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Abstract 
The human leukocyte antigen (HLA) region on chromosome 6 is strongly associated with 
many immune-mediated and infection-related diseases. Due to its highly polymorphic 
nature and complex linkage disequilibrium patterns, traditional genetic association 
studies of single nucleotide polymorphisms (SNPs) do not perform well in this region. 
Instead, the field has adopted the assessment of the association of HLA alleles (i.e., 
entire HLA gene haplotypes) with disease. Often based on genotyping arrays, these 
association studies impute HLA alleles, decreasing accuracy and thus statistical power 
for rare alleles and in non-European ancestries. Here, we use whole-exome sequencing 
(WES) from 454,824 UK Biobank participants to directly call HLA alleles using the HLA-
HD algorithm. We show this method is more accurate than imputing HLA alleles and 
harness the improved statistical power to identify 360 associations for 11 auto-immune 
phenotypes (at least 129 likely novel), leading to better insights into the specific coding 
polymorphisms that underlie these diseases. We show that HLA alleles with 
synonymous variants, often overlooked in HLA studies, can significantly influence these 
phenotypes. Lastly, we show that HLA sequencing may improve polygenic risk scores 
accuracy across ancestries. These findings allow better characterization of the role of 
the HLA region in human disease. 
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Introduction 
The human leukocyte antigen1 (HLA) gene complex is a highly polymorphic region of the 
human genome with a striking linkage disequilibrium (LD) pattern. While genetic variants 
in HLA are often strongly associated with multiple auto-immune and infectious 
diseases2,3, genome-wide association studies (GWAS) cannot easily be fine-mapped to 
likely causal variants, and consequently specialized methods are required to improve 
statistical power and fine-mapping3. Hence, in most current genetic association studies 
of HLA, the unit of variation is not usually a single nucleotide polymorphism (SNP) but 
rather a whole HLA gene “version” or haplotype, known as an HLA allele.  
 
By convention, HLA allele names start with the gene name, followed by up to four sets of 
digits (also called fields 1 to 4), each separated by a colon. From left to right, these digits 
provide information on the allele’s serological specificity, protein-altering variants, 
synonymous variants, and non-coding (i.e. intronic) variants. For example, HLA-
A*01:01:01:01 is one such allele for gene HLA-A.  The use of HLA alleles in association 
tests, known as HLA fine-mapping, has higher statistical power than SNP-based 
approaches and allows for a better understanding of the role of the HLA region in a wide 
range of conditions2,4–7. It can help identify targets for novel medicines and improve our 
ability to identify populations at risk for immune- and infection-mediated disease. 
 
For the HLA fine-mapping to be possible, HLA alleles must be accurately assigned to 
study participants. The most common and cost-effective method is to impute HLA alleles 
from variants typed with genotyping arrays8–13. However, the imputation requires large 
and diverse HLA reference panels, access to which still needs to be improved, and is 
less accurate for individuals of underrepresented ancestries14 and rarer alleles15. Using 
sequencing data to call HLA alleles eliminates the need for such a reference panel and 
may provide better accuracy of individual-level HLA alleles, resulting in improved fine-
mapping and statistical power. 
 
In this study, we used the UK Biobank16 (UKB) release of 454,824 whole exome 
sequences17 (WES) to call each participant’s HLA alleles using the HLA-HD algorithm18. 
HLA-HD provides reliable HLA allele calling from short-read sequencing19 and is easily 
scalable on a cloud computing environment like DNAnexus (Palo Alto, California, USA). 
We then provide a comprehensive report on the HLA allele landscape in UKB 
participants of 5 ancestries (African [AFR], Admixed American [AMR], East Asian [EAS], 
European [EUR], South Asian [SAS]), and we compare our results to imputed HLA 
alleles currently available in UKB participants. We assessed the improvement in 
statistical power by performing HLA allele and amino acid association studies on 11 
auto-immune traits across all genetic ancestries. Lastly, we built polygenic risk scores 
(PRS) incorporating HLA alleles for these traits. Our findings should allow for a better 
understanding of the role of HLA alleles in disease and better risk stratification. 
 
Results 
HLA allele calling from WES 
HLA-HD was used to call HLA alleles for 454,824 participants at 3-field resolution 
(representing the allele’s serological specificity, protein-altering variants and 
synonymous variants). We used the UKB whole-genome genotyping (unavailable in 
1,283 participants) projected on the 1000 Genome reference to estimate genetic 
ancestry. We found that this cohort included 8,725 participants of AFR genetic ancestry, 
2,898 of AMR genetic ancestry, 2,647 of EAS genetic ancestry, 429,822 of EUR genetic 
ancestry, and 9,449 of SAS genetic ancestry (see Methods). The UKB WES target 
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regions provided reads at 31 HLA genes. These included 12 HLA Class I genes (6 
protein-coding genes) and 19 HLA Class II genes (13 protein-coding). Class I genes 
were generally well covered (ST1 and SF1), with all participants having more than 10 
reads aligning to HLA-A, HLA-C, HLA-E, HLA-F, and HLA-G, while only 109 of 454,814 
(0.02%) participants had less than 10 reads at their HLA-B gene. Class II genes were 
also well covered, except for HLA-DQA1, for which 34.4% of participants had less than 
10 reads per allele. While it is challenging to assess read coverage for HLA-DRB3 to 
HLA-DRB9 given that these genes are not carried by every individual, HLA-DRB1 was 
well covered (0.23% of participants with less than 10 reads). All Class I genes were 
found in each ancestry. However, the EUR cohort was the only one for which all Class II 
genes were found, with HLA-DPA2 and HLA-DRB9 absent in all other ancestral cohorts 
and HLA-DRB6 also missing in the AFR, AMR, and EAS cohorts.  
 
As expected, the number of unique HLA alleles was the highest in the larger EUR 
cohort, at 5,295, and ranged from 985 (EAS) to 1,527 (SAS) in smaller cohorts of the 
other four ancestries (Fig. 1A). When adjusted by sample size, the AMR and EAS 
genetic ancestry participants had the largest number of alleles (0.432 and 0.372 alleles 
per participant, respectively), while the EUR cohort had the lowest (0.012) (Fig. 1B). The 
finding that the AMR participants have a larger number of HLA alleles is consistent with 
other studies and reference panels which showed that native American populations have 
a high number of HLA alleles absent in other populations20–22. As expected, most of the 
HLA alleles were rare (minor allele frequency [MAF] < 1%) in all ancestries, with 166 out 
of 5,295 alleles with MAF > 1% in the EUR cohort and 209 out of 1,304 alleles with MAF 
> 1% in the AMR cohort (supplementary figure SF2). Similarly, the first 25 most common 
alleles in each ancestry account for >90% of total variation frequency. (Fig. 1C). Lastly, 
HLA Class I genes (including pseudogenes) showed the highest diversity, with an 
average of 586.0 alleles per gene compared to 194.4 for HLA Class II genes. The 
highest number of alleles was found in the EUR cohort, and the lowest in the EAS cohort 
(Fig. 1D), but once again, the observation was mirrored when accounting for sample 
size (Fig. 1E). A complete list of alleles and their frequencies at 3-field and 2-field 
resolution is available in the supplementary tables ST2 and ST3.  
 
Comparison to imputed alleles 
The UKB provides HLA allele imputation using the HLA:IMP*2 software13 for 11 genes at 
2-field resolution: HLA-A, HLA-B, HLA-C, HLA-DQA1, HLA-DQB1, HLA-DPA1, HLA-
DPB1, HLA-DRB1, HLA-DRB3, HLA-DRB4, HLA-DRB5. We, therefore, compared 
concordance between the sequenced alleles at 2-field resolution and the previously 
imputed UKB alleles. The complete set of imputed alleles included 196 in Class I and 
136 in Class II genes. 10 out of these 332 alleles were absent among the sequenced 
HLA alleles. However, all10 of these alleles had low frequency (MAF < 0.04%), 
suggesting that these may have been imputation mistakes because the imputation 
accuracy decreases with the allele frequency. 
 
While allele concordance was moderate to good for HLA Class I genes (82.5% for HLA-
A, 82% for HLA-B, and 83.9% for HLA-C) and HLA-DP genes (76.5% for HLA-DPB1 and 
94.4% for HLA-DPA1), it dropped substantially for HLA-DR genes from 59.3% for HLA-
DRB1 to 45.4% for HLA-DRB3. Of the participants whose alleles did not completely 
match, the mismatch was primarily due to HLA alleles of low allele frequencies (AF < 
1%). The mean allele frequencies of those participants ranged from 1.16% for HLA-
DPA1 to 0.09% for HLA-B (supplementary table ST4). For all genes and ancestries, 
lower allele frequency was associated with a lower concordance rate (supplementary 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted January 18, 2023. ; https://doi.org/10.1101/2023.01.15.23284570doi: medRxiv preprint 

https://doi.org/10.1101/2023.01.15.23284570
http://creativecommons.org/licenses/by-nc-nd/4.0/


figure SF3). Moreover, there was a significant decrease in allele concordance in 
participants of non-EUR ancestries (Fig. 2 and supplementary tables ST5-10), even for 
HLA Class I genes. While the average allele concordance for HLA Class I genes in the 
EUR cohort was 83.8%, it dropped to 67.4% in AMR and SAS, to 63.2% in EAS, and to 
58.2% in AFR. Likewise, EUR participants’ mean concordance for HLA Class II alleles 
was 64.2%, which decreased to 55.1% in AFR, 59.3% in AMR, 59.2% in EAS, and 
60.1% in SAS. Hence, HLA sequencing likely improves accuracy compared to previously 
imputed alleles, especially for rare HLA alleles and alleles in non-EUR participants in the 
UKB. The decrease in concordance rates for imputed HLA alleles in non-EUR 
emphasizes the lack of diversity in the currently available imputation reference panels 
and significantly limits the application of imputation-based approaches. 
 
HLA haplotypes LD 
To further describe our results and confirm their concordance with previous literature on 
the HLA, we characterized the LD pattern in the UKB cohort’s HLA locus. Since HLA 
genes are multiallelic, the usual biallelic LD metrics give an incomplete portrait of the LD 
between pairs of HLA genes, as these would only provide pairwise HLA allele LD. 
Hence, we used an extension of biallelic LD that averages conditional LD measurements 
over the distribution of HLA alleles between pairs of HLA genes (asymmetric LD23). It 
has been used successfully in previous HLA studies and reduces to the standard R2 
measure of LD in cases where both variants (here HLA genes) are biallelic23. For this 
analysis, we used the 2-field HLA allele resolution to mitigate the effect of rare alleles, 
which makes the asymmetric LD calculation unstable (see Methods). While there were 
some variations between genetic ancestries in HLA haplotype LD patterns 
(supplemental figure SF4), most haplotypes in high LD were located in physical 
proximity to each other, with the following groups being closely associated across all 
genetic ancestries: 1) HLA-B and HLA-C, 2) the Class I genes (excluding HLA-B and 
HLA-C), 3) the HLA-DR, and HLA-DQ genes, 4) HLA-DPA1 and HLA-DPB1, and lastly, 
5) HLA-DMA and HLA-DMB. Full asymmetric LD results per ancestry are provided in 
ST11-16. 
 
Allele frequency comparison to reference panel 
As the last quality check, we compared the allele frequencies obtained from WES HLA 
allele calling with those reported in the Allele Frequency Net Database (AFND)24. The 
AFND aggregates allele frequencies from multiple large cohorts, which we matched to 
the UKB biobank cohort based on their reported ancestries and country of origin (see 
Methods). However, given the sparsity of high-quality data on non-classical HLA genes 
in the AFND, we restricted this comparison to classical HLA genes (HLA-A, HLA-B, HLA-
C, HLA-DPA1, HLA-DPA2, HLA-DQA1, HLA-DQB1, HLA-DRB1). Correlation between 
allele frequencies in the UKB and allele frequencies in the selected reference cohorts 
was high, suggesting that WES HLA calling performed well (R2: 0.83; F-test p-value: 
2.2x10-16; intercept: 0.001, 95% CI: 0.0008 – 0.002; slope: 0.99, 95% CI: 0.98 – 1.01; 
supplemental figure SF5). 
 
HLA association studies in 11 auto-immune phenotypes 
To demonstrate the power of WES-based HLA analysis, we performed allele association 
studies for 11 phenotypes known to be associated with HLA genes: ankylosing 
spondylitis25, asthma26, autoimmune thyroid disorders27, coeliac disease28, Crohn’s 
disease29, type I diabetes mellitus30, multiple sclerosis and other demyelinating diseases 
(MS-Demyelinating)31, polymyalgia rheumatica or giant cell arteritis (PMR-GCA)32, 
psoriasis33, rheumatoid arthritis34, and ulcerative colitis35 (supplementary table ST17). 
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Analyses were performed with Regenie36 (see Methods) for each ancestry separately if 
there were 50 or more cases using age, sex, and the first 10 genetic principal 
components (PCs) as covariates (supplementary table ST18). Ancestry-specific results 
were then meta-analyzed using fixed-effect meta-analysis with METAL37 (see 
supplementary table ST19 for full summary statistics).  
 
Our meta-analyses yielded 360 HLA allele associations at 3-field resolution (Table 1 and 
supplementary figure SF6), of which 118 were from HLA Class I genes. A pertinent 
positive control association is HLA-B*27:05, an allele used for diagnosis and 
prognostication in clinical medicine38, and which was highly associated with ankylosing 
spondylitis (OR: 6.55, 95% CI: 5.97 – 7.18, p: 1.97x10-305, effect allele frequency [EAF]: 
3.9%). Crohn’s disease was the phenotype with the least associations (1), but the other 
phenotypes averaged 35.9 associations at the 3-field resolution, with the highest number 
of associations in auto-immune thyroid disorders (n = 69), coeliac disease (n = 63), and 
psoriasis (n = 62). To test how many of these associations were novel, we used the 
HLA-SPREAD PubMed abstract natural language processing database39. An association 
was considered previously reported if we could find it in the database. As an additional 
novelty check, we also repeated HLA association analyses using the imputed HLA 
alleles since these were already available and used in published association studies 
(even if they may not have been reported at all). Since most of the HLA literature 
restricts their analysis to 2-field precision, we used our 2-field association results and 
checked if these had been previously reported for their given phenotypes. The 2-field 
resolution analyses yielded 341 allele associations, of which 129 were likely novel. Of 
the rest, 44 were reported in the HLA-SPREAD database, while 168 could also be found 
using HLA allele association studies using the UKB imputed alleles (Fig. 3 and 
supplementary table ST20). 
 
Importantly, 103 of the 360 associations with 3-field resolution alleles were found in 
genes for which HLA imputation results were unavailable, suggesting that WES-based 
HLA allele calling could help discover many more HLA associations than previously 
possible. Moreover, many of these exhibited strong associations, both in terms of small 
p-values and large effect sizes, even in genes which were not previously known for a 
high degree of polymorphism. For example, HLA-G*01:06:01 showed a strong 
association with psoriasis (OR: 1.80, 95% CI: 1.70 – 1.90, p: 3.57x10-100, EAF: 6.2%). 
We also found multiple associations in rare alleles (AF < 1%), including the novel HLA-
B*57:31:02 in psoriasis (OR = 4.61, 95% CI: 3.22 – 6.59, p = 7.1x10-17, EAF = 0.06%) 
and HLA-C*02:178 in ankylosing spondylitis (OR = 5.33, 95% CI: 3.37 – 8.41, p = 
7.75x10-13, EAF = 0.2%). While the HLA-B*57 and HLA-C*02 allele groups as a whole 
are already known to be associated with these diseases40, this is, to our knowledge, the 
first time these specific alleles are reported. Given their high effect sizes, we believe that 
using WES for HLA allele calling in rare variants can allow us to better characterize the 
specific HLA variants and amino acid residues responsible for in risk of some diseases 
(here psoriasis and ankylosing spondylitis). 
 
Many of these associations are unlikely to be observed due to HLA haplotype LD. In 
fact, of the 64,620 pairs of statistically significant 3-field resolution alleles (360*359/2), 
only 123 show a (biallelic) LD R2 of 0.2 or more (supplementary table ST21). More 
specifically, the HLA-G*01:06:01 allele was only in mild LD with two other alleles 
associated with psoriasis: HLA-A*01:01:01 (R2 = 0.21) and HLA-H*02:01:01 (R2 = 0.26), 
which were both in high LD together (R2 = 0.71) and less significantly associated with 
psoriasis than was HLA-G*01:06:01 (p = 1.77x10-49 for HLA-A*01:01:01, and p = 
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1.53x10-49 for HLA-H*02:01:01). Hence, with respect to the other alleles included in this 
analysis, HLA-G*01:06:01 was independently associated with psoriasis. While HLA-G 
has been linked with other skin diseases, to our knowledge, associations between skin 
or soft tissue phenotypes and the HLA-G*01:06 haplotype have only been reported in 
squamous intraepithelial cancer and cervical cancer41.  
 
In summary, these findings suggest that WES-based HLA calling can identify many 
novel HLA-disease associations, possibly with large effects, compared to those identified 
through imputation-based approaches. 
 
Effect of synonymous variants 
Given the increased allele resolution provided by WES-based HLA calling, we examined 
the effect of the additional HLA field on phenotype associations (i.e., from 2-field to 3-
field resolution, wherein 3-field resolution would capture synonymous variants). We 
would expect similar and same-direction effect sizes for all synonymous variants in the 
HLA allele if they did not impact the phenotype. For example, if HLA-A*01:01 was 
associated with a given phenotype, we would expect HLA-A*01:01:01 and HLA-
A*01:01:02 to show similar effects on the phenotype. 
 
Specifically, we examined how synonymous variants in HLA alleles were associated with 
the 11 auto-immune phenotypes (Fig. 4). First, for any given phenotype, we found all 3-
field resolution alleles that showed statistically significant association with a phenotype 
and compared their effect sizes with all other alleles of the same 2-field haplotype, 
hence directly isolating the effect of synonymous variants. We used Welch’s t-test for 
unequal variances to compare effect size heterogeneity. We found 87 pairs of 3-field 
resolution alleles sharing the same 2-field haplotype, 54 of which showed a significantly 
different effect size (p < 0.05/307, see Methods). Of those, 11 were of opposite 
directions. For example, HLA-DQB1*02:01:01 was associated with a 1.09-fold increase 
in odds of asthma (95% CI: 1.06 – 1.12, p = 1.25x10-10), HLA-DQB1*02:01:08 was 
associated with a 0.90-fold decrease in risk (95% CI: 0.87 – 0.93, p = 5.90x10-11). There 
were an additional 42 pairs where one 3-field resolution allele was associated with the 
phenotype, but the remaining were not, and the heterogeneity was considered 
significant. For example, the HLA-DQA1*01:02:01 allele was associated with a 0.94-fold 
decrease in odds of asthma (95% CI: 0.92 – 0.95, p = 3.33x10-16), but HLA-
DQA1*01:02:02 was not shown to be significantly associated (OR: 1.93, 95% CI: 0.99 – 
1.06, p = 0.01). Lastly, 1 pair showed a difference in risk of disease in the same direction 
but with a different effect size: HLA-DQB1*02:01:01 was associated with a 1.29-fold 
increase in the odds of coeliac disease (95% CI: 1.19 – 1.40, p = 5.27x10-10), but HLA-
DQB1*02:01:08 was associated with an even higher risk with an odds ratio of 2.60 (95% 
CI: 2.39 – 2.87, p = 6.42x10-110). Of note, both alleles had relatively similar frequencies 
(6.5% and 4.7%, respectively). 
 
However, many of the comparisons of these allele pairs may have been underpowered 
due to low allele frequencies. Therefore, when there were more than two 3-field 
resolution alleles with no association evidence for a given 2-field haplotype, we 
collapsed them all into a single 3-field resolution allele. This is conceptually the same 
process as a burden test (also known as a collapsing test) used for rare variant 
analyses42. In doing so, we aggregated enough alleles without association evidence to 
perform 220 additional pairwise comparisons, of which 12 suggested that there was a 
difference between the lead 3-field resolution allele and the corresponding collapsed 
HLA alleles. This included two instances where the effect was in the opposite direction, 
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suggesting that at least one of the constituent 3-field resolution alleles in the collapsed 
allele was in the opposite direction as the lead 3-field resolution allele. For example, 
HLA-G*01:01:02 was associated with a 0.70-fold decrease in odds of coeliac disease 
(95% CI: 0.65 – 0.75, p: 1.72x10-20), while the burden test of its dummy 3-field allele 
showed an opposite direction (OR: 1.29, 95% CI: 1.21 – 1.39, p: 7.98x10-13). This 
suggests that at least one synonymous variant in HLA-G*01:01 obviates the association 
of HLA-G*01:01:02 with coeliac disease. 
 
In conclusion, the observed heterogeneity in the effects of synonymous variants at HLA 
alleles suggests that this type of variants is likely to contribute to the risk of human 
immune-mediated diseases. To our best knowledge, most previous HLA fine-mapping 
studies were limited to 2-field resolution alleles and did not capture synonymous 
variants’ effects. Specifically, we are not aware of studies of comparable size that 
studied the effect of synonymous HLA variants in a systematic way. See supplementary 
table ST22 for the complete results of these analyses. 
 
Imputed vs sequenced HLA alleles canonical correlation analysis (CCA) and PRSs 
While our prior results supported the hypothesis that WES-based HLA allele calling 
would be more accurate than imputation, imputation may still be adequate for PRSs. To 
test this hypothesis, we first used CCA on the matrices of imputed and WES-based HLA 
alleles (using a 0, 1, and 2 encoding for absent, heterozygous, and homozygous for the 
allele). CCA performs linear transformations of both matrices to find the best linear 
approximation of one against the other. In other words, it assumes the existence of a set 
of variables that both HLA imputation and WES-based HLA calling approximate, allowing 
for the calculation of the amount of variation in WES-based HLA alleles that can be 
explained by imputed HLA alleles (also referred to as total canonical redundancies). If 
the variance explained by the imputed alleles is high, we would not expect a great 
increase in PRS predictive ability from using WES-based HLA alleles. Indeed, using 
CCA (supplementary table ST23 and supplementary figure SF7) for WES-based HLA 
alleles with AF > 10%, we found that imputed HLA alleles can account for 85.1% of the 
variation in WES-based alleles. This increased to 88% with AF > 20%. This decreases 
when we lower the AF threshold (e.g. decreases to 77.5% for AF > 5%) or add the non-
imputed genes because these are not captured well (or at all) by imputation. 
Additionally, as expected, the percentage of variation in WES-based alleles explained by 
imputed alleles was driven by the EUR ancestry cohort. These values varied in other 
genetic ancestries, with the percentage of variance explained in the AFR ancestry cohort 
consistently lower than in other cohorts (except for the analysis with AF > 0.01% and 
only using the imputed genes). However, the considerable differences in sample size 
make further comparisons between genetic ancestries difficult or even impossible (e.g. 
the analyses could not be performed in the EAS ancestry cohort). 
 
We then used the LDpred software to compute PRSs from the seven phenotypes for 
which complete GWAS summary statistics were available in the GWAS Catalog. All 
GWASs contained only participants of EUR genetic ancestry, except for rheumatoid 
arthritis. Two LDpred scores were obtained for each phenotype and each participant: 1) 
a score from the summary statistics across the whole genome and 2) another after 
removing the HLA region variants. The LDpred scores were then used in an XGBoost 
binary classifier for each phenotype, along with age, sex, and the first 10 PCs. For the 
classifier using the LDpred scores without the HLA region, we also added either the 
imputed HLA alleles or the WES-based HLA alleles in the XGBoost algorithm. Hence, 
we performed three distinct XGBoost PRSs for each phenotype: 1) LDpred scores alone, 
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2) LDscores without the HLA region but with the imputed HLA alleles, and 3) LDpred 
scores without the HLA region but with the WES-based HLA alleles. HLA alleles 
improved all PRSs to varying degrees with an average absolute increase in area under 
the receiver operating characteristic curve (AUC) of 0.085 (for both alleles containing 
HLA alleles, see Fig. 5 and supplementary table ST24). The largest increase was for 
coeliac disease: the AUC increased from 0.68 (95% CI: 0.66 – 0.70) to 0.84 (95% CI: 
0.82 – 0.86) with WES-based HLA alleles (compared to not using HLA alleles). 
However, the difference between AUC of the PRSs using imputed and WES-based 
alleles was always small (average of 0.002), with all 95% confidence intervals for the 
difference in AUC containing zero (supplementary table ST24). Hence, as expected, 
given our CCA results, HLA allele imputation explains enough of the variation in the UKB 
participants’ HLA alleles to still be useful for PRS purposes. However, this may not hold 
for non-EUR genetic ancestry cohorts, given the limited diversity of available HLA 
imputation reference panels. Similar results were seen with precision-recall curves 
(supplementary figure SF8). 
 
However, this PRS benefitted from HLA imputation using the same imprecise algorithm 
in both the training and the test set. In real-world applications, one would use a PRS 
developed with the HLA alleles from one imputation algorithm in a separate population, 
probably using a different HLA genotyping method (e.g. another imputation software). To 
mimic this scenario, we used the XGBoost weights from our PRS developed with 
imputed HLA alleles, and we used WES-based HLA alleles for the testing set’s input 
features. This did not lead to large differences in AUC except for coeliac disease (AUC 
decreased from 0.84 to 0.81, absolute difference: -0.03, 95% CI: -0.06 to -0.0004). 
Hence, while HLA allele imputation may be useful for PRS, phenotypes that are more 
influenced by the HLA are more likely to benefit from this gain in precision. More 
generally, this means HLA allele imputation should be used carefully across cohorts that 
do not use the same HLA allele imputation algorithm. 
 
Amino acid association studies 
Using the 2-field allele calls, we performed amino acid residue fine-mapping at all 
protein-coding genes for all 11 phenotypes. The same analytic method was used as in 
the HLA allele association studies above. As expected, we found many more 
associations (p < 5x10-8/11) for amino acid residues than HLA alleles. We found 5,556 
associations in our multi-ancestry meta-analyses, with 2,134 for autoimmune thyroid 
disease, coeliac disease, or psoriasis (supplementary table S18). However, the 
correlation structure of those residues is significantly more complicated than for HLA 
alleles LD, making causal inference even more complex. For example, while it is clear 
that residue 57 of the HLA-DQB1 protein is the main determinant of type 1 diabetes 
mellitus at this gene (as reported before43–45), with an odds ratio of 1.72 (96% CI: 1.64 – 
1.80, p=5.4x10-116), it is not as clear which amino acid is the main driver at HLA-DQA1 
(Fig. 6A). Nevertheless, these amino acid association studies can still provide important 
insights into the genetic underpinnings of the HLA, especially when considering potential 
interactions between amino acids. Specifically, the HLA-DQA1 and HLA-DQB1 proteins 
form a heterodimer and should be analyzed together, and when performing normal 
mode analysis of this heterodimer (to see which amino acid “move together” in space, 
see Fig. 6B) or when looking at the distance between amino acid in 3-dimensional 
space (Fig. 6C), it becomes clear that residues 53-57 of HLA-DQB1 are in close contact 
with amino acids 60-80 of HLA-DQA1. Notably, residues 60 to 80 are part of a segment 
of the HLA-DQA1 proteins (residues 45-80) with nearly identical p-values (5.81x10-58) 
and high LD. Indeed, these two segments are in close contact and are part of the ligand 
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binding groove of the HLA-DQA1/HLA-DQB1 heterodimer (Fig. 6D). Hence, WES-based 
HLA allele calling and amino acid fine-mapping can provide additional biological 
evidence on the role of the HLA in human disease. 
 
Discussion 
Here we report an increased accuracy in WES-based HLA allele calling compared to 
imputation-based approaches. This gain in accuracy was greater for rare variants and 
non-EUR genetic ancestry UKB participants. This improved accuracy allowed us to 
identify 360 allele associations at 3-field resolution for 11 auto-immune phenotypes. At 
2-field resolution, we found 341 associations, of which 129 were likely novel. The 
increased resolution (from 2-field to 3-field) afforded by WES also allowed us to better 
characterize the association between synonymous variants in HLA alleles and human 
diseases. We found that for at least 25% of 2-field haplotypes exhibiting synonymous 
variants in the UKB, the resulting 3-field haplotypes showed statistically significant 
heterogeneous effect sizes. This observation and the fact that 2-field accuracy 
decreased the number of allele associations we found (from 360 at 3-field to 341 at 2-
field) supports the hypothesis that the increase in accuracy also improved statistical 
power, as the collapse of multiple 3-field alleles into one 2-field allele would hide 
potential HLA allele disease associations. Given that previous HLA association studies 
usually do not consider the effect of synonymous variants, this represents an advance in 
our understanding of the HLA. Lastly, we showed that using HLA alleles from either 
imputation or sequencing may improve PRS accuracy, while WES-based HLA alleles 
may improve their external validity. More specifically, we showed that for some diseases, 
using a different method to assign alleles to participants in the training cohort than in the 
test cohort may decrease the accuracy of the PRS. This is likely even more important for 
non-EUR genetic ancestries, which are under-represented in HLA research. Hence, 
WES-based HLA allele calling provides additional insights into the complex role of the 
HLA in human diseases. These insights will likely be important for future translational 
research programs on the HLA and its application to therapeutic drug development. 
Importantly, these HLA allele calls for all UKB participants will be made available to the 
scientific community. 
 
Our results highlight some limitations and areas for future research. First, the UKB WES 
program was not designed with the specific aim of HLA calling, and it uses a short read 
technology. It is known that HLA-specific assays with longer reads will perform better for 
this region, and an increased accuracy would be expected from such technology46. 
Additionally, as the UKB will release whole-genome sequencing data for its entire cohort 
(still only available for around 150,000 participants at the time of writing this manuscript), 
a comparison between WES and WGS will be needed, as the optimal trade-off between 
better non-coding region coverage and depth of sequencing in the HLA is unclear. 
Second, newer imputation algorithms have been developed since the UKB first released 
their HLA imputation results, and these may fare better with rare alleles and non-EUR 
ancestry individuals than our current comparator. Nonetheless, the current best-
performing algorithm from the Michigan Imputation Server had a lower concordance rate 
than HLA-HD when compared with the 1000G panel18,47 (e.g. 100% concordance at 
HLA-DRB1 for HLA-HD, and between 90.9% to 96.9% for the Michigan Imputation 
Server, depending on ancestry, both at 2-field). This server also currently only provides 
imputation for 9 genes. Hence, using HLA sequencing when available appears 
preferable. Third, HLA-HD does not provide 4-field resolution, which would be necessary 
to study non-coding variants. Given our findings on the non-negligible role of 
synonymous HLA variants in human disease, we expect that non-coding variants would 
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also be important to study more thoroughly. The upcoming release of the full UKB 
participant whole-genome sequencing data should shed light on this issue. However, 
this will need the development of an HLA calling algorithm capable of handling 4-field 
resolution while also being scalable on cloud computing architecture. 
 
Fourth and most importantly, new and more accurate technology is only one piece of the 
puzzle to better understand the role of the HLA in diseases. There are still many 
unresolved questions relating to haplotypes LD and HLA protein interactions (since HLA 
proteins form complexes) that remain to be solved. In the past, cross-ancestry 
comparative genetics has been used to better determine causal variants, and the study 
of the HLA would benefit from the sequencing of more non-EUR genetic ancestry 
individuals. Further, it was previously described that using HLA alleles instead of SNPs 
increases the yield of HLA genes in eQTL studies48. Hence, a large-scale association 
study of HLA allele determinants of HLA gene expression, splicing, and protein level 
using genome/exome sequencing and HLA calling algorithm would shed much-needed 
light on how HLA polymorphisms affect diseases. Finally, the best way to incorporate 
HLA alleles in PRS also deserves further research. For example, by modelling HLA 
allele interactions, previous literature showed improved PRS performance compared to 
the method we used in this paper30. It would be of interest to see how this translates 
using WES/WGS technology and HLA allele calling, especially in non-EUR ancestries. 
 
In conclusion, using WES for HLA allele calling improves the accuracy of ascertainment 
and, therefore, statistical power to associate HLA alleles with diseases. This should help 
solve the problem of the HLA’s highly polymorphic character and LD. Doing so is 
particularly important for genetic ancestries under-represented in research and for rare 
variants. This is important since, by increasing HLA typing accuracy, a better 
understanding of the genes responsible for diseases at HLA is possible, which could be 
translated into actionable therapies.  
 
Methods 
HLA allele sequencing 
We used WES data from 454,824 individuals in the UKB to call HLA alleles. First, CRAM 
WES alignment files were converted to FASTA files using Picard tools49 and the 
GRCh38 human reference genome50. Second, HLA-HD18 (v1.4.0) was used to call all 
possible HLA alleles. For the allotted coverage in the WES data, this corresponded to 
the following 31 genes or pseudogenes (see resource 3803 of the UKB for target regions 
details): HLA-A, HLA-B, HLA-C, HLA-E, HLA-F, HLA-G, HLA-H, HLA-J, HLA-K, HLA-L, 
HLA-V, HLA-Y, HLA-DMA, HLA-DMB, HLA-DOA, HLA-DOB, HLA-DPA1, HLA-DPA2, 
HLA-DPB1, HLA-DQA1, HLA-DQB1, HLA-DRA, HLA-DRB1, HLA-DRB2, HLA-DRB3, 
HLA-DRB4, HLA-DRB5, HLA-DRB6, HLA-DRB7, HLA-DRB8, HLA-DRB9. HLA-HD uses 
Bowtie247 to align WES data to the reference genome. Only segments of 50 base pairs 
or longer were used, as the Bowtie2 aligner documentation recommended. We used the 
IPD-IMGT/HLA release 3.45.0. The entire pipeline was implemented on DNAnexus (Palo 
Alto, California, USA) using the Workflow Description Language (WDL). Two separate 
Docker51 images were used in the workflow: 1) the broadinstitute/gatk52 image to convert 
CRAM files to FASTA, and 2) a Docker image containing HLA-HD and its dependencies 
for the HLA calling.  
 
HLA allele calls processing 
Final HLA allele calls were first transferred to our local computing cluster. While these 
files will be made available through the UKB return of data program, for the remainder of 
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the analyses in this paper, we only used HLA calls with a mean coverage of 10 at exon 
2, except for HLA-DRB2 and HLA-DRB8, where a mean coverage of 10 at exon 3 was 
used since these two genes do not have a second exon.  
 
We used an additional heuristic approach to assign alleles at the HLA-DRB3, HLA-
DRB4, and HLA-DRB5 genes. Like other HLA allele calling from sequencing technology 
algorithms, HLA-HD may provide calls for the HLA-DRB3-4-5 genes if some reads 
aligned to one of these genes, even if a participant may not truly carry a copy of them (in 
which case this alignment would be incorrect). This is because while everyone has two 
copies of the HLA-DRB1 gene (maternal and paternal), each copy can sometimes (but 
not always) be inherited along with a copy of either HLA-DRB3, HLA-DRB4, or HLA-
DRB5, for a total of 2 to 4 HLA-DRB genes: two HLA-DRB1, and a combination of zero 
to two of any of the other three genes. Hence, it is not sufficient to use the HLA-HD calls 
at these genes; one must also quantify the number of reads at these genes and 
compare them to a “reference” to decide which of these genes (if any, and how many) 
are carried by each individual. Here, a natural “reference” would be the quantity of HLA-
DRB1 measured in a participant since these genes are in high LD. Intuitively, a 
participant with a very low quantity of HLA-DRB3-4-5 compared to HLA-DRB1 should 
not carry any of the HLA-DRB3-4-5 genes. On the other hand, if the quantity of HLA-
DRB3-4-5 is the same as that of HLA-DRB1, then the participant should have 2 of these 
genes (any combination of HLA-DRB3, 4, or 5). A similar logic applies to participants 
who carry only one copy of an HLA-DRB3-4-5 gene, as they would be expected to have 
half as many reads at these genes than at HLA-DRB1. Hence, we compared the number 
of reads at exon 2 at the HLA-DRB genes to decide which one to assign and used this 
heuristics-based approach to assign alleles at HLA-DRB3-4-5. For every participant, if 
one of their HLA-DRB3-4-5 allele calls had a mean coverage of 60% of the HLA-DRB1 
coverage (and still more than 10), we used the two alleles for this gene as called by 
HLA-HD. For example, if a participant had a mean HLA-DRB1 coverage of 100 and a 
mean HLA-DRB4 coverage of 60, we assigned both HLA-DRB4 alleles to this 
participant. Otherwise, if one or more of their alleles had a mean coverage of 30% or 
more of the HLA-DRB1 coverage, we assigned them the first called allele by HLA-HD 
from the respective genes. For example, the same participant with an HLA-DRB1 
coverage of 100 having an HLA-DRB4 coverage of 30 and an HLA-DRB5 coverage of 
30 would be assigned the first allele of each of these genes. If no alleles from HLA-
DRB3-4-5 fulfilled these conditions, the participant was assigned no alleles from those 
genes. 
 
Using these allele calls, we also assigned amino acid polymorphisms at each position of 
the 19 protein-coding genes: HLA-A, HLA-B, HLA-C, HLA-E, HLA-F, HLA-G, HLA-DMA, 
HLA-DMB, HLA-DOA, HLA-DOB, HLA-DPA1, HLA-DPB1, HLA-DQA1, HLA-DQB1, 
HLA-DRA, HLA-DRB1, HLA-DRB3, HLA-DRB4, HLA-DRB5. We then converted these 
allele and amino acid calls into VCF53 (with dummy positions) and PLINK54 binary files 
for our analyses. For the 2-field HLA allele analyses, we trimmed the 3-field alleles to 
two fields by removing the 3rd field and the change in expression suffix (when present). 
All data processing was performed using R55 (v4.1.0), BCFtools56 (v1.11-1-g87d355e), 
and PLINK (v1.9). 
 
Genetic ancestry assignment and principal components 
We used the somatic chromosomes imputed genome-wide genotypes from the UKB to 
assign 1000 Genome continental genetic ancestry to every participant (AFR, AMR, EAS, 
EUR, and SAS). To do this, we first selected variants with minor allele frequency (MAF) 
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> 10%, call rate > 95%, Hardy-Weinberg equilibrium (HWE) p-value > 10-10, and which 
are part of the 1000G reference panel. We trained a random forest classifier for genetic 
ancestries using the first 6 PCs of the 1000G reference. We then projected the pruned 
UKB genotypes on the 1000G reference PCs and assigned genetic ancestries using the 
majority call from our classifier. 
 
To compute principal components (PCs) to use as covariates in our association tests, 
we split participants by their genetic ancestry group and kept only variants with MAF > 
1%, minimum allele count (MAC) > 100, call rate > 95%, and HWE p-value > 10-10. 
These were then LD pruned with the r2 < 0.2 threshold, and the resulting variants were 
used to obtain PCs. For the European ancestry group, we used fast approximate PCs 
due to the large number of individuals, as implemented in PLINK57 (v2.0). 
 
All analyses and computations for this section were done using PLINK (v1.9 and v2.0), 
BCFtools, or R. 
 
Comparisons with UK Biobank HLA allele imputation 
HLA calls were compared to the available UKB imputed HLA alleles obtained with 
HLA:IMP*213 (data field 22182) for the following genes: HLA-A, HLA-B, HLA-C, HLA-
DQA1, HLA-DQB1, HLA-DPA1, HLA-DPB1, HLA-DRB1, HLA-DRB3, HLA-DRB4, HLA-
DRB5. Alleles ending in 99:01 were considered unimputed, and alleles with imputation 
dosage less than 0.8 were set to 0 as per UKB documentation. The strategy and results 
of comparison between the imputed and sequenced alleles are presented in 
supplementary tables ST5-10. Finally, we used logistic regression to find the association 
between concordance and allele frequency. Individual-specific allele frequency was 
computed as the mean of the frequencies of the two corresponding alleles. 
 
HLA allele LD 
We computed multiallelic asymmetric LD23 for each HLA gene. This was done for each 
ancestry separately as well as globally for the entire cohort. In each analysis, we 
assigned a dummy allele to unsequenced alleles and alleles with frequency < 1%. This 
analysis provides conditional LD for any pair of genes (e.g., LD of HLA-A conditional on 
HLA-B, and vice versa). We then took the average of the conditional LD pair to create a 
correlation heatmap clustered using the R hclust function with the “average” clustering 
method. The first 5 hclust clusters were highlighted by rectangles in the heatmaps. This 
section was done with R. 
 
Allele frequency comparison to reference panel 
To compare allele frequencies from WES HLA calling to reported reference frequencies, 
we used the AFND24 to find cohorts with reported HLA allele frequencies and with 
genetic ancestries comparable to those in the UK Biobank. Specifically, for each 1000 
Genome continental genetic ancestry (AFR, AMR, EAS, EUR, and SAS), we found a 
similar cohort in the AFND based on reported ancestry and country of origin. When 
multiple cohorts were available, we prioritized the one with the largest sample size. We 
only looked for cohorts with a sample size larger than 500 and reported as high quality 
(“gold population standard”). Additionally, we only used cohorts if the sum of all reported 
allele frequencies for each gene was 1. Lastly, we used allele frequencies reported at an 
accuracy of 2-field since the largest high-quality cohorts did not report frequencies at 3-
field. Note that this analysis was restricted to classical HLA genes, given the sparsity of 
high-quality data on other genes in the AFND. A complete list of AFND cohorts used as 
comparators can be found in supplementary table ST25. Lastly, all allele frequency 
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comparisons between the UKB WES HLA allele calls and the selected AFND reference 
cohort were made separately for each genetic ancestry. 
 
Phenotypes classifications 
We selected 11 phenotypes with known associations with HLA alleles to have multiple 
true positive and true negative results to check for in our association results. We used 
either ICD-10 codes from hospitalization electronic medical records data (data fields 
41202 and 41204), disease-specific data fields (e.g., data field 6152, option 8, for 
asthma), or self-reports (data field 20002), depending on the disease. The choices of 
data fields and ICD-10 codes (supplementary table ST17) were based on previous 
studies26,27,58 validating their use and reviewed by a board-certified physician (GBL). 
These data fields were aggregated directly on the DNAnexus web service.  
 
HLA allele and amino acid association studies 
Regenie36 (v2.2.4) was used for all association tests (2-field HLA alleles, 3-field HLA 
alleles, and amino acids). Regenie works in two steps. In the first one, a risk score for 
the given phenotype is assigned to each chromosome for each participant by ridge 
regression. In this step, we used the ancestry-specific pruned whole-genome genotyped 
data, the same as for the ancestry-specific PCs described previously. In the second 
step, each chromosome score is used as a covariate in the association model to adjust 
for kinship structure and polygenic background. To avoid proximal contamination, this 
association model does not use the score of the chromosome where the variant is 
located (so-called LOCO scheme) since this score may already include the effect of the 
given variant. Hence, in Regenie’s second step, we used PLINK binary files with 
assigned chromosome 6 and a dummy chromosomal position for each HLA allele and 
amino acid. This ensured that kinship was accounted for without adjusting for the effect 
of variants on chromosome 6 in the null model. Our association model also included 
age, sex, and the first 10 PCs as covariates. The approximate Firth regression method 
was used for all association tests to provide unbiased effect estimates even for rarer 
alleles and amino acids while accounting for case-control imbalance. For amino acids, 
we used alignment provided by the IMGT-HLA59 to determine residue positions, and we 
excluded indel sequences from the analysis (i.e. those that correspond to either an 
insertion of additional amino acid residues to the protein or to a deletion of residues from 
the same protein). Other specific Regenie parameters included a minimal case count of 
50, a genotype size blocks of 1,000 in step 1 and 400 in step 2 (based on Regenie’s 
UKB documentation), a Firth regression p-value threshold of 0.1 with back-corrected 
standard error (--firth-se), a minimum MAC of 1, and the --htp option. All analyses were 
done separately per ancestry, then meta-analyzed using fixed effect inverse variance 
weights in METAL37. For the statistical significance threshold, we mimicked the common 
situation where a researcher performs the HLA association study following the result of a 
GWAS with a locus at the HLA. Hence, we used the usual 5x10-8 genome-wide 
significance threshold60 divided by 11 (the number of phenotypes used).  
 
Determining if a sequenced HLA allele association was novel 
We used two sources to determine if an allele association was novel. We first used the 
HLA-SPREAD database39, which used a natural language processing algorithm to scan 
28 million PubMed abstracts for HLA allele associations. If an allele association was 
reported in the database, it was not deemed novel. For the remaining potentially novel 
associations, we performed the same HLA allele association analysis as above but used 
the imputed HLA alleles instead of the WES-based ones. If an allele was genome-wide 
significant in both (p < 5x10-8/11), the WES-based HLA allele association was 
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considered potentially not novel, as it could have been reported in a previous study 
using the UKB, though we recognize that we may still be the first to report it formally and 
that this is likely an overly conservative assessment of novelty. 
 
Synonymous variant association tests: comparisons of two field and 3 field HLA allele 
associations 
We compared association results of 3-field HLA alleles belonging to the same 2-field 
class to check if adding synonymous variants would change association results. To do 
this, we limited our analyses to 2-field HLA alleles for which there was at least one 
statistically significant 3-field HLA allele for any given phenotype (p < 5x10-8/11).  We 
then examined four scenarios: 
 

1) In cases with more than one statistically significant 3-field allele, we compared 
beta estimates of all alleles to the one with the lowest p-value using the t-test for 
unequal variances in R (Welch’s t-test using the beta and standard error from 
Regenie in the HLA association studies above).  
 

2) In cases with only one statistically significant 3-field allele and one or more 
statistically non-significant 3-field alleles, we also directly compared the beta 
estimate of the significant 3-field allele to the beta estimate of each of the other 
alleles using Welch’s t-test. 
 

3) In cases with only one significant 3-field allele and multiple non-significant 3-field 
alleles, we collapsed all non-significant 3-field alleles into a single allele. We then 
performed an association test of carrying this collapsed allele using the same 
covariates as our association tests above and compared the beta from that 
collapsed allele to the beta from the significant 3-field allele using Welch’s t-test. 
For example, if the HLA-A*01:01:01 allele was significant for a phenotype, but 
the HLA-A*01:01:02 and HLA-A*01:01:03 were not. We collapsed the latter two 
alleles into one and obtained a score of 0, 1, or 2 for each participant if they had 
none of these alleles, any one of the two, or any two of them, respectively. This 
score was then used as our regressor.  
 
Note that this is equivalent to performing a gene-based burden test at any given 
HLA gene (here HLA-A), using only the count of statistically non-significant 
alleles (here HLA-A*01:01:02 and HLA-A*01:01:03) as the burden measurement 
to use as a regressor. This is precisely the way it was coded in Regenie to 
perform the analyses across HLA genes (either “--build-mask sum” or “--build-
mask comphet” options). These burden tests were performed again separately 
for each ancestry and meta-analyzed as above. 
 

4) Lastly, if there were multiple statistically significant 3-field alleles, but there 
remained non-significant 3-field alleles too, we also compared the non-significant 
3-field alleles to the most significant 3-field alleles as per situation 2 or 3 above, 
depending on how many non-significant 3-field alleles there were. 

 
To determine if Welch’s t-test was statistically significant, we used a Bonferroni 
correction for the number of Welch’s t-tests divided by the number of tests performed in 
this section (i.e., p < 0.05/307). 
 
Canonical correlation analysis 
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We used CCA61 to find the total fraction of sequenced HLA alleles variance accounted 
for by the imputed HLA alleles. We assigned a value of 0, 1, or 2 to each allele (imputed 
and sequenced) based on whether it was absent, heterozygous, or homozygous, 
respectively. We then used the resulting two matrices as input to the yacca CCA R 
package62, and obtained the total canonical redundancy63 for sequenced HLA alleles 
(i.e. how much the imputed alleles were able to explain the sequenced alleles). This was 
done at multiple levels of sequenced allele frequencies: > 0.01%, > 0.1%, > 1%, > 5%, > 
10%, and > 20%. 
 
Polygenic risk score 
We used polygenic risk scores to determine if the additional precision obtained from HLA 
sequencing at 3-field resolution would improve disease prediction performance. We first 
used the GWAS Catalog64 to find GWAS summary statistics for our 11 phenotypes. We 
limited our search to studies with complete summary statistics, excluding those which 
only shared the most significant associations. We found complete summary statistics for 
8 of those phenotypes: asthma26, coeliac disease65, type I diabetes mellitus66, multiple 
sclerosis/demyelinating disease67, psoriasis33, rheumatoid arthritis68, and ulcerative 
colitis69. Unfortunately, all found GWAS were on participants of European genetic 
ancestry, except for rheumatoid arthritis, which also contained East Asian ancestry 
participants (34.5% of the 103,638 participants in the GWAS). However, we used the 
entire UKB cohort for our polygenic risk score training and testing (regardless of 
ancestry assignment). 
 
We computed a polygenic score from those summary statistics using the LDpred 
software70 with the European HapMap71 pre-compiled reference panel obtained from the 
LDpred developpers (i.e. 1,054,330 variants). We used LDpred’s genomic best linear 
unbiased predictor method (LDpred-inf, i.e. snp_ldpred2_inf in R). This was done in two 
ways: 1) using the GWAS summary statistics genome-wide, and 2) after removal of the 
chromosome 6 MHC region +/- 500kbp (i.e. GRCh37: 27,977,797 to 33,948,354; 
GRCh38: 28,010,120 to 33,980,577). Two LDpred scores were then assigned to each 
participant in the UKB (with and without the HLA region).  
 
We then randomly split the participant set into a training set and a testing set at an 80/20 
ratio and trained an XGBoost72 random forest binary classifier using age, sex, the first 10 
PCs (those projected on the 1000G reference), and either of the following three sets of 
variables: 1) using only the LDpred score (with the HLA region), 2) using the LDpred 
score without the HLA region, and the imputed HLA alleles and 3) using the LDpred 
score without the HLA region, and the sequenced HLA alleles at the 3-field resolution. 
The HLA alleles were assigned a value of 0, 1, or 2, as described in the CCA section 
above. The log loss was used with 5-fold cross-validation on the training set. We used a 
Bayesian optimization algorithm to tune the following XGBoost hyperparameters: 
max_depth, min_child_weight, eta, gamma, subsample, colsample_bytree, and 
max_delta_step. After training, we tested our 3 risk scores in the testing set and 
compared them using the AUC of the receiver operator characteristic curve. XGboost 
model training and testing was done on R. 
 
Protein normal mode analysis and contact map 
To study the interaction between the HLA-DQA1 and HLA-DQB2 heterodimer, we used 
the PDB file from the 5KSV entry of the Protein Data Bank73,74, which gives the crystal 
structure of the HLA-DQ2.5 heterodimer (proteins of the HLA-DQA1*05:01 and HLA-
DQB1*02:01, with part of its CD74 ligand). Normal mode analysis was done using the C-
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alpha model with default options with the bio3d package75 (v2.3-0) on R. Contact map 
was also done using the bio3d package. 
 
Code and data availability: 
All code is available on https://github.com/DrGBL/HLA_UKB. The primary data used for 
all analyses (i.e. WES CRAM files) is available through the UK Biobank DNAnexus 
research analysis platform. All summary statistics can be found in the supplements. 
 
Summary of supplementary files: 
Tables: 
ST1: HLA gene read coverage. 
ST2: HLA allele frequencies (3-field) 
ST3: HLA allele frequencies (2-field) 
ST4: Mean allele frequencies of mismatched alleles between our HLA calls and the UK 
Biobank imputed alleles. 
ST5: Full breakdown of imputed and sequenced alleles comparisons (all ancestries 
combined). 
ST6: Full breakdown of imputed and sequenced alleles comparisons (AFR ancestry). 
ST7: Full breakdown of imputed and sequenced alleles comparisons (AMR ancestry). 
ST8: Full breakdown of imputed and sequenced alleles comparisons (EAS ancestry). 
ST9: Full breakdown of imputed and sequenced alleles comparisons (EUR ancestry). 
ST10: Full breakdown of imputed and sequenced alleles comparisons (SAS ancestry). 
ST11: Asymmetric multiallelic LD between HLA alleles (all ancestries combined). 
ST12: Asymmetric multiallelic LD between HLA alleles (AFR ancestry). 
ST13: Asymmetric multiallelic LD between HLA alleles (AMR ancestry). 
ST14: Asymmetric multiallelic LD between HLA alleles (EAS ancestry). 
ST15: Asymmetric multiallelic LD between HLA alleles (EUR ancestry). 
ST16: Asymmetric multiallelic LD between HLA alleles (SAS ancestry). 
ST17: Codes used to assign each phenotype to participants. 
ST18: Phenotypes analyzed for each genetic ancestry. 
ST19: Full summary statistics. 
ST20: Potentially novel alleles. 
ST21: Biallelic LD for the significant variants (only pairs of variants with R2 > 0.2 are 
shown). 
ST22: Summary statistics of synonymous variants. 
ST23: Canonical correlation analysis between imputed and sequenced alleles. 
ST24: Summary of polygenic scores AUC 
ST25: AFND cohorts used for reference allele frequencies. 
 
Figures: 
SF1: Histograms of average coverage per gene. 
SF2: Number of alleles found per ancestry (MAF > 0.1%). 
SF3: Association between allele frequency and concordance rate. 
SF4: Asymmetric multiallelic linkage disequilibrium heatmaps. 
SF5: Correlation between UKB WES HLA calling allele frequencies and AFND reference 
cohort HLA allele frequencies. 
SF6: Summary plot of 3-field significant allele associations (including potential variant 
novelty). 
SF7: Canonical correlation analysis between imputed and sequenced alleles. 
SF8: Precision-recall PRS curves. 
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Marker Beta (log-
Odds Ratio) 

Standard 
Error P-value Direction AF 

Ankylosing Spondylitis (EUR) 
HLA-B*27:05:02 1.88 0.05 5.86x10-305 + 0.04 
HLA-C*02:02:02 1.31 0.06 2.76x10-94 + 0.03 
HLA-C*01:02:01 1.33 0.07 1.65x10-92 + 0.03 
HLA-B*07:02:01 -0.48 0.06 1.50x10-17 - 0.14 
HLA-DRB1*01:03:01 0.81 0.10 4.81x10-15 + 0.02 
Asthma (AFR, AMR, EAS, EUR, SAS) 
HLA-DRB1*04:01:01 0.20 0.01 1.69x10-96 +--++ 0.11 
HLA-DRB8*01:01 0.09 0.005 7.79x10-74 +++++ 0.57 
HLA-DRB7*01:01:01 0.08 0.005 5.75x10-64 +++++ 0.48 
HLA-DRA*01:01:01 0.08 0.007 1.35x10-30 +++++ 0.57 
HLA-DRB1*13:01:01 -0.17 0.01 1.38x10-30 --+-- 0.05 
Auto-immune thyroid disorders (AFR, AMR, EAS, EUR, SAS) 
HLA-DQA1*01:02:01 -0.22 0.01 4.04x10-90 +-+-- 0.17 
HLA-DRB1*15:01:01 -0.20 0.01 7.11x10-60 +++-+ 0.14 
HLA-DRA*01:02:03 -0.20 0.01 9.34x10-59 ++--- 0.14 
HLA-DRA*01:01:01 0.14 0.009 1.32x10-53 +++++ 0.57 
HLA-DRB1*04:01:01 0.19 0.01 2.73x10-49 ++++- 0.11 
Coeliac (EUR) 
HLA-DQB1*02:01:08 0.96 0.04 6.42x10-110 + 0.05 
HLA-DRB1*03:147 0.70 0.03 2.40x10-91 + 0.10 
HLA-DRB7*01:01:02 0.70 0.04 3.13x10-77 + 0.09 
HLA-H*02:01:01 -0.72 0.04 9.88x10-73 - 0.21 
HLA-DQB1*02:80 1.05 0.07 1.05x10-55 + 0.02 
Crohn's (EUR, SAS) 
HLA-DRB1*01:03:01 1.03 0.08 9.97x10-41 +- 0.016 
Diabetes mellitus (type 1) (AFR, EUR, SAS) 
HLA-DRB1*04:01:01 0.72 0.03 1.53x10-119 ++- 0.11 
HLA-DQB1*03:02:01 0.77 0.03 1.69x10-117 +++ 0.08 
HLA-DRB7*01:01:01 0.30 0.02 2.27x10-72 +++ 0.48 
HLA-DRB8*01:01 0.27 0.02 3.62x10-56 +++ 0.57 
HLA-DRB5*01:01:01 -0.60 0.04 4.20x10-54 --+ 0.13 
MS-Demyelinating (EUR) 
HLA-DRB1*15:01:01 0.78 0.04 1.05x10-108 + 0.144 
HLA-DRA*01:02:03 0.77 0.04 2.32x10-105 + 0.146 
HLA-DRB5*01:01:01 0.87 0.04 3.05x10-98 + 0.134 
HLA-DQA1*01:02:01 0.64 0.03 4.89x10-82 + 0.167 
HLA-DRB5*01:100 0.84 0.05 7.39x10-62 + 0.063 
PMR-GCA (EUR, SAS) 
HLA-DRB1*04:04:01 0.88 0.0409237 8.09x10-102 ++ 0.04 
HLA-DRB7*01:01:01 0.27 0.0164555 2.56x10-59 ++ 0.49 
HLA-DQB1*03:02:01 0.54 0.0338829 2.31x10-57 ++ 0.08 
HLA-DRB8*01:01 0.24 0.0170413 3.47x10-44 ++ 0.57 
HLA-DRB1*04:01:01 0.40 0.0312209 8.22x10-37 ++ 0.11 
Psoriasis (EUR, SAS) 
HLA-C*06:02:01 0.99 0.02 1.50x10-305 ++ 0.01 
HLA-B*57:01:01 1.10 0.03 1.91x10-305 ++ 0.04 
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HLA-DRA*01:01:02 0.89 0.03 7.32x10-206 ++ 0.04 
HLA-DOB*01:05 0.78 0.03 7.73x10-127 ++ 0.03 
HLA-G*01:06:01 0.59 0.03 3.57x10-100 ++ 0.06 
Rheumatoid arthritis (AFR, AMR, EUR, SAS) 
HLA-DRB1*04:01:01 0.43 0.02 1.81x10-96 ++++ 0.11 
HLA-DRA*01:01:01 0.27 0.02 4.51x10-63 +-++ 0.57 
HLA-DRB7*01:01:01 0.17 0.01 8.58x10-57 --++ 0.48 
HLA-DRB4*01:03:01 0.22 0.02 2.97x10-39 --++ 0.16 
HLA-DQB1*03:02:01 0.31 0.02 1.27x10-38 ++++ 0.08 
Ulcerative colitis (AFR, EUR, SAS) 
HLA-DRB1*01:03:01 0.97 0.06 7.42x10-66 +++ 0.02 
HLA-DRB8*01:01 -0.14 0.02 4.09x10-20 --- 0.57 
HLA-DRB7*01:01:01 -0.13 0.02 4.57x10-17 --- 0.48 
HLA-DRB1*04:04:01 -0.44 0.06 3.50x10-15 --+ 0.04 
HLA-DQB1*03:02:01 -0.27 0.04 1.10x10-11 --- 0.08 
Table 1: 3-field HLA allele association studies meta-analyses results. Only five most significant results for each 
phenotype are shown (if there were more than 5 with p-value < 5x10-8/11). Beta on logistic scale. Direction 
refers to effect direction for each ancestry in the meta-analyses (+ for positive, - for negative). The genetic 
ancestries used in each analysis are listed in parentheses after the phenotype name. Refer to supplementary 
table ST19 for full summary statistics, including for 2-field accuracy, and by ancestry. AF: allele frequency. 
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Fig. 1: A) Number of 3-field HLA alleles per continental genetic ancestry. B) Number of 3-field HLA alleles per genetic ancestry, divided by the 
number of participants in each ancestry. C) Cumulative 3-field allele frequency. Each line represents a different HLA gene. Dashed line at 90%. 
Note that some genes are not present in all participants (e.g. HLA-DRB3), and their true cumulative allele frequency sum would be less than 100%. 
Hence, frequencies are given as “allele count for allele” divided by “total number of alleles at that gene,” then added cumulatively starting with the 
alleles with the highest frequencies. D) The average number of alleles per gene stratified by HLA class. E) The average number of alleles per gene 
divided by the number of participants in each cohort stratified HLA class. All analyses in this figure were limited to the protein-coding genes. 

 . 
C

C
-B

Y
-N

C
-N

D
 4.0 International license

It is m
ade available under a 

 is the author/funder, w
ho has granted m

edR
xiv a license to display the preprint in perpetuity. 

(w
h

ich
 w

as n
o

t certified
 b

y p
eer review

)
T

he copyright holder for this preprint 
this version posted January 18, 2023. 

; 
https://doi.org/10.1101/2023.01.15.23284570

doi: 
m

edR
xiv preprint 

https://doi.org/10.1101/2023.01.15.23284570
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
Fig. 2: Concordance (%) between sequenced and imputed HLA alleles stratified by HLA genes and genetic ancestry.
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Fig. 3: HLA association studies at 2-field resolution. Odds ratios are shown. The curved dashed lines represent a power of 80% to detect an 
association at a p-value of (5x10-8)/11 or less. Circles show likely novel allele associations. Pertinent positive controls include HLA-B*27:05 for 
ankylosing spondylitis (OR: 6.55, 95% CI: 5.97 – 7.18, p: 1.97x10-305, EAF: 3.9%). Also note the rare and novel allele associations HLA-B*57:31 for 
psoriasis (OR = 4.61, 95% CI: 3.22 – 6.59, p = 7.1x10-17, EAF = 0.06%), and HLA-C*02:178 for ankylosing spondylitis (OR = 5.33, 95% CI: 3.37 – 
8.41, p = 7.75x10-13, EAF = 0.2%). For 3-field resolution results, refer to supplementary figures SF5.

 . 
C

C
-B

Y
-N

C
-N

D
 4.0 International license

It is m
ade available under a 

 is the author/funder, w
ho has granted m

edR
xiv a license to display the preprint in perpetuity. 

(w
h

ich
 w

as n
o

t certified
 b

y p
eer review

)
T

he copyright holder for this preprint 
this version posted January 18, 2023. 

; 
https://doi.org/10.1101/2023.01.15.23284570

doi: 
m

edR
xiv preprint 

https://doi.org/10.1101/2023.01.15.23284570
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
Fig. 4: Result of pairwise effect heterogeneity tests for a 3-field allele to test for the effect of synonymous 
variants on traits. We compared the effect size of all 3-field alleles associated with any of the 11 phenotypes, 
with any other available 3-field allele falling in the same 2-field HLA haplotype (e.g. HLA-A*01:01:01 and HLA-
A*01:01:02). Right column: direct effect heterogeneity tests between pairs of 3-field HLA alleles. Left column: 
effect heterogeneity tests between pairs of 3-field HLA allele and all other 3-field alleles at that 2-field 
haplotypes combined in a “dummy allele”. Colours represent if the heterogeneous effect is due to each pair 
having an opposite effect direction (red), the same effect direction (beige), or one of the allele pairs having a 
non-significant association with the given phenotype (light blue). 
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Fig. 5: PRS comparisons for seven traits. X-axis: false positive rate. Y-axis: true positive rate.
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Fig. 6: HLA-DQ heterodimer is encoded by HLA-DQA1 and HLA-DQB1, and their interaction needs
accounted for when studying amino acid residue associations, such as here for type I diabetes mell
Summary of HLA-DQA1 and HLA-DQB1 type I diabetes mellitus association study. The X-axis rep
residue positions, with colours corresponding to the chain they are a part of (e.g. alpha-1 chain of HLA-
The Y-axis represents the smallest p-value at each position (on the -log10 scale). Only residue positio
polymorphisms can be shown. As can be seen, the HLA-DQA1 results likely suffers from the high correl
amino acid residue inheritance as residues 45 to 80 all show a similar association with type I diabetes m
This isn’t affecting HLA-DQB1, where residue 57 (on the beta-1 chain) is the most significant. B) Norma
analysis of the HLA-DQ heterodimer shows that residues 53-57 of HLA-DQB1 interact with some resid
the 45-80 HLA-DQA1 protein (the square formed by the 4 dotted lines), which is also observed in 
contact map. Colours on the contact map show distances as follows: dark blue: 5Å or less, medium
blue: 10Å or less, light blue: 20Å or less. D) a 3-dimensional view of the HLA-DQ heterodimer showi
residues 53-57 of HLA-DQB1 likely interact with the more distal residues of the HLA-DQA1 45-80 se
which directly interacts with the HLA-DQ ligand binding. The blue segment represents residues 53-57 o
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DQB1. The green segment represents residues 45-80 of HLA-DQA1. The yellow segment is a ligand binding 
the dimer (here CD74). Pale green and pink cartoon protein representations show the rest of HLA-DQB1 and 
HLA-DQA1, respectively.
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Supplementary Figures Below: 
 

 
 
SF1: Histograms of the average number of reads (coverage) for each gene for each participant. Vertical dashed line at 10. 
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SF2: Number of 2-field HLA alleles of minor allele frequency (MAF) > 0.1% per continental genetic ancestry. 
The analysis is limited to the protein-coding genes.
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SF3: Association (and 95% confidence interval) between concordance and allele frequency. 
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SF4: Mean asymmetric LD per ancestry and genes. Choices of squares were drawn using hierarchical 
clustering. Red: MHC Class I genes. Blue: MHC Class II genes.
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SF5: The correlation between UKB WES HLA calling allele frequencies (x-axis) and the selected AFND reference cohorts (y-axis). Comparisons are 
made separately for each genetic ancestry.  
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SF6: HLA association studies at 3-field resolution. Odds ratios are shown. The curved dashed lines represent a power of 80% to detect an 
association at a p-value of (5x10-8)/11 or less. 
  

 . 
C

C
-B

Y
-N

C
-N

D
 4.0 International license

It is m
ade available under a 

 is the author/funder, w
ho has granted m

edR
xiv a license to display the preprint in perpetuity. 

(w
h

ich
 w

as n
o

t certified
 b

y p
eer review

)
T

he copyright holder for this preprint 
this version posted January 18, 2023. 

; 
https://doi.org/10.1101/2023.01.15.23284570

doi: 
m

edR
xiv preprint 

https://doi.org/10.1101/2023.01.15.23284570
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
SF7: Canonical correlation analysis results. The y-axis refers to the percentage of variance in WES HLA called alleles explained by imputed alleles. 
The x-axis is the allele frequency threshold in the WES HLA called alleles used for the analysis. Note that due to smaller sample sizes in certain 
genetic ancestries, CCA calculations were not always stable enough to be performed (e.g. the analysis was not done for AMR genetic ancestry at 
all). Also, refer to supplementary table ST23. 
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SF8: Precision-recall curves for each PRS. 
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