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Simple summary: Colorectal cancer is a heterogeneous disease. Several efforts have 

been done to characterize this heterogeneity but they have not impact in clinic. In this 

work, we used a novel analysis approach based on identifying layers of information 

using expression data from colorectal tumors and characterize three different layers of 

information: one layer related to adhesion with prognostic value, one related to 

immune characteristics and one related to molecular features. The molecular layer 

divided colorectal tumors in stem cell, Wnt, metabolic, and extracellular groups. These 

molecular groups suggested some possible therapeutic targets for each group. 

Additionally, immune characteristics divided tumors in tumors with a high expression 

of immune and viral mimicry response genes and with a low expression, suggesting 

immunotherapy and viral mimicry related therapies as suitable for these immune-high 

patients. 

Abstract 

Colorectal cancer (CRC) is a molecular and clinically heterogeneous disease. In 2015, 

the Colorectal Cancer Subtyping Consortium classified CRC into four consensus 

molecular subtypes (CMS), but these CMS have had little impact on the clinical 

practice. The purpose of this study is to deepen into the molecular characterization of 

CRC. A novel approach, based on probabilistic graphical models (PGM) and sparse k-

means-Consensus Cluster layer analyses was applied in order to functionally 

characterize CRC tumors. First, PGM was used to functionally characterize CRC, and 

then, sparse k-means-Consensus cluster was used to explore layers of biological 

information and establish classifications. To this aim, gene expression and clinical data 

of 805 CRC samples from three databases were analyzed. Tree different layers based 

on biological features were identified: adhesion, immune and molecular. The adhesion 

layer divided patients into high and low adhesion groups, with prognostic value. The 

immune layer divided patients into immune-high and immune-low groups, according 

to the expression of immune-related genes. The molecular layer established four 

molecular groups related to stem cells, metabolism, Wnt signalling pathway and 

extracellular functions. Immune-high patients, with a higher expression of immune-

related genes and genes involved in viral mimicry response may be benefit for 

immunotherapy and viral mimicry-related therapies. Additionally, several possible 
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therapeutic targets have been identified in each molecular group. Therefore, this 

improved CRC classification could be useful for searching new therapeutic targets and 

specific therapeutic strategies in CRC disease. 

Keywords: colorectal cancer, layer analyses, molecular characterization, immune, 

personalized therapies. 
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1. Introduction 

Colorectal cancer (CRC) has been identified as the most prevalent tumor. According to 

GLOBOCAN, there were 19.3 million of new cases and 10 million of cancer deaths 

worldwide in 2020. CRC ranks third in terms of incidence, representing the 10 % of 

new cancer cases, but the second in terms of mortality, with 940,000 estimated deaths 

[1]. CRC is a molecularly heterogenic disease, in which molecular alterations influence 

the growth and survival of tumor cells, as well as their differentiation, apoptosis, and 

distant metastasis [2]. The heterogeneity presented by this cancer has also been 

related to the anatomical location of the tumor, since the proximal and distal colon 

have different embryological origins [3]. In this context, Bufill et al. established the first 

classification of colorectal cancer, defining two groups: group I or proximal if the tumor 

was located on the right side, and group II or distal when located on the left side [4]. 

The American Joint Committee (AJCC) on Cancer tumor-node-metastasis (TNM) staging 

system is the most common staging system in clinical settings. However, a detailed 

analysis of the prognostic significance of the 8th edition TNM classification for CRC 

tumors showed that this staging system is not enough accurate for evaluating the 

prognosis of CRC in the clinic [5].  

Until 2015, different genetic classifications for CRC have been proposed. In that year, 

the international CRC Subtyping Consortium (CRCSC) was created a consensus on 

molecular genetic expression subtyping of CRC using a pooled molecular genetic 

analysis of 4151 colon tumors. Four colon cancer consensus molecular subtypes (CMS) 

were identified: CMS1 (microsatellite instability immune, 14%), CMS2 (canonical, 37%), 

CMS3 (metabolic, 13%), and CMS4 (mesenchymal, 23%), 13% of the samples could not 

be classified into any of the four described molecular subtypes [6]. These unclassified 

tumors could present high intratumor heterogeneity or correspond to an intermediate 

phenotype, with characteristics belonging to different molecular subtypes [7]. In non-

metastatic disease, the poor prognostic value of CMS4 and the relatively favorable 

prognosis of CMS1 and CMS2 have been established [7]. Moreover, different studies 

established associations of CMS with treatment outcomes [8-10], and their potential 

for clinical use in predicting both prognosis and response to systemic therapy has been 

recently evaluated with encouraging results [6]. Clinical and therapeutic utility of the 
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different molecular classifications has been discussed [11] but, despite the increasing 

knowledge, treatments based on a molecular subtype are not currently used in the 

clinical decision making [12].  

Computational analyses applied to high-dimensional omics data allow a deeper 

characterization of the molecular and immune features of tumors. Probabilistic 

graphical models (PGMs) have been previously used to identify differences in biological 

processes among several tumors types [13-18]. Classification methods, such as sparse 

k-means [19], and Consensus Cluster (CC) [20], have previously demonstrated their 

utility in the establishment of tumor and immune subtypes for breast and bladder 

cancers [13, 18]. 

The main objective of this study is to expand the knowledge about the molecular 

classification of CRC, according to the different biological realities of the tumor, with 

the aim to increase the clinical value of the already established molecular groups.  
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2. Material and methods 

2.1. Data search and curation 

Three colorectal tumor gene expression databases (GSE17536, GSE35896, and 

GSE39582) were analyzed. The resulting database was processed, removing control 

and duplicated probes. For this purpose, the variance of each probe was calculated 

and the most variable probe per gene was chosen. In addition, the batch effect due to 

the combination of independent databases was corrected using the limma R package 

[21]. Information about the CMS group of each sample was downloaded from the 

Synapse platform [22]. Finally, clinical data from the three databases were collected 

and unified for further analysis. 

2.2. Gene selection and probabilistic graphical model analysis 

First, those genes with the higher standard deviation in their expression across the 

dataset (standard deviation >J2) were selected to build the PGM, as previously 

described [18]. Briefly, gene expression data were used without other a priori 

information and the analyses were done using grapHD package [23] and R v3.2.5 [24]. 

PGMs are undirected acyclic graphs built in two steps: in the first step, the spanning 

tree that maximizes the likelihood was found, and then, the graph which preserved the 

decomposability and minimizing the Bayesian Information Criterion (BIC) with the 

simplest structure was chosen by a forward search that successively adding edges. The 

resulting network was split into several branches and the most representative function 

of each branch was established by gene ontology analyses using DAVID 6.8 webtool 

[25]. “Homo sapiens” was used as background and categories Biocarta, GO-FAT and 

KEGG were selected.  

To make comparisons between groups of samples, functional node activities were 

calculated as previously described [18]. Briefly, the mean expression of all the genes 

included in one branch related to the main function of this branch was calculated. 

Differences in functional node activity were assessed by non-parametric tests.  

2.3. Biological layer analyses 
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Sparse K-means and Consensus cluster algorithm (CC) were used to explore the 

molecular information of CRC samples, as previously described [26]. Sparse K-means 

assigns a weight to each gene according to its relevance explaining the main variability 

source on the database. Then, using the genes that were selected by sparse k-means, 

CC was applied to define the optimum number of groups for each case. Once genes 

relevant to a layer of information were identified, they were removed from the dataset 

and the analysis was done again with the remaining genes, allowing the identification 

of different layers of information. Once the information layers were generated, gene 

ontology analyses were performed for each layer to derive functional information. 

Sparse k-means was performed using sparcl package [19] and CC was performed using 

Consensus Cluster Plus package [20] and R v3.2.5 [24]. 

Then, we used the biological layer information to establish different classifications 

based on different tumor features. Differential expression patterns among groups 

were analyzed by Significance Analysis of Microarrays (SAM), defining a false discovery 

rate (FDR) below 5% [27]. These analyses were carried out using TM4 Multiexperiment 

Viewer (MeV) 4.9 software [28].  

2.4. Statistical analyses 

GraphPad Prism v6 was used for basic statistical analyses. Network visualization were 

done in Cytoscape software [29]. Differences in node activity were evaluated using the 

Kruskal-Wallis comparison method and Dunn's multiple comparison tests. Survival 

curves were estimated using the Kaplan-Meier method and compared with the log-

rank test, using disease-free survival (DFS) as the event. DFS was defined as the time 

elapsed between surgery and new onset of disease. All p-values were two-sided and 

considered statistically significant below 0.05. 
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3. Results 

3.1. Pre-processing of gene expression and clinical data 

Gene expression datasets (GSE17536, GSE17536 and GSE39582) from the Gene 

expression omnibus repository [30] were merged, including probes with expression 

data in all datasets. After duplicated probes were removed, batch effect was corrected 

and a variability filter was applied, dataset with 1,700 genes and 805 samples was 

obtained. 177 samples were from the GSE17536, 62 samples from GSE35896, and 566 

samples from GSE39582.  

3.2. Patient characteristics 

RNA-seq data from eight hundred and five CRC patients was used in this study. Clinical 

characteristics of the cohort were summarized in Sup Table 1. The median of follow-up 

was 37 months and 36 relapses occurred. 

132 samples were assigned to CMS1 (16.3%), 315 samples were assigned to CMS2 

(39%), 97 samples were assigned to CMS3 (12%) and 188 samples were assigned to 

CMS4 (23.3%). Thus, 73 samples (9.4%) were not assigned to any CMS. 

 

3.3. Functional characterization 

A PGM was built with the gene expression profile of the 1,700 more variable genes. 

Seeking for functional structure, 13 functional nodes with an overrepresented 

biological function were defined: immune, adhesion, inflammatory response, somatic 

stem cell, extracellular matrix, cellular response, extracellular response, nucleus, Wnt 

signaling pathways, plasmatic membrane, regulation of cardiac conduction, transport, 

and metabolism (figure 1 and supplementary table 2)). 
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Figure 1: Probabilistic graphical model built using the 1,700 more variable genes in the 

colorectal cancer cohort. Each box represents one gene. Functional nodes are highlighted in 

the PGM.  

3.4. Biological layer analysis 

The sparse k-means-CC workflow analyses identified nine biological layers. Each layer 

was split into two groups with the exception of the second one, which optimal 

classification turned out to be in three groups. Each layer main function was 

characterized through gene ontology (Table 1). Layer 1 and 5 were related to adhesion 

processes, layers 2 and 6 were related to metabolic pathways and layers 3 and 8 were 

related to immune response. The two adhesion layers and the two immune ones were 

equivalent, respectively, dividing CRC patients into similar groups (Sup Figure 1). 

Therefore, three main biological layers of information were established: an adhesion 

layer, an immune layer and a molecular layer, the last one grouping all the information 

provided by metabolic, extracellular, and digestion classifications.  

Layers Genes  Number of 

groups 

Main gene ontology 

1
st 98 2 Cellular adhesion 

2
nd

 53 3 Metabolic pathways 

3
rd

 131 2 Immune response 

4
th

 32 2 Digestion 

5
th

 148 2 Cellular adhesion 
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Table 1: Biological molecular layers obtained by the sparse k-means-consensus cluster 

workflow analyses and the number of groups in which CRC patients were divided according to 

each layer. 

3.5. Adhesion layer 

First and fifth layers were related to cellular adhesion, and divided the samples in a 

redundant way across the database, so both layers were merged into the Adhesion 

layer. Genes included in Adhesion layer were showed on Supplementary Table 3.  CC 

determined that samples should be divided by their adhesion features into two 

different groups: adhesion 1, including 454 samples, with lower expression of the 

adhesion genes, and adhesion 2, including 351 samples, with higher expression of the 

adhesion genes (Figure 2A). Differentially expressed genes between Adhesion groups 

were identified using SAM and their mainly codified for proteins located in the 

extracellular matrix, like collagens, and were related with adhesion functions (figure 2B 

and supplementary table 4). Patients with low adhesion tumors had better prognosis 

(p= 0.0098, HR= 0.42, 95%CI=(0.21-0.81)) (Figure 3). Additionally, there were 

differences in DFS combining the information of the tumor stage and adhesion groups, 

having adhesion-high stage 3/4 tumors significantly worse prognosis and being 

adhesion-low stages3/4 tumors comparable in prognosis to adhesion-high stages 1/2 

tumors (Figure 3B). No differences in the distribution in each adhesion group according 

to tumor location and stage were found. 

6
th

 92 2 Metabolic pathways 

7
th

 78 2 Extracellular response 

8
th

 89 2 Inflammatory response 

9
th

 88 2 Ion calcium and cellular transport 
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Figure 2: A. Heatmap of the mean gene expression of adhesion groups in the PGM. 

Red=overexpressed. Green= underexpressed. B. Differential expressed 100 genes in the 

adhesion layer between adhesion 1 and 2 groups identified by SAM.  
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P value 0.0098

Hazard Ratio (logrank)
Ratio (and its reciprocal)
95% CI of ratio

A/B
0.4202
0.2162 to 0.8101

 

P value 0.0016
 

Figure 3: A. Survival analysis of the adhesion groups. Low adhesion tumors showed a 

significantly better prognosis than high adhesion ones. B. Survival curves of the adhesion 

groups by tumor stage. DFS: disease free survival. 

In order to make a deeper characterization, differences between high and low 

adhesion groups were evaluated by functional node activity, as defined by the PGM 

(Sup figure 2). High adhesion group had higher activity of adhesion, immune response, 

inflammatory response, stem cells and extracellular matrix functional nodes. 

Meanwhile, low adhesion group presented higher activity of Wnt signaling pathway, 
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plasmatic membrane, transport, metabolism and regulation of cardiac conduction 

functional nodes.      

3.6. Immune layer 

As for the adhesion layer, the final immune layer was built merging genes from layers 

third and eighth (immune response and inflammatory response) (Supplementary table 

3).  The CC determined that the immune layer should be divided into two groups: 

immune 1, renamed as immune high group, with 364 tumors showing higher 

expression of genes related to immune response, and immune 2, renamed as immune 

low group, including 441 tumors with lower expression of these genes. Differences in 

gene expression between both groups were evaluated using SAM (Figure 4A). Most of 

the differential genes belonged to the human leukocyte antigen (HLA) complex gene 

family (Supplementary table 4). The immune layer had no prognostic value in our 

series (p=0.57, HR=0.82, 95%CI= (0.42-1.59))(Sup figure 3). No differences according to 

the distribution of tumor location and stage in each immune group were found. 
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Figure 4: A. Heatmap of the mean gene expression of immune groups in the PGM. Red= 

overexpressed. Green= underexpressed. B. Differential 100 genes between immune groups 

identified by SAM. 

Functional node activity analysis showed that tumors in the immune high group had a 

higher expression of genes in the immune, inflammatory, cellular adhesion and 

extracellular matrix functional nodes. On the contrary, immune low tumors had a 

higher expression of genes located in the transport, Wnt signaling pathways, nucleus, 

and regulation of cardiac conduction functional nodes (Figure 4, Sup figure 4 and 

supplementary table 4). 

As viral mimicry response has gained relevance in the last years in cancer related to 

immune response activation [31], we studied the expression of the genes involved in 

viral mimicry response in the two immune groups. These immune groups presented a 
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differential expression of the genes involved in viral mimicry response, being higher in 

the immune-high group (Figure 5).  
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Figure 5: Expression of genes involved in viral mimicry response in the two immune groups. 
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3.7. Molecular layer 

The molecular layer resulted from merging the second, fourth and sixth layers and it 

was divided into four groups by CC. Differences between molecular groups were 

evaluated using the PGM and the node activities. These analyses showed that 

molecular group 1 had a higher activity in stem cells, nucleus, regulation of cardiac 

conduction and transport nodes; molecular group 2 had a higher activity of 

metabolism node; molecular group 3 had a higher activity of nucleus and Wnt signaling 

pathways nodes; and molecular group 4 had a higher activity of cell adhesion, 

extracellular matrix and extracellular response nodes. Therefore, molecular group 1 

(221 tumors, 27%) which presented the highest activity for the stem cell functional 

node, was designed as Stem Cell group. Molecular group 2 (137 tumors, 17%), which 

had the highest activity of metabolism node, was named as Metabolic group. 

Molecular group 3 (300 tumors, 37%), which had the highest activity of Wnt signaling 

pathway node, was named as Wnt pathway group. Finally, molecular group 4 (147 

tumors, 18%), which had the highest activity of extracellular response and extracellular 

matrix nodes, was named Extracellular group (Figure 6A, Sup Fig 5).  

Stem cell node contained genes involved in stem cell maintenance such as VANGL2 or 

PBX1. Metabolic node was formed by genes directly involved in metabolism as PHGD 

or PSAT1 and other genes such as CTSE or REG4. Wnt pathway node contained genes 

involved in Wnt signaling pathway: RNF43, DKK4, LRP4, AXIN2, etc. Extracellular matrix 

node was mainly formed by collagens. Regarding the association of the defined 

molecular groups with clinical parameters, tumor location was distributed significantly 

different between molecular subtypes (p<0.0001), being Stem cell and Wnt groups 

mainly composed by distal tumors and metabolic and extracellular groups by proximal 

tumors. No differences regarding the distribution of tumor stage across molecular 

groups were found. 

Differentially expressed genes between these molecular groups were identified using 

SAM (figure 6B and supplementary table 4). Stem cell group had also an 

overexpression of genes related to fatty acid metabolism such as UGT1A1 or UGT1A5, 
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and mucins. Metabolic group had an overexpression of genes involved in metabolic 

pathways, including cholesterol or tryptophan metabolism. Wnt group had also an 

overexpression of genes involved in retinol metabolism or epidermal growth factor 

receptor binding among others. Extracellular group had an overexpression of plasma 

membrane genes.  

 

Figure 6: A. Heatmap of the mean gene expression of the four molecular groups in the 

PGM. Red=overexpressed. Green= underexpressed. B. Differential 100 between the four 

molecular groups.  
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The survival analysis of these four groups showed no significant differences, however 

extracellular group had a better prognosis than the other 3 groups (p=0.0086, HR=0.41 

95%CI: (0.13-0.73)) (Sup Figure 6).  

3.8. Comparison between layer classification and CMS 

Once we obtained three independent classifications, we compared them with the 

CMS. Patients belonging to the CMS1 and CMS4 were mostly immune high whereas 

CMS2 and CMS3 patients were mostly immune low. The adhesion layer divided the 

CMS1 patients by half and most of the CMS4 patients were included in the high 

adhesion group whereas CMS2 and CMS3 were included in the low adhesion group. 

According to the molecular layer, most of the CMS1 patients belonged to the 

extracellular molecular subtype, the CMS2 to the Wnt pathway and the CMS3 to the 

metabolic group (Figure 7, Sup Table 5).  

 

 

 

Figure 7:  All the classifications of CRC tumors. From top to bottom, immune layer, molecular 

layer, adhesion layer and CMS classification groups. 
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4. Discussion 

Colorectal cancer is a molecularly and clinically heterogeneous disease with high rates 

of incidence and mortality [1]. Both CRC incidence and mortality are expected to 

increase in the coming years [32]. Therefore, it is essential to explore new molecular 

markers and therapeutic applications to improve the prognosis and clinical 

management of this type of tumor. In order to solve the problems derived from the 

heterogeneity of colorectal cancer, the international CRCSC (Colorectal Cancer 

Subtyping Consortium) was created, where colon cancer was classified into four 

consensus molecular subtypes (CMS) [7]. The prognostic value of CMS classification 

has been proven in metastatic CRC [33-35] and recent meta-analysis studies find that 

prognostic and predictive value of the CMS are robust [6], but at the present time, 

CMS classification has no direct impact on clinical decision-making [12]. Many studies 

have tried to improve the CMS classification for more refined prognosis predictions 

[36-39]. However, discovery of new CRC patient stratification methods are still 

necessary for enhanced diagnosis of CRC, screening for novel therapeutic targets, and 

improving prognostic tools for CRC. 

PGMs have demonstrated their utility in the analysis of tumor omics data, being able 

to structure molecular information from a functional point of view [13, 14, 40]. 

Additionally, in other tumor types, such as bladder cancer, Sparse K-means-CC analysis 

provided independent layers of information from the molecular characteristics of the 

tumors, for instance, immune information [13, 18, 26]. Therefore, the generation of a 

classification using this novel approach based on the existence of different informative 

layers could help to translate into the clinical practice the molecular information 

generated in the context of CRCSC.  This approach allows us the identification of three 

different levels of information: the adhesion layer, the immune layer and the 

molecular layer.  

The adhesion layer has been divided into two groups, high and low adhesion, and had 

prognostic value, having the group of patients with low adhesion the best prognosis. 

Distant CRC metastatic tumor formation is considered to be strongly influenced by the 

stable adhesion of cancer cells to the small blood vessel walls [41]. In recent years, 

several studies have shown that adhesion molecules are responsible for tumor 
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progression and metastasis in colorectal cancer, however, the prognostic significance 

of these markers remains controversial [42]. Also, other adhesion proteins, like FLRT2 

and AMIGO2, overexpressed in high adhesion group and located in the adhesion and 

extracellular matrix nodes respectively, have been suggested to be useful biomarkers 

for the long-term prognosis of CRC patients [43, 44]. As adhesion genes, extracellular 

matrix genes were also overexpressed in the adhesion-high group. One of this genes 

was collagen triple helix repeat containing 1 (CTHRC1), related to an increase in cell 

migration, motility and invasion. CTHRC1 overexpression was related to poor prognosis 

of CRC patients and has been defined as a potential diagnostic and prognostic 

biomarker for patients with CRC [45, 46].  

Immunotherapy relies on harnessing the body’s immune system to kill cancer cells [47] 

and it has revolutionized the treatment of several cancers. Immunotherapy has also 

shown impressive results in the context of CRC. Patients with mismatch repair 

(dMMR)/microsatellite-instability-high (MSI-H) metastatic CRC has been observed to 

have a prolonged benefit to immune checkpoint inhibitors. Consequently, 

pembrolizumab and nivolumab +/− ipilimumab have obtained the Food and Drug 

Administration approval for MSI-H/dMMR metastatic CRC [48-50]. The immune layer 

divided CRC tumors into two groups, immune-high and immune-low. A classification 

capable of identifying immune-related differences, independent of molecular subtype, 

may identify tumors that will be good responders to immunotherapy. HLA complex 

genes were overexpressed in the immune-high group. Tumor cells may escape T cell 

attack through HLA downregulation [51], so overexpression of HLA complex genes 

matches with considering this group of patients as optimal candidates for 

immunotherapy. 

Immune-high group had also an overexpression of genes involved in viral mimicry 

response. Viral mimicry response is a cellular state of active viral response triggered by 

endogenous stimuli instead of viral infection, in the case of cancer, triggered by 

retrotransposons [31]. Viral mimicry interprets these retrotransposons as a viral 

infection and activates interferon response. Viral mimicry response also increases 

adaptive immune response through the increased expression of antigen processing 

components and increased expression of retrotransposon-derived peptides [52].  
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Several of the immune genes in which immune classification was based, were involved 

in antigen processing and presentation process, and they may be the cause of the 

activation of viral mimicry response. Moreover, cytidine analogues, azacytidine or 

decitabine, at low doses, have demonstrated anti-tumor efficacy in colorectal cancer 

cells by inducing viral mimicry [53] and also it has been demonstrated that they 

enhance the response to immune checkpoint inhibitors [54]. Therefore, a combination 

of viral mimicry-related drugs and immunotherapy could be an option for the immune-

high patients. 

The molecular layer has been divided into 4 groups: stem cells, Wnt pathway, 

metabolic and extracellular. Cancer stem cells (CSCs) can regulate cancer invasion, 

distant metastases, and therapy resistance in CRC, as well as contribute to the cancer 

recurrence of patients [55]. The stem cell subtype presented high expression of genes 

such as VANGL2 or PBX1, whose function was related to stem cell maintenance. 

Therefore, these biomarkers could be a possible avenue of study since colorectal 

cancer stem cells differ from normal stem cells in their tumorigenic potential and 

susceptibility to chemotherapeutic drugs [56] which would explain the high percentage 

of relapses in patients with this type of cancer.  

Wnt signaling pathway plays an important role in the pathogenesis of CRC [57]. 

Tumors of the Wnt molecular subtype presented high expression of genes such as 

RNF43, related to alterations in the Wnt signaling pathway [58]. RNF43 encodes an E3 

ubiquitin ligase that negatively regulates Wnt signaling and it is mutated in more than 

18% of colorectal adenocarcinomas and endometrial carcinomas. Mutations in RNF43 

have clinical relevance because implicates novel therapeutic options in CRC. Preclinical 

studies have shown that mutations in RNF43 make Wnt-induced cancer cells 

susceptible to pharmacological inhibition of Wnt signaling by porcupine. Porcupine is 

an O-acetyltransferase that is part of the Wnt pathway, and could be postulated as a 

possible therapy in this type of Wnt-induced tumors [59-61]. To date, five porcupine 

inhibitors have entered phase I/II clinical trials in patients with advanced solid tumors 

and showed promising preliminary clinical data [62, 63]. Porcupine inhibitors were 

well-tolerated, also when they were used in combination with anti-PD-1 therapy [64]  
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In tumors of the metabolic molecular group, a high expression of genes that play an 

essential role in cancer-specific metabolic reprogramming, such as PHGDH, has been 

observed [65]. PHGDH is a metabolic enzyme involved in the serine synthetic pathway 

and it appears to play a central role in supporting cancer growth and proliferation so it 

is a promising drug target for cancer therapy. Different PHGDH inhibitors have been 

reported but currently they have not yet led to the development of compounds that 

can be therapeutically used [65]. Other gene overexpressed in the metabolic group 

was phosphoserine aminotransferase 1 (PSAT1), a gene related to serine biosynthesis. 

Certain studies concluded that overexpression of PSAT1 is significantly associated with 

resistance to chemotherapy with irinotecan, 5-fluorouracil and leucovorin, so the 

inhibition of this gene could prevent patients of this group from developing resistance 

to chemotherapy [66]. Other genes involved in metabolism such as REG4 and CTSE, 

were also overexpressed in the metabolic subtype and they have been previously 

related to CRC prognosis. Regenerating islet-derived type 4 (REG4) is a member of the 

calcium-dependent lectin gene superfamily and it was associated with a relatively 

unfavourable prognosis in various cancers including CRC [67, 68]. Cathepsin E (CTSE) is 

an adverse prognostic factor for survival among rectal cancer patients receiving 

chemo-radiotherapy [69]. Cathepsins have been implicated to play a role in the 

invasion and metastasis of colorectal cancer. Inhibitors targeting some cathepsins like 

S and K are already in clinical evaluation [70] and inhibition of the Reg4-CD44/CD44ICD 

pathway has been proposed as a future therapeutic target for colon cancer patients 

[71]. The use of REG4 and CTSE inhibitors could be a targeted treatment for patients of 

this molecular group. 

The extracellular molecular group was characterized by a high expression of collagens, 

which could be one of the reasons why it is the subtype with the worst prognosis. 

Among extracellular matrix, adhesive components type I collagen is one of the 

important factors regulating cancer-related events at different tumorigenesis stages 

[72]  The COL1A1 gene encodes a pro-α1 chain of type I collagen and it has been 

demonstrated that is overexpressed in colon cancer and it may be a driving gene for 

colon cancer progression [73, 74]. Different inhibitors and drugs that regulate collagen 

biosynthesized processes and collagen distribution arrangement have been described 
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and preclinical studies on collagen-related therapy have demonstrated encouraging 

outcomes [75]. Patients of this molecular subtype could be candidates for collagen 

inhibitor therapies. 

We compared our three classifications of CRC tumors with the classification through 

CMS groups. The CMS classification mixed immunological, histological and molecular 

information. The present study has been able to corroborate some of the molecular 

characteristics defined in the CMS but it has also been possible to identify two layers of 

information that were independent for the molecular features of the CRC tumors 

related to adhesion and the immune status. These different levels of information 

allowed complementing the molecular characteristics exposed in the CMS and it has 

also been possible to add new information that allowed patients with different CMS to 

benefit from the same therapeutic strategy. 

For instance, although the CRCSC determined that all CMS1 patients were immune 

positive [7] , our results suggested that 80% of CMS1 patients were immune-high, 

while 20% of patients in the CMS1 group had low expression of immune response-

related genes. This would mean that these patients are not optimal candidates for 

immunotherapy. Moreover, most CMS2 as CMS3 tumors share the characteristic of 

having a low expression of immune genes (82% and 81% of patients, respectively), 

being  considered cold tumors that do not respond to immunotherapy [76]. However, 

our molecular classification showed that 18% of CMS2 patients and 19% of CMS3 

patients had a high immune status so they could be candidates for immunotherapy. 

Therefore, an analysis based on different biological layers allow a more accurate 

classification of CRC patients according to their immune status independently of the 

CMS group to which they belong. The molecular characterization obtained using the 

described analysis tools provided complementary information to that of the CMS 

group classification that may have important implications for the choice of treatment 

for each patient, such as immunotherapy. 

As for the CMS2 group, CRCSC exposed that this group presents a close similarity to 

the classical model of CRC carcinogenesis with activation of the WNT and MYC 

signalling pathways [7]. Although our molecular classification divided CMS2 patients 
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into the Wnt molecular subtype and the stem cell molecular subtype, both subtypes 

presented high functional activity of the Wnt signalling pathway-related node and both 

could benefit from porcupine Wnt pathway inhibition therapy. 

As for the CMS3 group, the CRCSC established that only patients in this group could 

benefit from possible therapies with PHGHD and PSAT1 or other metabolism-related 

molecules. 24.7% of CMS3 patients do not correspond to the metabolic molecular 

subtype, so other therapeutic options should be explored for these patients since, as 

seen in this study, they are not characterized by a high expression of genes related to 

metabolism even though they have been included in CMS3. 

Regarding the CMS4 group, our analysis determined that 74% of CMS4 patients were 

immune high. This fact is consistent with the CRCSC classification that described the 

relationship between CMS4 patients with the presence of high infiltration of cytotoxic 

T cells [77] and high expression of immune genes [7, 37] so, as with CMS1, these 

patients could be candidates for immunotherapy [78]. However, in this study, it has 

been possible to determine that 26% of CMS4 patients are immune low and therefore 

would not be good candidates for immunotherapy.  

On the other hand, CMS4 is the subtype with the worst prognosis [7]. Regarding the 

adhesion subtype, 98% of CMS4 patients belong to the high adhesion group and this is 

consistent with the survival analysis that determined that the adhesion layer had 

prognostic value, showing worse prognostic in high adhesion tumors. 

To sum up, this study allows minimizing the percentage of patients without a specific 

treatment since the layer classification allows adding information about immune and 

adhesion status. Thus, patients of the stem cell molecular subtype and the Wnt 

molecular subtype could benefit from porcupine inhibition therapy, patients of the 

metabolic molecular subtype from possible therapies related with REG4 and CTSE, and 

patients of the extracellular molecular subtype from possible therapies related to 

COL1A1. On the other hand, the classification of patients by immune subtype, 

independent of CMS, provides valuable information to select the most suitable 

patients for immunotherapy treatment and viral mimicry therapies. 
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The study has some limitations. First, a validation of all the obtained classifications in 

an independent CRC cohort is needed. In addition, a validation of the proposed 

therapeutic strategies for each group in cell cultures or murine models should be 

performed. Moreover, only 12% of the tumors were stage IV, so there were 

underrepresented, as happened in the CMS study. However, this is the group where 

possible molecular targets are most interesting because of their potential therapeutic 

utility. The study is a retrospective cohort, prior to immunotherapy administration 

which may change the prognosis of some patients, especially those with microsatellite 

instability. Finally, these groups should be study in the context of other clinical 

biomarkers such as RAS/RAF or microsatellite instability. 

Conclusions 

In conclusion, the generation of a classification of colorectal cancer according to the 

different biological realities of the tumor using probabilistic graphic models and layer 

analysis allows the identification of four molecular subtypes of colorectal cancer and 

established two extra independent classification based on adhesion and immune 

features, respectively. These classifications may help researchers and clinicians to 

search for new therapeutic targets and more specific treatments. 
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