1 Genetically proxied inhibition of L-2-hydroxyglutarate

2 dehydrogenase and the risk of coronary artery disease: A

3 Mendelian randomization study

4	
5	Euijun Song, M.D.
6	Yonsei University College of Medicine, Seoul, Republic of Korea
7	
8	
9	Correspondence: drjunsong@gmail.com (Euijun Song)
10	
11	Conflicts of interest: All authors have no financial conflicts of interest to declare.

13 Abstract

14 Background: L-2-hydroxyglutarate dehydrogenase (L2HGDH) deletion-induced L-2-

- 15 hydroxyglutarate accumulation plays a cardioprotective role in hypoxic conditions.
- 16 However, there has been no causal evidence in real-world clinical data. We aimed to
- 17 examine the causal effects of L2HGDH inhibition on coronary artery disease (CAD) and
- 18 myocardial infarction (MI) using Mendelian randomization (MR) analysis.
- 19 Methods: We used nine L2HGDH-proxied genetic variants associated with blood 2-
- 20 hydroxyglutarate levels as genetic instruments, and performed two-sample MR analysis
- 21 using the CARDIoGRAMplusC4D meta-analysis datasets of CAD (60,801 CAD cases
- and 123,504 controls) and MI (34,541 MI cases and 261,984 controls).
- 23 **Results:** Genetically proxied inhibition of *L2HGDH* associated with 2-hydroxyglutarate
- levels potentially decreased the risk of CAD (odds ratio [OR] 0.486, 95% confidence
- interval [CI] 0.242–0.977, P=0.043) but was not associated with the risk of MI (OR
- 26 0.676, 95% CI 0.312–1.463, P=0.320). This potentially causal association between
- 27 L2HGDH inhibition and CAD was unlikely to be biased by horizontal pleiotropy, whereas
- there might be a weak instrument bias.
- 29 **Conclusion:** Our MR analysis suggests the potential association between genetically
- 30 proxied inhibition of *L2HGDH* and CAD. Our findings may have therapeutic implications
- 31 for L2HGDH inhibitors in CAD, and further large-scale clinical studies are needed.
- 32
- 33 *Keywords:* L-2-hydroxyglutarate dehydrogenase; coronary artery disease;
- 34 therapeutics; Mendelian randomization; metabolism
- 35

36 1. Introduction

37 L-2-hydroxyglutarate plays a pivotal role in cytoplasmic and mitochondrial energy

38 metabolism to maintain redox regulation [1]. Hypoxia increases cellular L-2-

39 hydroxyglutarate, which is produced from α -ketoglutarate by malate dehydrogenase [1-

40 3]. L-2-hydroxyglutarate dehydrogenase (L2HGDH) is the only enzyme known to oxidize

41 L-2-hydroxyglutarate back to α-ketoglutarate [2, 4]. In experiments, *L2HGDH* ablation

42 increases the accumulation of L-2-hydroxyglutarate in hypoxia [2, 5]. L-2-

43 hydroxyglutarate has been known to protect heart tissue from oxidative stress in

response to hypoxia [5]. Since coronary artery disease (CAD) leads to ischemic injury

45 and ischemia-reperfusion injury, L-2-hydroxyglutarate may play a protective role in CAD

46 and ischemic myocardial injury.

47

Metabolic remodeling plays a key role in the pathobiology of CAD and myocardial 48 49 infarction (MI) [5-7]. Recently, He and colleagues [5] discovered that genetic L2HGDH 50 deletion-induced L-2-hydroxyglutarate accumulation shows cardioprotective effects 51 under ischemic conditions in mice. They found that L-2-hydroxyglutarate accumulation 52 shifts glucose metabolisms from glycolysis to the pentose phosphate pathway in 53 response to low-flow ischemia or ischemia-reperfusion. This metabolic shift indicates 54 that L2HGDH deletion-induced L-2-hydroxyglutarate accumulation could reduce 55 ischemic myocardial damage by eliminating reactive oxygen species. The experiments 56 suggest that L2HGDH is a potential therapeutic target for oxidative stress-related 57 cardiovascular diseases, such as CAD and MI. However, there has been no prospective 58 clinical trial yet.

59

60	One genetic epidemiological approach for testing the causal effects of drug targets on
61	complex diseases is the Mendelian randomization (MR) method [8-12]. MR methods
62	can estimate the causal effects of putative risk factors based on germline genetic
63	variation in the population, without conducting a randomized controlled trial. Using the
64	drug-target MR framework, Ference and colleagues [8] determined the causal
65	associations of ATP citrate lyase (ACLY) and HMG-CoA reductase (HMGCR) inhibitions
66	with the risk of cardiovascular disease. Similarly, MR approaches could identify the
67	potentially causal associations of genetically proxied inhibition of cardiovascular drug
68	targets with cancers, neuropsychiatric diseases, and cognitive function [9-12].
69	
70	Here, we conduct a two-sample MR study to assess putative causal effects of
71	genetically proxied inhibition of L2HGDH on CAD and MI (Figure 1). We construct
72	genetic instruments for L2HGDH that are associated with blood 2-hydroxyglutarate
73	levels. We then perform MR analysis to test whether this genetic instrument is causally
74	associated with CAD and MI using large-scale genome-wide association study (GWAS)
75	datasets.
76	
77	
78	2. Methods
79	2.1. Mendelian randomization study design
80	As illustrated in Figure 1, we designed a two-sample MR study to determine putative

causal effects of genetically proxied inhibition of *L2HGDH* on CAD and MI. We first

82	constructed the genetic instruments for L2HGDH to mimic pharmacological/genetic
83	perturbation of L2HGDH for increasing L-2-hydroxyglutarate levels. Due to the limited
84	availability of GWAS data for L-2-hydroxyglutarate levels, we constructed the genetic
85	instruments that are associated with 2-hydroxyglutarate level instead. We then
86	performed the Mendelian randomization analysis to determine potential causal
87	associations between the genetic instruments for L2HGDH and CAD using large-scale
88	GWAS summary statistics datasets.
89	
90	2.2. Genetic instruments for genetically proxied inhibition of L2HGDH
91	We obtained the GWAS summary statistics for human blood metabolome from Shin et
92	al [13]. Shin et al. [13] analyzed >400 blood metabolites from the KORA and TwinsUK
93	European population datasets using the Metabolon platform. Since the Metabolon
94	platform could not distinguish L-2-hydroxyglutarate from D-2-hydroxyglutarate, we
95	alternatively used the GWAS data for 2-hydroxyglutarate levels (accessed from
96	https://gwas.mrcieu.ac.uk/) to construct the genetic instruments for L2HGDH.
97	
98	L2HGDH is the only enzyme known to catabolize L-2-hydroxyglutarate in human cells,
99	and L2HGDH inhibition increases L-2-hydroxyglutarate levels in experiments [1, 2].
100	Since 2-hydroxyglutarate includes both L-2-hydroxyglutarate and D-2-hydroxyglutarate,
101	we only considered L2HGDH-proxied genetic variants to mainly reflect L-2-
102	hydroxyglutarate levels. We constructed the genetic instruments for L2HGDH by
103	recruiting genetic variants within \pm 500 kb from the L2HGDH gene that are associated
104	with blood 2-hydroxyglutarate level (P<0.05) and that are also in low linkage

105	disequilibrium (r^2 <0.3, with the default clumping window size of 10000 kb) [8]. The
106	characteristics of genetic variants proxied to L2HGDH are shown in Table S1. Since
107	there was no genome-wide significant variant near the L2HGDH gene (Table S2), we
108	adopted weak P-value and r ² thresholds previously suggested by Ference and
109	colleagues [8]. The SNPs and L2HGDH gene were analyzed based on the GRCh37
110	(hg19) human genome reference (Figure S1). The PhenoScanner V2
111	(http://www.phenoscanner.medschl.cam.ac.uk/, accessed on Feb 6, 2023) was used to
112	identify pleiotropic variants (Table S3).
113	
114	2.3. Data sources for CAD and MI
115	The GWAS summary statistics for CAD was obtained from the CARDIoGRAMplusC4D
116	(Coronary Artery DIsease Genome-wide Replication and Meta-analysis plus Coronary
117	Artery Disease) 1000 Genomes-based GWAS meta-analysis study
118	(http://www.cardiogramplusc4d.org) [14]. The CARDIoGRAMplusC4D GWAS meta-
119	analysis dataset included genetic associations from 60,801 CAD cases and 123,504
120	controls mostly of European ancestry. The case status was defined by diagnosis of
121	CAD, including MI, acute coronary syndrome, chronic stable angina, and coronary
122	stenosis >50% [14]. In addition, the MI GWAS summary statistics was obtained from the
123	same CARDIoGRAMplusC4D meta-analysis study (34,541 MI cases and 261,984
124	controls). All the MI cases are a subpopulation of the CAD cases [14].
125	

126 **2.4. Mendelian randomization and statistical analysis**

127 For MR analysis, the instrument strength was measured using the F-statistic. The Fstatistic less than 10 indicates weak instruments. We used the inverse-variance 128 129 weighted (IVW), weighted median, maximum likelihood, MR-PRESSO [15], Radial-MR 130 [16], and MR-RAPS [17] methods to evaluate the putative causal effects of genetically 131 proxied inhibition of L2HGDH on CAD and MI. The heterogeneity between SNPs was 132 evaluated by Cochran's Q test [18]. We also performed the MR Steiger directionality test to determine the directionality of causality [19]. To assess potential directional and 133 134 horizontal pleiotropy, we used the MR-Egger intercept test and MR-PRESSO methods. 135 The leave-one-out sensitivity analysis and Radial-MR were used to detect potential 136 outlying genetic variants. P<0.05 was considered statistically significant. All MR 137 analyses were performed in R (version 4.1.2, https://www.r-project.org/) with the 138 packages TwoSampleMR, MRPRESSO, and RadialMR.

- 139
- 140

141 **3. Results**

142 **3.1. Genetic instruments for L2HGDH**

143 We first constructed the genetic instruments proxied to *L2HGDH* that are associated

144 with blood 2-hydroxyglutarate levels (P<0.05) and that are also in low linkage

disequilibrium ($r^2 < 0.3$; Table S1). Since there was no genome-wide significant variant

- associated with 2-hydroxyglutarate levels near the *L2HGDH* gene (Table S2), we
- adopted a loose significance threshold of 0.05 to construct instruments for genetically
- 148 proxied inhibition of L2HGDH [8]. These genetic instruments mimic genetic or
- 149 pharmacological inhibition of *L2HGDH* for increasing blood 2-hydroxyglutarate levels

(Figure 1). The genetic instruments have the mean F-statistic of 7.661, indicating that
there might be a weak instrument bias in our MR analysis. The genetic instruments are
not associated with possible confounders or cardiovascular diseases/traits (Table S3).

154 **3.2. Association of genetically proxied inhibition of** *L2HGDH* with CAD and MI

155 We performed a two-sample MR analysis using the CARDIoGRAMplusC4D GWAS

meta-analysis dataset of CAD (60,801 CAD cases and 123,504 controls). As highlighted

in Table 1, the IVW method showed that genetically proxied inhibition of *L2HGDH*

158 associated with 2-hydroxyglutarate levels potentially decreased the risk of CAD (OR

159 0.486, 95% CI 0.242–0.977, P=0.043). There was no significant evidence of

160 heterogeneity (Cochran's Q-statistic=5.757, P=0.674). The radial IVW, weighted

161 median, and maximum likelihood methods also showed directionally similar estimates

162 (Table 1). The MR-RAPS method indicated that there might be a slightly weak

163 instrument bias (OR 0.460, 95% CI 0.202–1.046, P=0.064). The MR Steiger

directionality test confirmed the direction of the causality (P<0.001).

165

To assess potential directional horizontal pleiotropy, we used the MR-Egger and MRPRESSO methods. The MR-Egger intercept test determined that 9 genetic variants for *L2HGDH* showed no evidence for significant pleiotropy (intercept=-0.014, P=0.396).
The MR-PRESSO global test also confirmed no significant horizontal pleiotropy with no
outlying genetic variants (P=0.715). In addition, the leave-one-out sensitivity analysis
showed that removing individual genetic variants did not substantially change the
estimated causal effect of genetically proxied inhibition of *L2HGDH* (Table S4). The

- 173 radial IVW method further confirmed no evidence of outlying genetic variants (Figure
- 174 S2). Taken together, the sensitivity analyses provide no significant evidence for
- 175 pleiotropic effects, which could bias the MR analysis.
- 176
- 177 As a subpopulation of the CAD cases, we also examined the putative causal
- association between *L2HGDH* inhibition and MI using the CARDIoGRAMplusC4D meta-
- analysis dataset of MI (34,541 MI cases and 261,984 controls). Using IVW, we found
- that genetically proxied inhibition of *L2HGDH* was not significantly associated with the
- 181 risk of MI (OR 0.676, 95% CI 0.312–1.463, P=0.320). The MR-Egger intercept and MR-
- 182 PRESSO global tests indicated no significant pleiotropy (Table 1), and the radial plot

indicated no evidence of outlying variants (Figure S2).

- 184
- 185

186 **4. Discussion**

187 To our knowledge, this is the first MR study to demonstrate the potentially causal 188 association between genetically proxied inhibition of L2HGDH and CAD. Using two-189 sample MR analyses, we revealed that genetically proxied inhibition of L2HGDH was 190 significantly associated with the decreased risk of CAD. The multiple MR sensitivity analyses confirmed that this potential causal association was unlikely to be biased by 191 192 horizontal pleiotropy. Our findings suggests that genetic/pharmacological targeting of 193 L2HGDH may decrease the risk of CAD by increasing blood 2-hydroxyglutarate levels. 194 Since our genetic instruments are not directly associated with L-2-hydroxyglutarate

levels and there might be a weak instrument bias, further large-scale GWAS studies areneeded to obtain more robust and reliable MR results.

197

198 In the previous experimental study, L2HGDH deletion-induced L-2-hydroxyglutarate 199 accumulation protects the heart from redox stress, which plays a key role in myocardial 200 ischemic injury [5]. However, there has been no clinical trial to validate this potential 201 cardioprotective effect of L2HGDH inhibition. Using large-scale MR, we revealed that 202 genetically proxied inhibition of L2HGDH could potentially decrease the risk of CAD but 203 was not significantly associated with MI per se (Table 1). In our MR study, the CAD 204 cases include MI, acute coronary syndrome, coronary atherosclerosis, and chronic 205 ischemic heart diseases. Therefore, our findings suggest that L2HGDH inhibition may 206 play a cardioprotective role in not only being limited to myocardial ischemic damage, but 207 also in the primary prevention of CAD. The mechanisms underlying the potential 208 preventive effects of *L2HGDH* inhibition on CAD should be further investigated. 209 210 Due to the limited availability of GWAS data on blood metabolome, we constructed 211 genetic instruments based on blood 2-hydroxyglutarate levels, including its two 212 enantiomers L-2-hydroxyglutarate and D-2-hydroxyglutarate. D-2-hydroxyglutarate has 213 been known to be an oncometabolite in certain types of rare cancers [20, 21]. To 214 minimize the effects of D-2-hydroxyglutarate in our MR analysis, we constructed the 215 genetic instruments only proxied to the L2HGDH gene. In experiments, L-2-216 hydroxyglutarate is the majority of 2-hydroxyglutarate, and L2HGDH but not D2HGDH

217 knockdown increases the concentration of 2-hydroxyglutarate [1, 2]. Additionally,

218	L2HGDH is the only reported enzyme that metabolizes L-2-hydroxyglutarate. Therefore,
219	our approach would mainly reflect L2HGDH inhibition-related L-2-hydroxyglutarate
220	levels; however, large-scale GWAS data of blood L-2-hydroxyglutarate levels is
221	essential to obtain more robust and reliable MR results. Since L-2-hydroxyglutarate is
222	also a putative oncometabolite in renal cell carcinoma [22, 23], further
223	epidemiological/clinical studies are warranted to determine the potential side effects of
224	L2HGDH inhibition.

225

226 A critical limitation of this study is that we adopted a loose P-value threshold of 0.05 to 227 build the genetic instruments [8]. When we used the genome-wide significance 228 threshold, there was no genetic variant associated with blood 2-hydroxyglutarate levels, 229 near the L2HGDH gene (Table S2). Since L2HGDH is the only enzyme known to 230 metabolize L-2-hydroxyglutarate, we only considered L2HGDH-proxied variants to 231 reflect the physiological effects of L2HGDH inhibition on L-2-hydroxyglutarate levels [1, 232 2]. In addition, we did not perform any replication analysis in non-European populations, 233 though the CARDIoGRAMplusC4D is the largest consortium study of CAD. Another 234 critical limitation is the underlying overlap between exposure and outcome datasets, as 235 the CARDIoGRAMplusC4D includes KORA (also known as GerMIFS III) and TwinsUK 236 (part of the PROCARDIS) datasets. This overlap could cause a bias towards 237 confounded associations in the two-sample MR [24]. In our MR analysis, the weighted 238 median methods did not show significant results; however, those methods are statistically less powerful than IVW [25]. Large-scale multi-ancestry GWAS datasets for 239 240 L-2-hydroxyglutarate are essential to construct more robust genetic instruments.

241	Protein-protein	interaction	network ana	vsis would	be helpful	to determine	the functional
~ ' -		in tor a otion	nothonit and	yolo noala	So noipiai		

- relationship between L2HGDH and the CAD disease module and to identify potential
- 243 drug targets [26, 27].
- 244

245

246 5. Conclusion

- 247 Our MR result suggests the potential association between genetically proxied inhibition
- of *L2HGDH* and CAD, though there might be a weak instrument bias. Our findings may
- have the rapeutic implications for L2HGDH inhibitors in CAD. Further large-scale clinical

studies are needed to obtain more robust results.

251

252

253 Authorship contribution

Euijun Song designed, performed, analyzed data, and wrote the manuscript.

255

256

257 Acknowledgements

- 258 This research received no external funding. This study only used publicly available
- 259 GWAS summary statistics datasets. The author would like to thank Drs. Loscalzo and

260 Cheng for insightful discussions and comments.

262 **References**

- 263 1. Oldham, W.M., et al., *Hypoxia-Mediated Increases in L-2-hydroxyglutarate*
- 264 Coordinate the Metabolic Response to Reductive Stress. Cell Metab, 2015.
- 265 **22**(2): p. 291-303.
- Intlekofer, A.M., et al., *Hypoxia Induces Production of L-2-Hydroxyglutarate.* Cell
 Metab, 2015. **22**(2): p. 304-11.
- Chakraborty, A.A., et al., *Histone demethylase KDM6A directly senses oxygen to control chromatin and cell fate.* Science, 2019. **363**(6432): p. 1217-1222.
- 4. Rzem, R., et al., *A gene encoding a putative FAD-dependent L-2-*
- hydroxyglutarate dehydrogenase is mutated in L-2-hydroxyglutaric aciduria. Proc
 Natl Acad Sci U S A, 2004. **101**(48): p. 16849-54.
- 5. He, H., et al., *L-2-Hydroxyglutarate Protects Against Cardiac Injury via Metabolic Remodeling.* Circ Res, 2022. **131**(7): p. 562-579.
- 275 6. Xiao, W., et al., *Immunometabolic Endothelial Phenotypes: Integrating*276 *Inflammation and Glucose Metabolism.* Circ Res, 2021. **129**(1): p. 9-29.
- Lee, L.Y., et al., Interferon-gamma Impairs Human Coronary Artery Endothelial
 Glucose Metabolism by Tryptophan Catabolism and Activates Fatty Acid
- 279 *Oxidation.* Circulation, 2021. **144**(20): p. 1612-1628.
- 8. Ference, B.A., et al., *Mendelian Randomization Study of ACLY and*
- 281 *Cardiovascular Disease.* N Engl J Med, 2019. **380**(11): p. 1033-1042.
- 9. Yarmolinsky, J., et al., *Genetically proxied therapeutic inhibition of*
- antihypertensive drug targets and risk of common cancers: A mendelian
 randomization analysis. PLoS Med, 2022. 19(2): p. e1003897.
- 285 10. Sun, L., et al., Associations of genetically proxied inhibition of HMG-CoA
- reductase, NPC1L1, and PCSK9 with breast cancer and prostate cancer. Breast
 Cancer Res, 2022. 24(1): p. 12.
- Rosoff, D.B., et al., *Mendelian Randomization Study of PCSK9 and HMG-CoA Reductase Inhibition and Cognitive Function.* J Am Coll Cardiol, 2022. **80**(7): p.
 653-662.
- 12. Bell, A.S., et al., Comparing the Relationships of Genetically Proxied PCSK9
 Inhibition With Mood Disorders, Cognition, and Dementia Between Men and

293		Women: A Drug-Target Mendelian Randomization Study. J Am Heart Assoc,
294		2022. 0 (0): p. e026122.
295	13.	Shin, S.Y., et al., An atlas of genetic influences on human blood metabolites. Nat
296		Genet, 2014. 46 (6): p. 543-550.
297	14.	Nikpay, M., et al., A comprehensive 1,000 Genomes-based genome-wide
298		association meta-analysis of coronary artery disease. Nat Genet, 2015. 47(10):
299		p. 1121-1130.
300	15.	Verbanck, M., et al., Detection of widespread horizontal pleiotropy in causal
301		relationships inferred from Mendelian randomization between complex traits and
302		<i>diseases.</i> Nat Genet, 2018. 50 (5): p. 693-698.
303	16.	Bowden, J., et al., Improving the visualization, interpretation and analysis of two-
304		sample summary data Mendelian randomization via the Radial plot and Radial
305		<i>regression.</i> Int J Epidemiol, 2018. 47 (4): p. 1264-1278.
306	17.	Zhao, Q., et al., Statistical inference in two-sample summary-data Mendelian
307		randomization using robust adjusted profile score. The Annals of Statistics, 2020.
308		48 (3): p. 1742-1769.
309	18.	Burgess, S., et al., Sensitivity Analyses for Robust Causal Inference from
310		Mendelian Randomization Analyses with Multiple Genetic Variants.
311		Epidemiology, 2017. 28 (1): p. 30-42.
312	19.	Hemani, G., K. Tilling, and G. Davey Smith, Orienting the causal relationship
313		between imprecisely measured traits using GWAS summary data. PLoS Genet,
314		2017. 13 (11): p. e1007081.
315	20.	Rakheja, D., et al., The emerging role of d-2-hydroxyglutarate as an
316		oncometabolite in hematolymphoid and central nervous system neoplasms. Front
317		Oncol, 2013. 3 : p. 169.
318	21.	Jezek, P., 2-Hydroxyglutarate in Cancer Cells. Antioxid Redox Signal, 2020.
319		33 (13): p. 903-926.
320	22.	Shelar, S., et al., Biochemical and Epigenetic Insights into L-2-Hydroxyglutarate,
321		a Potential Therapeutic Target in Renal Cancer. Clin Cancer Res, 2018. 24(24):
322		p. 6433-6446.

323	23.	Shim, E.H., et al., L-2-Hydroxyglutarate: an epigenetic modifier and putative
324		oncometabolite in renal cancer. Cancer Discov, 2014. 4(11): p. 1290-8.
325	24.	Burgess, S., N.M. Davies, and S.G. Thompson, Bias due to participant overlap in
326		<i>two-sample Mendelian randomization.</i> Genet Epidemiol, 2016. 40 (7): p. 597-608.
327	25.	Bowden, J., Misconceptions on the use of MR-Egger regression and the
328		evaluation of the InSIDE assumption. Int J Epidemiol, 2017. 46(6): p. 2097-2099.
329	26.	Cheng, F., et al., Network-based approach to prediction and population-based
330		validation of in silico drug repurposing. Nat Commun, 2018. 9(1): p. 2691.
331	27.	Lee, L.Y., et al., Network medicine in Cardiovascular Research. Cardiovasc Res,
332		2021. 117 (10): p. 2186-2202.
333		

Coronary artery disease Myocardial infarction

- **Figure 1.** Overall analysis scheme. (A) Function of L-2-hydroxyglutarate
- dehydrogenase (L2HGDH) in energy metabolisms. Inhibition of L2HGDH increases
- blood L-2-hydroxyglutarate levels. (B) We constructed genetic instruments proxied to
- the *L2HGDH* gene that are associated with blood 2-hydroxyglutarate levels. We then
- 339 performed two-sample Mendelian randomization analysis to assess the causal effects of
- 340 genetically proxied inhibition of *L2HGDH* on coronary artery disease and myocardial
- 341 infarction.
- 342

- **Table 1.** Mendelian randomization (MR) analyses for causal associations of genetically proxied inhibition of *L2HGDH* with
- 344 coronary artery disease and myocardial infarction.

	Coronary artery diseas	e		Myocardial infarction				
	(60,801 cases, 123,504 c	(60,801 cases, 123,504 controls)			(34,541 cases, 261,984 controls)			
	OR (95% CI)	P-value	SNPs	OR (95% CI)	P-value	SNPs		
IVW	0.486 (0.242–0.977)	0.043	9	0.676 (0.312–1.463)	0.320	9		
IVW (Radial)	0.487 (0.269–0.880)	0.017	9	0.676 (0.361–1.268)	0.222	9		
Weighted median	0.762 (0.300–1.937)	0.568	9	0.888 (0.325–2.428)	0.817	9		
Maximum likelihood	0.457 (0.216–0.967)	0.041	9	0.655 (0.291–1.476)	0.308	9		
MR-RAPS	0.460 (0.202–1.046)	0.064	9	0.681 (0.284–1.630)	0.388	9		
MR-Egger intercept*	-0.014 (0.016)	0.396	9	-0.004 (0.017)	0.836	9		
MR-PRESSO global [#]	-	0.715	9	-	0.752	9		
MR Steiger directionality	-	<0.001	9	-	<0.001	9		

345 SNP, single nucleotide polymorphism; OR, odds ratio; CI, confidence interval; IVW, inverse-variance weighted method.

346 *Intercept values are presented with SE.

- ³⁴⁷ [#]No outlying genetic variants were detected.
- 348

349 **Supplementary materials**

50,5 rs11625406 50	0,550 K 50,600 K	50,650 K rs80173670,700 K	50 <mark>1 rs12894758</mark> (rs932318)	rs11570815,850 K	50,900 K 50,94	51 M	51,050 rs2012893
NCBI Homo sapiens Annot PDU RPST5AP2 RN75KP193 LINC01599	ation Release 105.20220307 SOS2 _008870.2 ← ↓ ↓ ↓ ↓ ↓ ↓ VCPKMT [+6]	NP_079160.1	H (22 (+14) + + + + + + + + + + + + + + + + + + +	[] [] [] [] [] [] [] [] [] [] [] [] [] [111301 111 1	ATL1 [+6]	NP 068590.1 H → HH → H H RN7. SNRPGP1
rs11628742 rs	11625406 rs80173	s67 rs12894758	rs9323183	rs11570815	rs17791680	rs2144975	rs2012893

- **Figure S1.** Genomic positions of nine genetic instruments for genetically proxied
- inhibition of *L2HGDH*. The genomic positions were visualized using the NCBI Graphical
- 353 Sequence Viewer (GRCh37, accessed on Oct 29, 2022).

354

355

Figure S2. Radial inverse-variance weighted (IVW) Mendelian randomization plots for
coronary artery disease (A) and myocardial infarction (B). Black dots indicate valid
genetic variants. The estimated effect sizes are presented. There is no outlier variant in
the present radial plots.

361 **Table S1.** Nine *L2HGDH*-proxied (± 500 kb) genetic variants that are associated with

SNP		Position	EA/OA	EAF	β (SE)*	P-value	F-
		(GRCh37)					statistic
	rs11628742	chr14:50515075	C/T	0.438	-0.0112 (0.0043)	9.02x10 ⁻³	6.784
	rs11625406	chr14:50516192	A/C	0.619	0.0070 (0.0033)	3.56x10 ⁻²	4.500
	rs8017367	chr14:50675487	T/C	0.261	-0.0121 (0.0034)	4.00x10 ⁻⁴	12.665
	rs12894758	chr14:50760030	T/C	0.291	0.0135 (0.0034)	6.80x10⁻⁵	15.766
	rs9323183	chr14:50796881	C/G	0.054	-0.0150 (0.0071)	3.37x10 ⁻²	4.463
	rs11570815	chr14:50825258	T/A	0.662	0.0094 (0.0033)	4.88x10 ⁻³	8.114
	rs17791680	chr14:50965445	A/G	0.372	-0.0081 (0.0034)	1.64x10 ⁻²	5.676
	rs2144975	chr14:50969448	C/T	0.955	0.0170 (0.0075)	2.44x10 ⁻²	5.138
	rs2012893	chr14:51073443	G/A	0.088	-0.0145 (0.0060)	1.53x10 ⁻²	5.840

blood 2-hydroxyglutarate levels (P<0.05, $r^2<0.3$).

- 363 SNP, single nucleotide polymorphism; EA, effect allele; OA, other allele; EAF, effective
- allele frequency.
- ³⁶⁵ *Log(odds ratio) per 1-SD increase in blood 2-hydroxyglutarate levels.

367 **Table S2.** Genetic variants associated with blood 2-hydroxyglutarate levels (P<1x10⁻⁵,

368 r²<0.3).

SNP	Position	EA/OA	EAF	β (SE)*	P-value
	(GRCh37)				
rs10196007	chr2:145329033	C/T	0.184	0.0320 (0.0065)	7.63x10 ⁻⁷
rs1568101	chr3:148590090	T/C	0.912	-0.0255 (0.0057)	8.62x10⁻ ⁶
rs7725624	chr5:63010725	A/C	0.087	-0.0440 (0.0094)	3.02x10⁻ ⁶
rs7702827	chr5:158879869	G/C	0.700	0.0152 (0.0034)	6.29x10 ⁻⁶
rs933341	chr7:83743619	G/A	0.760	-0.0166 (0.0035)	1.56x10⁻ ⁶
rs8176023	chr7:142642596	G/A	0.072	0.0411 (0.0087)	2.46x10 ⁻⁶
rs890519	chr8:18905049	A/C	0.416	0.0147 (0.0033)	9.06x10 ⁻⁶
rs10966201	chr9:24079188	C/T	0.345	-0.0151 (0.0034)	7.11x10 ⁻⁶
rs11793331	chr9:133298199	T/C	0.024	0.0619 (0.0136)	5.09x10 ⁻⁶
rs6484669	chr11:11120287	C/T	0.259	0.0196 (0.0044)	7.75x10 ⁻⁶
rs9544785	chr13:78971070	A/C	0.361	-0.0150 (0.0033)	6.63x10 ⁻⁶
rs16977497	chr17:71021645	A/G	0.045	0.0538 (0.0122)	9.91x10 ⁻⁶
rs6064820	chr20:58206004	T/C	0.723	0.0155 (0.0034)	4.01x10 ⁻⁶

- 369 SNP, single nucleotide polymorphism; EA, effect allele; OA, other allele; EAF, effective
- 370 allele frequency.
- ³⁷¹ *Log(odds ratio) per 1-SD increase in blood 2-hydroxyglutarate levels.

- **Table S3.** Phenotypes associated with the *L2HGDH*-proxied genetic instruments based
- on PhenoScanner V2 (accessed on Feb 6, 2023).

SNP	Associated phenotypes (P<1x10 ⁻⁵)
rs11628742	-
rs11625406	-
rs8017367	-
rs12894758	Impedance of arm right; Impedance of arm left
rs9323183	-
rs11570815	-
rs17791680	Impedance of arm right; Impedance of arm left; Sitting height;
	Arm fat-free mass right
rs2144975	Treatment with inderal 10mg tablet
rs2012893	-

- 376 **Table S4.** Leave-one-out sensitivity analyses for the causal associations of genetically
- 377 proxied *L2HGDH* inhibition with coronary artery disease and myocardial infarction using
- the inverse-variance weighted method.

	Coronary artery disease		Myocardial infarction	
Removed SNP	OR (95% CI)	P-value	OR (95% CI)	P-value
rs2144975	0.576 (0.277–1.194)	0.138	0.826 (0.369–1.847)	0.641
rs11570815	0.545 (0.259–1.150)	0.111	0.770 (0.337–1.758)	0.535
rs11625406	0.535 (0.260–1.103)	0.090	0.715 (0.321–1.590)	0.410
rs17791680	0.499 (0.240–1.036)	0.062	0.668 (0.297–1.499)	0.328
rs9323183	0.461 (0.225–0.945)	0.035	0.644 (0.291–1.425)	0.278
rs2012893	0.457 (0.222–0.941)	0.034	0.657 (0.296–1.461)	0.304
rs8017367	0.455 (0.212–0.979)	0.044	0.553 (0.237–1.289)	0.170
rs11628742	0.445 (0.209–0.947)	0.036	0.625 (0.271–1.442)	0.270
rs12894758	0.411 (0.188–0.899)	0.026	0.648 (0.272–1.542)	0.326
None (original)	0.486 (0.242–0.977)	0.043	0.676 (0.312–1.463)	0.320

379 SNP, single nucleotide polymorphism; OR, odds ratio; CI, confidence interval.