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Summary Statement: Brain growth charts of pediatric clinical MRIs with limited imaging pathology (N=372)
are highly correlated with charts from a large aggregated set of research controls (N>120,000).

Key Results:

A cohort of brain MRI scans with limited reported imaging pathology (N=372, 186 female; ages 0.07 - 22.2
years, median = 10.2) were identified using signed radiology reports and processed using two segmentation
pipelines. Growth charts generated from these scans are highly correlated with growth charts from a large
aggregated set of research controls (r range 0.990 - 0.999). There was no evidence of bias due to the reason
for each scan.

Abbreviations:

SLIP: Scans with Limited Imaging Pathology
LBCC: Lifespan Brain Chart Consortium
GMV: cortical Gray Matter Volume
WMV: White Matter Volume
sGMV: Subcortical Gray Matter Volume
CSF: ventricular volume (Cerebrospinal Fluid)
TCV: Total Cerebrum Volume
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Abstract

Background: Brain MRIs acquired in clinical settings represent a valuable and underutilized scientific resource
for investigating neurodevelopment. Utilization of these clinical scans has been limited because of their clinical
acquisition and technical heterogeneity. These barriers have curtailed the interpretability and scientific value of
retrospective studies of clinically acquired brain MRIs, compared to studies of prospectively acquired research
quality brain MRIs.

Purpose: To develop a scalable and rigorous approach to generate clinical brain growth chart models, to
benchmark neuroanatomical differences in clinical MRIs, and to validate clinically-derived brain growth charts
against those derived from large-scale research studies.

Materials and Methods: We curated a set of clinical MRI Scans with Limited Imaging Pathology (SLIP) –
so-called “clinical controls” – from an urban pediatric healthcare system acquired between 2005 and 2020. The
curation process included manual review of signed radiology reports, as well as automated and manual quality
review of images without gross pathology. We measured global and regional volumetric imaging phenotypes in
the SLIP sample using two alternative, advanced image processing pipelines, and quantitatively compared
clinical brain growth charts to research brain growth charts derived from >123,000 MRIs.

Results: The curated SLIP dataset included 372 patients scanned between the ages of 28 days post-birth and
22.2 years across nine 3T MRI scanners. Clinical brain growth charts were highly similar to growth charts
derived from large-scale research datasets, in terms of the normative developmental trajectories predicted by
the models. The clinical indication of the scans did not significantly bias the output of clinical brain charts. Tens
of thousands of additional healthcare system scans meet inclusion criteria to be included in future brain growth
charts.

Conclusion: Brain charts derived from clinical-controls are highly similar to brain charts from research-controls,
suggesting that curated clinical scans could be used to supplement research datasets.
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Introduction

A principal challenge in brain MRI research is recruiting large numbers of participants necessary to support
valid scientific inference and generalizability. Retrospective studies of clinically acquired brain MRIs may help
supplement costly prospective neuroimaging studies by harnessing existing healthcare systems data. For
example, individuals with specific diseases may lack the support or resources to participate in research
studies, but some of their clinical data could be anonymized for secondary use in research applications. From
this perspective, the millions of brain MRIs acquired each year in clinical settings represent a valuable and
vastly underutilized resource.

However, a major obstacle for studies using clinically-acquired MRI is the lack of appropriate “control groups,”
which are necessary to rigorously test hypotheses in a patient group of interest. In research settings, it is
customary to recruit “healthy”, “cognitively normal”, or “unaffected” participants explicitly for this purpose. For
clinically-acquired MRIs, a control group might be composed of demographically-matched patients who
underwent brain MRIs to rule out serious neuropathology and were found to have unremarkable MRIs (Kerr et
al 2022). A critical and unresolved question is whether the difference in ascertainment process between
research-controls and clinical-controls biases inferences about patient groups of interest.

Other challenges in using clinically-acquired brain MRI data include the differences due to the use of multiple
scanners and the variability in the quality of scans. Recent statistical approaches have proven successful in
harmonizing scanner and sequence differences in MRI data (Johnson and Li 2007; Fortin et al 2017; Pomponio
et al 2019). Additionally, deep-learning based tools may provide robustness to scan quality during image
segmentation (Billot et al. 2022) and assessment of scan quality (McClure et al 2019). Recently, we developed
research-control brain growth charts to quantitatively benchmark brain MRI phenotypes against population
norms while also controlling for technical differences between sites in a large aggregated neuroimaging dataset
(Bethlehem, Seidlitz, and White et al 2022).

In the present study, we sought to evaluate if a cohort of clinically-imaged controls had demonstrable brain
development differences from research-controls. First, we identified a large set of scans with limited imaging
pathology (SLIP) with clinically acquired brain MRIs provided by an urban pediatric healthcare system. We then
quantitatively compared clinical brain growth charts to research brain growth charts derived from >123,000
MRIs included in the Lifespan Brain Chart Consortium (LBCC; Bethlehem, Seidlitz, and White et al. 2022). We
evaluate the similarities between the clinical-controls and the research-controls in terms of growth trajectories
and age at peak cortical region volumes.

Materials and Methods

This study was reviewed by the IRB and determined to be exempt from further oversight because it consisted
of secondary analysis of preexisting clinical data. The remainder of this section contains an abbreviated
overview of our methods. Please see the Supplementary Materials for an extended description.

Dataset curation

Aggregating and curating the SLIP dataset began with a request for 1013 scan sessions determined by manual
review of their signed radiology reports to lack significant clinical pathology. These scan sessions were
requested from the radiology department with the aid of an honest broker. This request was limited to 3 Tesla
(3T) scans, as the department deployed a harmonized MPRAGE T1-weighted (T1w) sequence for routine
brain MRIs across its 3T clinical scanners beginning in 2008 (see Supplementary Materials). The scans were
organized into BIDS format (Gorgolowski et al 2016) using heudiconv (Halchenko et al 2020) and filtered
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according to their metadata using CuBIDS (Covitz et al 2022) to isolate non-contrast high-resolution T1w scans
( 1x1x1mm; N=444 scans), then were manually graded by two raters to remove low-quality scans (e.g,<=
scans with significant motion artifact) (Rosen et al 2018; Bedford et al 2022) (N=372 scans). An overview of
data curation and quality control is provided in Figure 1 with complete details in Supplemental Materials.

Image Processing

Two parallel processing pipelines were used for quantitative analyses of T1w scans. The first pipeline
reoriented and aligned scans to the MNI152 atlas (Fonov et al 2011), removed facial features, and performed
segmentation using either FreeSurfer 6.0.0 (for patients > 3 years old) (Jenkinson et al 2012; Fischl et al 2004)
or Infant FreeSurfer 6.0.0 (for patients <= 3 years old) (Zöllei et al 2020). The second pipeline performed
segmentation using SynthSeg+ with pretrained models (Billot et al 2022). Both pipelines produced quantitative
volumetric measurements subsequently referred to as “imaging phenotypes”. Global imaging phenotypes
quantified by each pipeline included total cortical gray matter volume (GMV), white matter volume (WMV),
subcortical gray matter volume (sGMV), ventricular volume (CSF), and total cerebrum volume (TCV).
Additionally, 34 regional cortical volumes were quantified by the FreeSurfer pipeline using the sulcal-based
Desikan-Killiany parcellation (Desikan et al 2006).

Statistical Analysis

We sought to compare clinical brain growth charts to a subset of the previously published LBCC reference
dataset of 123,984 MRIs aggregated across 100 primary studies (www.brainchart.io) (Bethlehem, Seidlitz, and
White et al. 2022). The subset was limited to LBCC subjects processed using either FreeSurfer 6.0.0 or Infant
FreeSurfer in the same age range as SLIP.

Prior to growth chart modeling, ComBat, a batch correction approach adapted from statistical genomics, was
used to harmonize the SLIP imaging phenotypes across scanners (Johnson and Li 2007; Fortin et al 2017;
Pomponio et al 2019). ComBat was used to control for the effect of MR scanners while preserving the effect of
other model covariates.

Growth charts of both SLIP and age-limited LBCC data were fit using generalized additive models for location,
scale, and shape (GAMLSS): a distributional regression approach that models the mean, variance, and
higher-order statistical moments in terms of flexible nonlinear associations using covariates of interest
(Stasinopoulos et al 2017). A generalized gamma distribution was used to link each imaging phenotype to
predictor variables using the GAMLSS package in R. The predictor variables included age and sex as reported
in the electronic health record. For the FreeSurfer pipeline, the Euler number, a robust marker of image quality,
was also included (Rosen et al. 2018). As detailed previously for LBCC growth charts, the mean and variance
of each GAMLSS was modeled by a non-linear age effect using third-order fractional polynomials while an
intercept term alone was employed for model skewness allowing for shared skewness across the age range.

Results

Demographics and quality control

The curated SLIP dataset consisted of 372 subjects (185 females) scanned between the ages of 28 days
post-birth and 22.2 years during the time period of 2005 to 2020 (Table 1) across nine 3T MRI scanners (see
Supplementary Table 2 for scanner details). There was no evidence of age or sex biases relating to specific
scanners or to manual or automated measures of image quality (Figure 2). There were no statistical biases
related to the year of the scan (Supplemental Figure 1). There was evidence of subtle but significant scanner
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effects on imaging phenotypes, which were mitigated using ComBat harmonization (Figure 3). The age-limited
LBCC data used for global imaging phenotype comparison was taken from 23 studies with 8,346 subjects
(3,399 females) between the ages of 152 days post-birth and 22 years (Supplemental Table 2). The publicly
available LBCC growth charts were used as the baseline of comparison for the cortical region phenotypes.

Hospital growth charts have similar properties to research growth charts

We compared the characteristics of the SLIP and age-limited LBCC brain growth chart models to assess the
validity of SLIP charts and the impact of the image processing pipeline (Figure 4). The charts display similar
key milestones and overall developmental trajectory shapes, demonstrating robustness to the dataset and the
choice of image processing pipeline. In general, the brain growth charts were highly similar between LBCC and
SLIP (median phenotype trajectory correlation, r=0.997; Table 2), and between SLIP FreeSurfer and SLIP
SynthSeg (median phenotype trajectory correlation, r=0.964; Table 2).

Despite the high degree of overall similarity, we did observe differences between SLIP and LBCC data: for
instance, WMV was observed to peak > 1 year earlier in SLIP compared to LBCC (Table 2). Arguably,
differences due to preprocessing pipeline outweighed differences attributable to the dataset: a clear
age-related discontinuity was observed for data processed with Infant FS in measurements of sGMV, which
has been reported previously (Bethlehem, Seidlitz, and White et al. 2022) (row 3, Figure 4). In addition,
measurements of ventricular volume differed significantly between FS and SS, though this difference was
largely mitigated when considering centiles benchmarked to GAMLSS models (correlation between ventricular
volume centiles in the same individuals r=0.975).

At the resolution of specific cortical regions, strikingly similar maturational trajectories were observed between
SLIP and LBCC brain charts via the pattern of interregional differences in the age at peak volume. In both
datasets, a clear maturational gradient was observed from early maturation in sensorimotor cortex to late
maturation in association cortex (Figure 5). Interregional differences in the age at peak regional volume were
significantly correlated between SLIP and LBCC brain charts (Spearman’s r=0.697, Pspin < 0.0006)
(Alexander-Bloch et al 2018). A general trend was observed such that smaller cortical regions showed greater
deviation between SLIP and LBCC brain charts (Figure 5).

No evidence of bias by clinical indication for scan

For clinical brain charts to be interpretable as a reference norm, the resulting centiles should not be biased by
the clinical indication for patient scans contributing to the reference. We examined the centile distributions for
the most frequently occurring reasons for scan in the SLIP cohort, which included the presence of a
developmental disorder, clinical eye or vision findings, headaches, and suspected seizures. Critically, we did
not find evidence of significantly different outcome variables based on clinical indications between scans
(ANOVA P > 0.05 in all cases).

Discussion

We generated clinical brain growth charts to address the challenge of utilizing existing clinically-acquired data
for quantitative brain MRI research. We developed and implemented a curation process to identify clinical MRIs
without significant imaging pathology, then performed rigorous quality control and processed them with
neuroimaging research pipelines. Following a methodology recommended by the World Health Organization
for pediatric growth charts, we used a principled distributional regression technique to model growth charts for
global and regional imaging phenotypes (Borghi et al 2006). We compared the scans with limited imaging
pathology (SLIP) to one of the largest aggregated brain MRI research datasets (LBCC) and found a high
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degree of convergence between growth charts derived from each dataset. These results address a
longstanding need in brain MRI research by suggesting the utility of clinical brain growth charts as suitable
benchmarks for developmental norms.

Our findings are consistent with our prediction that the neuroanatomy of patients who receive negative clinical
brain MRIs does not in general diverge from that of research participants recruited as healthy controls. The
most common indication for scan in the SLIP dataset was headache: the lifelong prevalence of headache is
reported at >95% in the general population, and most scans for headache without focal neurological symptoms
are unremarkable (Jordan and Flanders 2020). Similarly, research case-control studies of quantitative
anatomical MRI phenotypes in headache including migraine have generally been inconclusive (Sheng et al
2021; Henn et al 2022).

The present work suggests multiple areas for future investigation. Metrics of individual-level deviation from
brain charts can be combined with other information available from the electronic health record such as clinical
genetics to investigate altered patterns of brain development in subgroups of patients with shared genetic
variants. While our effort to compare clinical- and research-controls benefited from the radiology department’s
use of a high-quality isotropic T1-weighted MRI sequence for routine brain scans, SynthSeg+ is expected to
generalize well to lower quality scans and diverse clinical scan protocols (Billot et al. 2022). Greater inclusion
of scans would increase the sample size incorporated into our reference charts in early developmental and
adult populations. Finally, although short-term utility is limited to the research domain, it is conceivable that
contemporaneous, growth chart benchmarks of quantitative imaging features could prove to be clinically useful
in certain settings.
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Tables

Table 1. Demographic characteristics of curated SLIP dataset. The distribution of the year of scan is an artifact
of the order in which radiology reports have been examined thus far.

Total Male Female

Total 372 187 185

Age (years)

0-2 41 25 16

2-5 41 22 19

5-10 102 51 51

10-13 63 37 26

13-18 113 44 69

18+ 12 8 4

Primary Reason for Scan

Developmental disorder 22 13 9

Clinical eye or vision finding 31 18 13

Headache 156 67 89

Suspected seizure 33 18 15

Other 130 71 59

Year of Scan

2005 24 13 11

2006 58 26 32

2007 63 34 29

2008 66 34 32

2009 61 33 28

2010 78 38 40

2011+ 22 9 13

Race (as reported in EMR)

American Indian or Alaska Native 1 1 0

Asian 7 4 3

Black or African American 63 33 30

Multiple Races 2 1 1

Other 32 19 13

White 267 129 138
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Table 2. Brain developmental milestones estimated for the clinical scans with limited imaging pathology (SLIP)
using generalized additive models for location, shape and scale (GAMLSS). Models based on imaging
phenotypes derived from FreeSurfer (FS) and SynthSeg (SS) image processing pipelines are compared to
aggregated research data from the Lifespan Brain Chart Consortium (LBCC). GMV, gray matter volume; WMV,
white matter volume; sGMV, subcortical gray matter volume; CSF, ventricle volume; TCV, total cerebrum
volume.

Phenotype SLIP (FS) Age at
Peak (years)

SLIP (SS) Age
at Peak (years)

Age-Limited
LBCC Age at
Peak (years)

SLIP (FS) vs.
Age-Limited

LBCC
50th Centile
(Pearson’s r)

SLIP (SS) vs.
Age-Limited

LBCC
50th Centile
(Pearson’s r)

SLIP (FS) vs.
SLIP (SS)

(Pearson’s r)

GMV 6.06 7.35 6.55 0.999 0.999 0.954

WMV 20.1 20.1 22.1 0.990 0.997 0.964

sGMV 12.6 14.4 16.0 0.997 0.955 0.891

CSF 22.1 22.1 22.1 0.745 0.600 0.975

TCV 9.71 10.3 22.1 0.997 0.998 0.980
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Figures

Figure 1. Overview of the data curation and processing pipeline. The initial request for sessions whose signed
radiology reports contained no gross pathology was submitted to the honest broker. The honest broker
returned a set of anonymized MRI scans which were then filtered to identify only high resolution T1 weighted
scans from 3T scanners. Next, the high resolution scans were manually reviewed by independent raters to
remove visually low quality images. This finalized set of SLIP scans was processed using two neuroimaging
processing pipelines (FreeSurfer/Infant FreeSurfer 6.0.0 and SynthSeg+) to produce two sets of imaging
phenotypes for high-quality clinically acquired scans.
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Figure 2. The distributions of patient ages, MRI scanner, and image quality in the curated SLIP dataset. The
average quality control (QC) rating refers to an ordinal scale applied by two manual raters (0, poor quality; 1,
acceptable quality; 2, highest quality). The Euler number refers to the number of holes in the FreeSurfer
cortical surface reconstruction of the scan prior to topological correction. Scanner details are provided in
Supplemental Table 1.
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Figure 3. Centiles of global phenotypes across MRI scanners, before and after harmonization with ComBat
across scanner ID. Boxplots of centiles from each scanner are represented individually and the scanners are
presented left to right in decreasing order of the number of scans. The left column shows the centiles of
FreeSurer (FS) imaging phenotypes prior to ComBat harmonization (pre-ComBat), while the right column
shows the centiles of FS after ComBat (post-ComBat). The effect of the scanner was tested with ANOVA,
showing no significant difference after harmonization. GMV, gray matter volume; WMV, white matter volume;
sGMV, subcortical gray matter volume; CSF, ventricle volume; TCV, total cerebrum volume.
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Figure 4. Growth trajectories of the five global imaging phenotypes compared across datasets and image
processing pipelines. The clinical scans with limited imaging pathology (SLIP) were processed with FreeSurfer
and SynthSeg+, and compared with the models generated from SLIP-aged Lifespan Brain Chart Consortium
(LBCC) data. The first two columns display SLIP global imaging phenotypes, the 50th centile line from growth
charts of that phenotype estimated with GAMLSS (solid line), and the 50th centile line estimated from the
SLIP-age limited LBCC growth charts (dashed line). The third column directly compares the imaging
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phenotypes derived from FreeSurfer and SynthSeg. GMV, gray matter volume; WMV, white matter volume;
sGMV, subcortical gray matter volume; CSF, ventricle volume; TCV, total cerebrum volume.

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted January 18, 2023. ; https://doi.org/10.1101/2023.01.13.23284533doi: medRxiv preprint 

https://doi.org/10.1101/2023.01.13.23284533


Figure 5. Comparison of regional brain development modeled in clinical controls (SLIP) and research controls
(LBCC). In the top panel, age at peak regional volume for cortical regions is illustrated on the cortical surface
using the sulcal-based Desikan-Killiany parcellation, with values averaged across left and right hemisphere
regions. In the bottom panel, a scatterplot illustrates the correlation between age at peak regional volume in
clinical and research controls (Spearman’s r=0.697, Pspin < 0.0006). In the scatterplot, the size of each point is
proportional to the average size of the brain region it represents.
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Figure 6. The distribution of phenotype centiles calculated using the GAMLSS models for the global
FreeSurfer imaging phenotypes. There was no statistical difference in the centile distributions for each
phenotype based on the clinical indication for the scan (developmental disorder, DD; clinical eye or vision
finding, EV; headache, H; other, O; suspected seizure, SS). Phenotypes are GMV, gray matter volume; WMV,
white matter volume; sGMV, subcortical gray matter volume; CSF, ventricle volume; TCV, total cerebrum
volume.
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Supplementary Materials

Harmonized MPRAGE T1-weighted Sequence

The radiology department implemented a standardized high resolution T1 weighted scanning protocol included
in every clinical scan session starting in 2008. The sequence is a sagittal MPRAGE with voxel resolution of
0.9mm x 0.9mm and slice thickness of 0.9mm with ranges of TE = 1900-2050ms, TR = 2.45-2.55ms, and TI =
900-1050ms based on scanner bore size and gradient strengths. The dimensions of each scan are 256 x 256
voxels per slice and 192 slices, although the technologist had the liberty of decreasing the number of slices in
the sagittal plane as needed to avoid spending gradient time scanning non-tissue (air) depending on patient
head size. The estimated time to obtain a single scan using this protocol is approximately 4:26 minutes for the
full acquisition. The reason for this implementation was to achieve a uniform isotropic acquisition with adequate
gray-white differentiation across clinical imaging studies that would serve the evaluation of a wide range of
pathologies and could be easily reformatted into other planes as needed.

Data Curation

First, an SQL query was performed to obtain radiology reports of brain MRI scans taken between 1992 and
2021 (N > 120,000 reports). Each radiology report contained both findings and overall impressions and was
signed by a licensed neuroradiologist. A subset of the total reports were manually examined to identify scans
where no significant imaging pathology was reported. The positive findings were described in terms of the
tissue abnormalities, their radiographic properties, and their location while negative findings were explicitly
described a lack of tissue abnormalities. Anonymous exemplar reports in Supplementary Table 1 demonstrate
positive radiology findings and negative radiology findings, which were excluded and included in the SLIP
dataset, respectively. To date, 10,116 reports have been manually examined of which 3,987 have been
identified as SLIP.

A list of 1,013 scan sessions from the identified SLIP reports (N=3,987) were compiled into a scan request.
The request for these scan sessions was submitted to the radiology department by an honest broker (a person
who is authorized to view clinical data with the purpose of removing identifying information on behalf of another
party) using biomedical informatics resources hosted at the hospital. The honest broker obtained anonymized
scans for 731 sessions from the picture archiving and communication system (PACS) server used by the
radiology department to store, organize, and communicate about medical imaging data. The 30% data loss
between the number of requested scans and the number of delivered scans results from the missing sessions
not being available on the PACS server either because the scan was from an external site or because the scan
was not migrated to digital storage when digital scan storage first became available.

The scans were converted from DICOM format to NIFTI format using the tool heudiconv (version 0.9.0)
(Halchenko et al 2020) and organized according to the Brain Imaging Data Structure (BIDS) standard
(Gorgolowski et al 2016) using the CuBIDS tool developed by Covitz et al (Covitz et al 2022). CuBIDs was then
used to filter the data based on parameters in the metadata. Initial filtering to remove scans with large voxels
and large interslice distances produced a set of 1,266 high resolution MPR scans. Of these scans, 22 were
removed due to missing metadata (N=1,244) and 72 were removed because they had been derived at the
scanner workstation (N=1,172). The first high resolution (1x1x1 mm or smaller voxels) non-contrast MPRAGE
scan with more than 60 slices was designated as the representative scan for each 3T session. The
identification of the representative scans was greatly aided by the radiology department’s standardized ~1mm
isotropic MPRAGE T1-weighted sequence (see above).

Manual Quality Assessment
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The representative scans underwent manual and automated image quality assessment (Rosen et al 2018;
Bedford et al 2022). The scans were stratified into batches of at most 80 scans based on age group (0-2 years,
2-5 years, 5-10 years, 10+ years). For each scan, three slices from each dimension (9 slices per scan) were
pseudorandomly selected from a range of 20 slices centered around the origin (in MNI space) and midpoints in
each cardinal direction. The slices were saved as .PNG files and two independent raters (interrater agreement
across scans of 0.917) evaluated image quality of each using a Jupyter notebook accessed via a
HIPAA-compliant server. The images were rated as being poor quality (grade of 0), acceptable quality (grade of
1), or highest quality (grade of 2). The grades of the images were averaged across the raters and scans with
averages of 1.0 and higher were used in the statistical analysis.

Processing

Two segmentation pipelines were used to extract imaging phenotypes: a FreeSurfer based pipeline and a
SynthSeg based pipeline.

The FreeSurfer pipeline used several FSL tools to preprocess the scans: it first reoriented the scan to the
MNI152 atlas (Fonov et al 2011) using fslreorient2std (Jenkinson et al 2012), removed the facial features using
mri_deface, and finally performed a rigid AC/PC alignment to MNI152 using flirt. The preprocessed scans
underwent image segmentation using the full recon-all pipeline from either FreeSurfer 6.0.0 (Fischl et al 2004)
for patients over the age of 3 years or Infant Freesurfer 6.0.0 for patients under the age of 3 years (Zöllei et al
2020).

The SynthSeg pipeline performed brain and subcortical structure segmentation using SynthSeg+ (Billot et al.
2021). SynthSeg+ is an emerging deep learning based algorithm designed to perform automated brain
segmentation on scans FreeSurfer might find difficult to work with due to resolution issues or patient motion.
We used the pretrained models available on GitHub (https://github.com/BBillot/SynthSeg) .

Each pipeline produced quantitative volumetric measurements subsequently referred to as “imaging
phenotypes” that were used along with demographic and quality assessment information for each scan in
downstream analyses. A description of the five primary volumetric imaging phenotypes and how they were
calculated for each pipeline can be found in Supplemental Table 4. Additionally, the FreeSurfer pipeline
produced 34 regional cortical volumes quantified using the sulcal-based Desikan-Killiany parcellation (Desikan
et al 2006).

An additional metric-based quality check was performed to ensure neither pipeline produced egregiously poor
segmentations. The relative difference between corresponding imaging phenotypes from each pipeline was
calculated. Two scans with relative differences close to 2 across all five primary volumetric imaging phenotypes
were excluded. These scans were for patients under the age of 2 weeks post-birth and contained more motion
in their image volumes than seen in the manual quality assessment.

Statistical Analysis

We sought to compare clinical brain growth charts to previously published, publicly available research brain
growth charts derived from the LBCC reference dataset of 123,984 MRIs across more than 100 primary
studies (www.brainchart.io) (Bethlehem, Seidlitz, and White et al. 2022). As detailed previously, brain growth
charts were constructed using generalized additive models for location, scale, and shape (GAMLSS): a
distributional regression approach that allows for modeling the mean, variance, and higher-order statistical
moments in terms of flexible nonlinear associations using covariates of interest (Stasinopoulos et al 2017). For
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a more accurate comparison of the five global volumetric imaging phenotypes in this work, a subset of the
LBCC data processed either using FreeSurfer 6.0.0 or Infant FreeSurfer was used as the basis for similarly
constructed SLIP-age limited LBCC GAMLSS growth charts.

Prior to growth chart modeling, we used ComBat, a batch correction approach adapted from statistical
genomics, to harmonize the imaging phenotypes across scanners (Johnson and Li 2007; Fortin et al 2017;
Pomponio et al 2019). Our previous work suggested that harmonization was comparable across using either
ComBat or GAMLSS (including site as a random effect in GAMLSS models). In the present paper we elected
to use ComBat to harmonize between scanners, which allowed the whole SLIP cohort to be treated as a single
study in comparison with the Lifespan models. Specifically, we used the Python implementation of
neuroHarmonize (version 2.1.0) (  https://github.com/rpomponio/neuroHarmonize) (Pomponio et al, 2019).
ComBat was used to control for the effect of MR scanners while preserving the effect of other model
covariates, notably age at scan, patient sex, and clinical indication for scan.

GAMLSS was used to fit growth charts of SLIP data following a similar protocol as LBCC. A generalized
gamma distribution was used to link each imaging phenotype to predictor variables using the GAMLSS
package in R (version 5.4-10) (Stasinopoulos et al 2017). The predictor variables in these models included age
and sex as reported in the electronic health record. For the FreeSurfer-based analysis, the Euler number, a
robust marker of image quality, was also included (Rosen et al. 2018). As detailed previously for LBCC growth
charts, the mean and variance of each GAMLSS was modeled by a non-linear age effect using third-order
fractional polynomials, while an intercept term alone was employed for model skewness allowing for shared
skewness across the age range.
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Supplemental Table 1. Anonymous examples of radiology reports included in and excluded from the SLIP
dataset. Exemplar reports have been edited for brevity while including context supporting inclusion/exclusion of
the data from the SLIP cohort. Sentences pertaining to pathology have been italicized.

Exemplar Report Included in SLIP? Reason

The ventricular system is normal in size shape and configuration. There
are no intracranial mass lesions mass effect or midline shift. No abnormal
fluid collections are identified. There are no areas of abnormal
parenchymal signal intensity on these sequences. There are no areas of
abnormal enhancement following contrast administration. The visualized
major intracranial vessels appear patent. No definite abnormality is seen
in the visualized portions of the orbits. The middle ear cavities mastoid air
cells and paranasal sinuses are clear.

Yes No pathology reported

… The visualized major intracranial vessels appear patent. No definite
abnormality is seen in the visualized portions of the orbits. There is
mucosal thickening in the sphenoid sinus and ethmoid air cells. Incidental
note is made of a small hyperintense lesion at the base of the tongue of
unclear significance.

Yes Reported pathology not in
brain

The ventricular system is normal in size shape and configuration. The left
lateral ventricle is slightly larger compared to the right likely a normal
variant. There are no intracranial mass lesions and there is no mass effect
or midline shift. No abnormal fluid collections are identified. There are no
areas of abnormal parenchymal signal intensity on these sequences.
There is minimal protrusion of rounded cerebellar tonsils below the
foramen magnum by approximately 4 mm not meeting criteria for Chiari
malformation. There is no significant crowding of structures at the
foramen magnum. The pituitary is normal in size and configuration…

Yes Reported pathology within
range of an anatomical
variant

The ventricular system is normal in size shape and configuration. There
are no intracranial mass lesions and there is no mass effect or midline
shift. No abnormal fluid collections are identified. There are no areas of
abnormal parenchymal signal intensity on these sequences. There are
low-lying mildly pointed cerebellar tonsils approximately 5 mm below the
level of the foramen magnum. The dorsal CSF space at the craniocervical
junction is mildly reduced. There is preserved CSF space along the
ventral aspect of the craniocervical junction. This constellation of findings
is in keeping with a mild Chiari I malformation. There are no areas of
abnormal enhancement following contrast administration…

No Reported pathology out of
range of an anatomical
variant

Allowing for differences in technique there has been no significant interval
change of the multiple scattered foci of T2 hyperintensity in the
hypothalamus and chiasmatic region globi pallidi thalami medial temporal
lobes dorsal pons medulla middle and inferior cerebellar peduncles and
bilateral cerebellar hemispheres in keeping with spongiform dysplasia.
Some of the lesions appear slightly less conspicuous than on prior study
which is however most likely technical in nature. No significant interval
change of the confluent foci of T2/FLAIR hyperintensity in the left
cerebellar hemisphere extending to the cortex. The left cerebellar
hemisphere remains slightly larger than the right one. There is again
thickening of the fornices and anterior commissure in the context of
underlying neurofibromatosis type 1 and optic pathway glioma. There is
no midline shift acute hemorrhage or acute infarction. There is stable
prominence of the lateral ventricles. No abnormal fluid collections are
identified. The posterior pituitary bright spot is again not seen as
demonstrated on multiple prior imaging studies. The visualized major
intracranial vessels appear patent. There is moderate mucosal thickening
in the right sphenoid sinus. There is diffuse mild mucosal thickening in the
remainder of the paranasal sinuses. The middle ear cavities and mastoid
air cells are clear.

No Reported pathology in brain;
pathology in brain noted in
previous study/studies
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Supplemental Table 2. Demographics of the LBCC subset of the same age range as the SLIP data used to
generate the median centiles in the global imaging phenotype trajectories. Participants in these studies older
than 22 years were excluded from the comparison with the SLIP data.

Study Age Range (Median) in Years Total Female Male

Total 0.42 - 22 (14) 8346 3399 4947

ABCD 9 - 10.9 (9.7) 376 115 221

ABIDE1 6.5 - 22 (13.6) 859 136 723

ABIDE2 5.1 - 22 (11.5) 647 139 508

ADHD200 7.2 - 21.7 (11.2) 809 294 515

AOBA 11.2 - 21.2 (19.2) 132 39 93

AOMIC 1000 19 - 22 (21) 362 187 175

ASRB 18 - 22 (21) 37 21 16

BHRCS 5.8 - 21 (10.1) 717 314 403

BSNIP 8.9 - 22 (18.2) 147 71 76

CAMFT 12.5 - 16.4 (14.9) 68 35 33

cVEDA 4.7 - 22 (14.6) 1162 482 680

EMBARC 17.3 - 22 (19.2) 41 30 11

Female ASD 6.1 - 17.2 (11.6) 358 180 178

IBIS 0.42 - 2.2 (0.6) 394 148 246

ICBM 17.2 - 21.2 (19.2) 149 82 67

IMAGEN 12 - 22 (14) 1792 912 880

LA5c 21 - 22 (21) 29 18 11

MCIC 17.2 - 21.2 (19.2) 47 14 33

Narratives 2 - 22 (20) 135 75 60

SALD 19 - 22 (21) 40 28 14

STRIVE 18.3 - 22 (20.7) 35 35 0

WAYNE 18 - 22 (19.5) 10 6 4
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Supplemental Table 3. Specifications and number of scans for each scanner. Scanner ID assigned based on
number of scans.

Scanner ID Number of Scans Manufacturer Model Name Software Versions

Scanner 1 155 Siemens TrioTim Syngo MR 2006T 4VB12T

Scanner 2 84 Siemens TrioTim Syngo MR B15

Scanner 3 84 Siemens Verio Syngo MR B15V

Scanner 4 14 Siemens Trio Syngo MR 2004A 4VA25A

Scanner 5 13 Siemens Verio Syngo MR B15V

Scanner 6 11 Siemens Trio Syngo MR 2004A 4VA25A

Scanner 7 6 Siemens Skyra Syngo MR E11

Scanner 8 2 Siemens Skyra Syngo MR D13C

Scanner 9 3 Siemens Prisma Fit Syngo MR D13D

Supplemental Table 4. A description of how each of the primary five volumetric imaging phenotypes were
calculated from the FreeSurfer and SynthSeg+ outputs.
Imaging Phenotype FreeSurfer SynthSeg+

GMV (Gray Matter Volume) CortexVol left cerebral cortex + right cerebral cortex

WMV (White Matter Volume) CerebralWhiteMatterVol left cerebral white matter + right cerebral white matter

sGMV (Subcortical Gray
Matter Volume) SubCortGrayVol

left thalamus + left caudate + left putamen + left
pallidum + left hippocampus + left amygdala + left
accumbens area + right thalamus + right caudate +
right putamen + right pallidum + right hippocampus +
right amygdala + right accumbens area

CSF (Ventricular Volume) BrainSegVol -
BrainSegVolNotVent

left lateral ventricle + right lateral ventricle + left
inferior lateral ventricle + right inferior lateral ventricle
+ 3rd ventricle + 4th ventricle

TCV (Total Cerebrum Volume) GMV + WMV GMV + WMV
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Supplementary Figure 1. The distribution of phenotype centiles calculated using the GAMLSS models for the
global FreeSurfer imaging phenotypes displayed in relation to the year of each scan.
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Supplementary Figure 2. Growth trajectories of the five global imaging phenotypes compared across
datasets and image processing pipelines compared to the full lifespan growth chart models publicly available
from the Lifespan Brain Chart Consortium (LBCC). The clinical scans with limited imaging pathology (SLIP)
were processed with FreeSurfer and SynthSeg. For each imaging phenotype, the first column displays the FS
phenotype, the 50th centile line from growth charts of that phenotype estimated with GAMLSS (solid line), and
the 50th centile line from the full lifespan LBCC growth charts also estimated with GAMLSS (dashed line). The
second column displays the SS phenotype, the 50th centile line from growth charts of that phenotype
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estimated with GAMLSS (solid line), and the 50th centile line from the full lifespan LBCC growth charts
(dashed line). GMV, gray matter volume; WMV, white matter volume; sGMV, subcortical gray matter volume;
CSF, ventricle volume; TCV, total cerebrum volume.
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