Long COVID 
after Severe Disease Model (LCaSDM) and the Long COVID after Mild Disease Model 
(LCaMDM).  The resulting models performed well on internal validation/testing, with a F1 score 
of 0.94 for the LCaSDM and 0.82 for the LCaMDM. There were distinct differences in the top 10 
features used by each model, possibly reflecting the differences in type and amount of 
pathophysiological data between the hospitalized and non-hospitalized patients and/or reflecting 
different pathophysiological trajectories in the development of Long COVID. Of particular interest 
was the importance of Plant Hardiness Zone in the feature set for the LCaMDM, which may point 
to a role of climate and/or sunlight in the progression to Long COVID. Future work will involve a 
more detailed investigation of the potential role of climate and sunlight, as well as refinement of 
the predictive models as Long COVID becomes increasingly parsed into distinct clinical 
phenotypes. 
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1.0 Introduction:  
 

The development of long COVID carries significant morbidity for patients and a large financial 
burden to health systems. The diagnostic criteria for long COVID are quite broad; the diagnosis 
can incorporate numerous organ systems and the severity can range from mild to debilitating. This 
makes predicting which patients are at risk of developing the condition challenging. At the same 
time, the ability to predict the development of long COVID for a specific patient carries clinical 
promise and utility. Given the wide range of phenotypic presentations, however, we speculate that 
there is no unique patient signature at time of initial diagnosis of infection that can predict with 
absolute certainty if they will be affected by long COVID. We recognize that many features of 
long COVID resemble post-critical-illness syndrome, which in our clinical and scientific 
experience, is predicted by infectious disease severity. This provides a natural stratification for the 
patient population – those that were hospitalized when diagnosed with COVID-19 (and thus, we 
can infer they experienced a relatively severe illness), and those that were not hospitalized. In other 
words, those that experienced disease severe enough to require hospitalization and those that did 
not. Thus, we propose that the task of predicting long COVID must be divided into two distinct 
feature sets based on the above. Patients are split into two groups: Long COVID after Severe 
Disease (LCaSD) and Long COVID after Mild Disease (LCaMD). In this work, we utilized a suite 
of predictive variables ranging from personal health statistics to broader population demographics 
expecting that the severe disease model would be more informed by clinically measurable 
variables and the mild/moderate disease model would be more informed by patient histories and 
demographics. We posit that this unique approach yields a robust prediction tool.  
 
2.0 Methods:  
 
The data source for this project was the National Institutes of Health (NIH) National COVID 
Cohort Collaborative (N3C) Data Enclave Repository [1], which includes the records of over 
17,000,000 patients from 77 care sites across the United States (US). Close to 7,000,000 of these 
patients were diagnosed with COVID-19 infection. 11,500 patients ultimately received a diagnosis 
of long COVID. The data repository contains billions of rows of relevant clinical patient data. As 
outlined above, we recognize the importance of separating the feature sets based on disease 
severity. Setting of care/hospitalization status was used a proxy for disease severity. Thus, we set 
out to develop two distinct prediction tools: the LCaSD and LCaMD models. 
 
Our approach to constructing the prediction models can be divided into the following steps:  

1) Aggregation and standardization (processing/cleaning) of patient-specific medical record 
fields  

2) Selection and inclusion of potentially relevant historical, environmental and demographic 
features 

3) Train machine-learning models on the developed datasets 
 
2.1 Initial aggregation and standardization of data 
 
The purpose of the initial aggregation/interpretation of patient medical records is to preemptively 
limit the number of putative features to be considered by the ML algorithm, given that the dataset 
is both extremely sparse and extremely broad. Lack of standardization in certain datasets (i.e., drug 
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names, symptoms, devices, etc.) required data cleaning/pre-processing. Environmental and 
demographic variables were incorporated (at a coarse level), as these have been demonstrated to 
be predictive of a long COVID diagnosis [2,3]. XGBoost [4] was chosen as the ML library to build 
our models due to its efficiency in training and its ability to deal with missing data.  
 
To aggregate and interpret patient-specific medical records, we considered phenotypic 
presentation at time of the initial COVID diagnosis, the setting of diagnosis (inpatient vs 
outpatient) prior diagnoses (comorbidities), symptomatic presentation post COVID-diagnosis, and 
drug/device history. Phenotypic presentation for the non-hospitalized cohort was defined by the 
values for heart rate, systolic and diastolic blood pressure, and oxygen saturation. For the 
hospitalized cohort, the above values were used along with measurements for serum creatinine, 
serum bilirubin, and platelet count; additionally, for the hospitalized cohort, the most deviant 
measure obtained during the hospitalization in which COVID is diagnosed for each vital 
sign/laboratory observable is used as input for the model.  
 
2.2. Selection of potentially relevant features 
 
As noted above, the pathophysiology of long COVID is still very unclear, and the empirical basis 
of the diagnosis of long COVID is in a state of evolution. Given that some authors [5] have 
identified instances of long COVID as a functional disorder without a clear biological signature, 
we sought to investigate whether there is a relationship between the presence of pre-existing 
functional disorder(s) and the risk of developing long COVID. We utilized the MIMIC-IV 
database [6] to identify the most common comorbidities for patients presenting with a set of six 
functional disorders (fibromyalgia, chronic pain, chronic fatigue, mast cell activation disorder, 
familial dysautonomia, and irritable bowel syndrome). We then classified the comorbidities into 
one of three categories: metabolic, psychiatric, or functional. For each patient, the number of prior 
diagnoses in each category was tabulated; thus, diagnostic history was compressed to three 
potential variables.  
 
Additionally, membership into each of the predefined concept sets was used to further define 
patient diagnostic history. Symptomatic presentation post COVID was considered both in terms 
of the absolute number instances in which the patient sought medical care after a COVID diagnosis 
as well as specific symptoms which led the patient to seek care.  
 
Symptoms were obtained from the available clinical note dataset. This exists in N3C as a post-
processed dataset after a Natural Language Processing (NLP) algorithm procedure. Given the 
breadth of note data available, pre-processing was required to more precisely capture the 
symptoms of interest. First, only symptoms that were documented after the initial diagnosis of 
COVID were considered. We then removed all data rows which contained null values instead of 
clinical symptoms. Due to the prior NLP, clinical data points (symptoms or conditions) had been 
classified as “present,” “history of,” and “family history of.” We selected only the data points 
classified as “present” since our interest was symptom burden both during and after COVID-19 
infection. We only selected data points that were NLP classified as referring to the patient as the 
subject. The NLP classified the certainty of data point presence as  “positive,” “hypothetical,” 
“possible,” and “negated” (essentially representing a clinical review of systems schema often 
present in clinical notes). We selected only the data points classified as “positive.” Next, given the 
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heterogeneity and redundancy in the reported symptom/concern field, a dictionary was created to 
match equivalent clinical terms (for example, “angina” = “ischemic chest pain” = “angina pectoris” 
and “cough” = “coughing” = “C/O - cough” = “does cough”). Finally, duplicate values that 
appeared for the same note date were dropped (only one complaint of “cough” was counted even 
if it was mentioned numerous times in the same note). The cleaned notes data was then aggregated 
on the patient level to obtain a total number of reported symptom occurrences after COVID 
diagnosis.  
 
To develop a tractable drug history, we classified drugs from the available drug exposure dataset 
into 24 categories. For each drug category, the number of distinct drugs that fall within that 
category was tabulated. For device history, information related to respiratory assistance, harvested 
from the device exposure dataset, was used. Each hospitalized patient was then given a score, 
ranging from 0 to 5, based on the type of maximal respiratory assistance they required during 
hospitalization, with 0 indicating the patient received no support (ambient air) and 5 indicating 
that the patient received maximal support (mechanical ventilation).  
 
Given the need for patient anonymity, the default location data available in N3C is limited to three-
digit zip codes only. Thus, for the demographic and environmental features, we calculated the 
population-weighted-average for each variable per three-digit zip code using the populations of all 
five-digit zip codes that are contained within that given three-digit zip code. Populations were 
obtained from the 2010 census, at the level of ZIP Code Tabulation Area [7].  
 
These variables include:  
 

1) Plant-Hardiness Zone: a coarse metric representing climate [8]  
2) Pandemic Mitigation (PM): a single metric approximating the relative pandemic 

mitigation. We derived this using the publicly available Google Community Mobility 
Reports [9], a dataset that provides a metric of social mobility for people who use Google 
Maps on their cellular telephone, defined by amount of time spent at a specific location 
categories (i.e., retail/recreation, grocery/pharmacy, parks, public transit, workplaces, and 
residential) relative to a six-week baseline of measurements that occurred prior to the 
implementation of societal PM strategies (colloquially referred to as “the lockdown”). We 
collapsed this metric to a single variable defined by calculating the daily sum of the relative 
amounts of time spent at workplaces; regions that observed more stringent PM protocols 
then spent relatively less time at work. After calculating the PM level for each region, the 
variable was normalized such that its values fall between 0 and 1.  

3) 2018 Education Levels [10]  
4) The 2013 Rural-Urban Continuum Codes [11]  
5) Patient age, gender, and ethnicity  

 
2.3. Predictive Model Training and Evaluation 
 
The machine learning library used in this work was XGBoost. We first stratify the patient 
population into two subtypes – those that are hospitalized when diagnosed with COVID-19 and 
those that are not. Each of these sub-populations is then used to train a distinct prediction model 
using the XGBoost learning library. To determine the optimal features to use for each model, 
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another model using all the features available was trained and tuned. The features were then sorted 
using the feature importance scores returned from XGBoost. New models were then iteratively 
trained, dropping the least important feature with each iteration. F1 scores were monitored to 
determine final feature set based on the highest F1. This was done for both the LCaSD and LCaMD 
prediction models. For hyperparameter tuning, six parameters were explored to find optimal 
performance; max depth of a single tree, the learning rate, the subsample ratio of the training 
instances sampled prior to growing trees, the subsample ratio of the features prior to growing trees, 
the subsample ratio of features for each level when a new depth level is reached in a tree, and 
finally the number of trees to include in the random forest. For each sub-population, and using an 
80/20 train/validate split of the training data, and using F1 as the scoring metric, a randomized grid 
search of the parameter space was performed for 1,000 iterations, with 5-fold cross validation, 
totaling 5,000 model fits for each sub-population. The parameters that scored the highest F1 score 
for each sub-population are the ones that are used in the final prediction models. 
 
3.0 Results:  
 
Comparing the individual models, the F1 score for the LCaSD model (LCaSDM) was superior to 
the LCaMD model (LCaMDM): 0.94 vs 0.82 on available testing data. Examining the importance 
of features determined by each model, there were significantly fewer features used by the 
LCaSDM versus the LCaMDM (24 vs 54). Further, 17/24 of features used by the LCaSDM were 
objective health metrics (i.e., current disease status or clinically observable variable). Conversely, 
the data used by the LCaMDM were broader, incorporating patient histories, population-weighted 
demographics and environmental statistics via their anonymized three-digit zip code location. Top 
10 features for each respective model are listed in Tables 1 and 2, respectively. 
 

 
4.0 Discussion:  
 
The diagnosis of Long COVID remains a clinical dilemma, and an initial step in characterizing the 
pathophysiology of Long COVID involves being able to identify those patients who are risk of the 

 
Table 1: Top 10 Features for Long COVID after 
Severe Disease Model (LCaSDM) 

 
Table 2: Top 10 Features for Long COVID after 
Mild Disease Model (LCaMDM) 
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disease. Risk prediction involves identifying sets of features about potential Long COVID patients, 
and we hypothesized that there would be distinct differences between those patients who were 
hospitalized for their index COVID infection and those who were not. Our work presented here 
demonstrates this difference in the important features used by each model, with a corresponding 
difference in the predictive value between them: F1 score of 0.94 for the LCaSDM versus 0.82 for 
the LCaMDM. We pose two potential (non-exclusive) interpretations for the significant difference 
in F1 scores between the models: 1) long COVID following severe illness bears a distinct data 
signature from that following mild/moderate illness; 2) higher resolution in clinical/laboratory data 
for hospitalized patients, along with the availability of more clinically objective data in this setting 
renders those features more predictive to the LCaSDM. Of note, one interesting predictive variable 
was plant-hardiness zone, chosen as an aggregate measure of climate for a region.  
 
Future directions for this model involve utilizing five-digit zip codes combined with non-shifted 
COVID diagnosis dates to further investigate the link between climate/sunlight and long COVID 
and incorporating data on the likely SAR2-COV strains for given dates and locations. Future work 
will also involve subdividing the Long COVID patients into phenotypic clusters as has been 
recently reported/suggested by other investigators [12,13]; this will potentially provide insight into 
whether there are specific features or trajectories that can be correlated to clinical phenotypes.  
 
Conclusion: Utilizing a large national clinical database of patients with COVID-19 infection, we 
built two distinct models that predict the development of long COVID based on the severity of the 
initial COVID-19 illness. The resulting XGBoost models performed well, with F1 scores of 0.94 
and 0.82 for the LCaSDM and LCaMDM, respectively. There were distinct differences between 
important predictive features depending on the severity of the index COVID infection, including 
an intriguing finding of the potential role of climate and/or sunlight on the risk of Long COVID. 
Future work will involve more detailed investigation of these potential climatic factors, as well as 
refining the prediction targets based on evolving recognition of Long COVID phenotypes. 
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