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Abstract  16 

Emerging infection diseases (EIDs) are an increasing threat to global public health, especially when the 17 

disease is newly emerging. Institutions of higher education (IHEs) are particularly vulnerable to EIDs 18 

because student populations frequently share high-density residences and strongly mix with local and 19 

distant populations. In fall 2020, IHEs responded to a novel EID, COVID-19. Here, we describe 20 

Quinnipiac University’s response to SARS-CoV-2 and evaluate its effectiveness through empirical data 21 

and model results. Using an agent-based model to approximate disease dynamics in the student body, the 22 

University established a policy of dedensification, universal masking, surveillance testing via a targeted 23 

sampling design, and app-based symptom monitoring. After an extended period of low incidence, the 24 
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infection rate grew through October, likely due to growing incidence rates in the surrounding community. 25 

A super-spreader event at the end of October caused a spike in cases in November. Student violations of 26 

the University’s policies contributed to this event, but lax adherence to state health laws in the community 27 

may have also contributed. The model results further suggest that the infection rate was sensitive to the 28 

rate of imported infections and was disproportionately impacted by non-residential students, a result 29 

supported by the observed data. Collectively, this suggests that campus-community interactions play a 30 

major role in campus disease dynamics. Further model results suggest that app-based symptom 31 

monitoring may have been an important regulator of the University’s incidence, likely because it 32 

quarantined infectious students without necessitating test results. Targeted sampling had no substantial 33 

advantages over simple random sampling when the model incorporated contact tracing and app-based 34 

symptom monitoring but reduced the upper boundary on 90% prediction intervals for cumulative 35 

infections when either was removed. Thus, targeted sampling designs for surveillance testing may 36 

mitigate worst-case outcomes when other interventions are less effective. The results’ implications for 37 

future EIDs are discussed.   38 

Introduction 39 

 Emerging infectious diseases (EIDs) increasingly pose a threat to global public health. An EID is 40 

any pathogenic disease that has been newly introduced to an area or whose incidence has rapidly 41 

increased (1,2). Even after correcting for differences in sampling effort, EIDs have originated at an 42 

increasing rate since 1940 (3). Modern trends in global connectivity, population growth, and interactions 43 

at the human-environment interface are all theorized to contribute to the growth of EIDs by accelerating 44 

the rate at which local outbreaks can propagate globally (4,5). Novel diseases are an especially 45 

problematic subcategory of EIDs because there is no existing literature for these diseases on which public 46 

health officials can inform their responses. To reflect the threat of novel pathogens, the World Health 47 

Organization has placed Disease X on its list of priority diseases for research and public health planning 48 
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since 2015 (6). The Disease X designation is a placeholder for a yet unknown pathogen with the capacity 49 

to cause a global pandemic, and is intended to encourage the scientific and public health communities to 50 

develop response plans that can apply to non-specific pathogens (7). The Disease X concept became a 51 

reality in 2020 as the novel SARS-CoV-2 virus led to the ongoing COVID-19 pandemic. In light of 52 

concerns that new strains of coronaviruses or similar respiratory infections (e.g., influenza) could cause 53 

the next global pandemic (5,8), it is critical that the public health community take stock of what measures 54 

were most effective in early COVID-19 responses in order to prepare for the next EID or Disease X.  55 

Institutions of higher education (IHEs) pose unique public health challenges in the face of EIDs 56 

with droplet and airborne transmission, in part due to how most university-owned properties are 57 

structured. Most university-owned residences feature high densities of students living in individual rooms 58 

with high densities of rooms on each floor, which can accelerate disease transmission (9,10). Further, 59 

lavatory facilities in many university residences are shared between several rooms. This poses an 60 

additional challenge because basic hygiene practices, such as bathing and dental care, preclude masking, 61 

and surfaces such as faucets and door handles facilitate fomite transmission when applicable. Finally, 62 

transmission is likely to jump between university residences as their occupants intermingle at shared 63 

facilities (e.g., food services, athletic facilities, libraries) and in the classroom.  64 

Further, university-owned residences are differentiated from other residential facilities (e.g., 65 

hospitals, long-term care facilities, prisons) through the multiscale population mixing that is inherent to 66 

campus communities. On a local level, university students regularly mix with surrounding communities 67 

through student employment, peers in off-campus housing, interactions with friends and family outside of 68 

the university, and participation in community events. Additionally, most IHEs include students originally 69 

from populations beyond those surrounding the campus. This means that student populations can be 70 

expected to mix at intra- and international scales, especially at the beginning and end of semesters and 71 

following major holidays. This increased mixing can pose a double threat to infection containment. On 72 

the one hand, mixing could cause infections to spill over from IHEs into connected populations. On the 73 
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other hand, mixing can introduce infections into an IHE’s population, where the previously discussed 74 

factors can amplify disease transmission. 75 

Quinnipiac University is a suburban university located in New Haven County, Connecticut, USA. 76 

In the fall 2020, the University had 6,841 undergraduate students and 2,903 graduate students (11). The 77 

University allowed students to attend classes via an online-only or hybrid (i.e., partially in-person and 78 

partially online) modality. Approximately 7,100 students selected the hybrid modality. Roughly 55% of 79 

undergraduates lived on campus (11). University-owned residences included 15 dormitories, 10 80 

townhouses, and 53 free-standing houses that ranged in size from two to four bedrooms.  81 

In preparation for the 2020/2021 academic year, the University established a COVID-19 task 82 

force charged with developing a plan to allow in-person and remote instruction while minimizing the risk 83 

of COVID-19 transmission. Like other institutions (e.g., (12–15)), Quinnipiac de-densified classrooms to 84 

allow physical distancing and required facemask usage in most public spaces. The maximum capacity in 85 

university residences was reduced to no more than two students per room. To facilitate remote learning, 86 

classrooms were equipped with specialized audio-visual equipment, and professors at high risk for severe 87 

illness were allowed to teach online. The task force’s plan also emphasized student testing protocols to 88 

detect COVID-19 cases, and instituted isolation, quarantine, and contact tracing protocols upon case 89 

identification. The testing protocols used both random surveillance testing and symptom-based 90 

monitoring. To assist symptom-based monitoring, the University distributed a smart-phone application 91 

that logged the user’s COVID-related symptoms each day and instructed the user to seek testing when 92 

their symptoms suggested COVID-19 infection. The COVID-19 protocols required additional, fine-93 

grained decisions, such as the number of rooms needed for isolation and quarantine, the number of 94 

contact tracers required to follow transmission chains, and the optimal strategy for sampling students for 95 

surveillance testing. Because SARS-CoV-2 was a Disease X scenario, there was little data to inform these 96 

decisions. To address this knowledge gap, the task force formed a subcommittee to develop a model of 97 

how COVID-19 could spread through the student body during the fall semester based on available 98 
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knowledge about SARS-CoV-2 transmission, contact patterns in college-aged individuals, and the spatial 99 

structure of university-owned residences. The modeling team worked on the premise that not all students 100 

needed to be tested to reliably identify COVID-19 circulation amongst the student body. 101 

The modeling subcommittee used an open-source agent-based model for community COVID-19 102 

dynamics, Covasim, as a basis for their model, but modified Covasim to better reflect the nested housing 103 

structure found in university-owned residences (16). An agent-based model simulates a system using 104 

computational units, called agents, that interact with each other based on well-defined rules and seeks to 105 

explore what patterns arise in the simulation that are not immediately predictable based on the agents’ 106 

individual actions (17). Agent-based models are well-suited to inform policy decisions because they 107 

provide a granular depiction of their populations and explicitly simulate the behavior of individuals. As a 108 

result, individual-based interventions, such as contact tracing, and traits, such as contact networks, are 109 

more easily translated into the model. Covasim has been used to guide primary and secondary school 110 

reopening strategies in the United States and the United Kingdom (18–21) and was similarly adapted to 111 

guide public health policy at Boston University (22). However, this was the first use of the adapted form 112 

developed at Quinnipiac. 113 

In this paper, we detail what modifications we made to Covasim to better simulate a university’s 114 

student body in general and Quinnipiac University in particular. We also describe Quinnipiac’s COVID-115 

19 testing protocol, particularly the survey methodology design used to sample students for surveillance 116 

testing. Finally, we compare the performance of the model against the actual case numbers during the fall 117 

semester of 2020, evaluate the effectiveness of the University’s protocols, and discuss its implications for 118 

university responses to future Disease X scenarios. 119 

Materials and methods 120 

Covasim model  121 
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Our model extended the Institute for Disease Modeling’s Covasim model (16). Covasim is a 122 

stochastic, agent-based model of COVID-19 dynamics that assigns one agent to each individual or set of 123 

identical individuals. In our implementation, each agent represented one student. The model builds on a 124 

discrete-time susceptible-exposed-infectious-recovered model, but its agent-based structure allows it to 125 

explicitly incorporate relevant interhost properties, such as viral loads, age-dependent susceptibility and 126 

transmissibility, and heterogeneity in susceptibility, transmissibility, and recovery times. The model also 127 

organizes agents into sets of pools, each representing a different social context (e.g., home, work, and 128 

school). On each day, every individual forms a new contact network by sampling a Poisson-distributed 129 

number of agents from its pools, thus allowing the model to simulate heterogeneous population mixing 130 

through pool membership. Disease transmission randomly occurs when an infectious individual contacts a 131 

susceptible individual. The probability of transmission depends on the pool associated with the contact 132 

and on the current properties of each agent (e.g., infectious host’s viral load). Covasim assigns an 133 

outcome to each infection, such as whether symptoms develop, and every infection may be diagnosed 134 

through testing. The version of the Covasim model that we used, including the added features discussed 135 

here, are available through GitHub (https://github.com/kjamessoda/covasim.git) and within the 136 

F20ModelAndTesting branch.  137 

Contact network structure 138 

We modified Covasim’s contact pools so that the pools better emulated the structure of 139 

university-owned residences. Contact pools focused on housing structure rather than classroom structure 140 

because we assumed that the University’s physical distancing and masking policies would lower 141 

transmission rates within the classroom to a negligible level. This assumption was later confirmed 142 

through contact tracing data, and has been borne out in other university settings (23). Contact pools fell 143 

into four categories: community, floor, bathroom, and room. Every agent belonged to a single community 144 

pool. Then, subsets of the community pool formed floor pools, each representing students living on the 145 
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same floor of a dormitory or in a comparable unit of a university-owned residence. In turn, subsets within 146 

each floor pool formed bathroom pools, each representing students who shared the same bathroom, and 147 

subsets within the bathroom pools formed room pools, each representing a single set of roommates. A 148 

single room pool represented students living in free-standing houses. The mean number of contacts drawn 149 

from each pool to create a contact network could differ between pools (see Simulation Setup). Room 150 

pools were the exception to this rule; each agent’s contact network contained their roommates every day, 151 

an assumption that both the University’s contact tracing data and reports from other universities 152 

subsequently validated (9).  153 

To account for students living outside of university-owned housing, agents were divided into 154 

residential students and non-residential students. Non-residential students at Quinnipiac lived in diverse 155 

housing arrangements (e.g., cohabitating with other students, living with family members), so we did not 156 

represent their contact networks using floor, bathroom, and room pools. The community pool, however, 157 

functioned in the same manner for both student types.  158 

Imported infections 159 

To represent disease transmission from non-students to students, the model randomly selected 160 

agents to potentially transition to the exposed compartment without contacting an infectious student (i.e., 161 

an imported infection). Although exposed, infected, and recovered agents were eligible for selection, only 162 

susceptible agents transitioned. Residential and non-residential students were sampled separately each 163 

day, and the number of agents sampled was a Poisson random variable whose mean was proportional to 164 

the size of the agent group, the expected number of non-student contacts per student, and the estimated 165 

prevalence of COVID in Connecticut (see Simulation Setup; S1 Appendix).  166 

Conversion from R0 to probability of transmission 167 
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Covasim does not explicitly use the basic reproductive number (R0) as a model parameter. The 168 

closest analog is the base probability of transmission (β). Nonetheless, it is possible to extend Covasim’s 169 

assumptions to relate an a priori value for R0 to β (S1 Appendix). R0 is defined as the expected number of 170 

new infections in a fully susceptible, well-mixed population after a single infectious individual is 171 

introduced. If the age structure of the population emulates that of the United States (24) (though see Table 172 

A in S1 Appendix for a minor deviation), then Covasim’s models of viral load dynamics and disease 173 

transmission imply:  174 

𝛽 ≈
𝑅0 

8.093758𝑛𝑐
 175 

where 𝑛𝑐 is the expected number of contacts one individual has in one day. 176 

Interventions 177 

Covasim provides testing-based public health interventions and contact tracing interventions (16). 178 

Testing-based interventions receive a set of agents and change infected agents to the diagnosed state 179 

based on a provided test sensitivity. We set the sensitivity to 0.95 to emulate nasal swab PCR tests for 180 

SARS-CoV-2 virus (25). The model had a one-day delay between testing and diagnosis. Upon diagnosis, 181 

individuals were transferred to isolated populations and made no further contacts until entering the 182 

recovered compartment. Each diagnosis also led to a reported case in the model’s output. Testing-based 183 

interventions differed in how the sets of individuals to test were generated.  184 

We implemented three testing-based interventions in our simulations, each corresponding to one 185 

of the University’s public health interventions. In fall 2020, every member of Quinnipiac University, 186 

including students, was asked to complete a daily public health application that screened for COVID-19 187 

symptoms (MyOwnMed COVID-19 symptom application; MyOwnMed, Inc. Bethesda, Maryland 188 

20817). Students with symptoms were asked to contact Student Health Services, be evaluated, receive a 189 

COVID-19 test, and isolate until the results returned. Student Health Services also monitored the 190 
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symptom application dashboard and contacted students who reported COVID-19-like symptoms for 191 

further evaluation. To simulate the application’s impact, each day a symptom-monitoring intervention 192 

identified symptomatic agents in the simulation who had not been tested for COVID-19. The intervention 193 

transferred these students to the isolated population and tested them using the procedures above. If the 194 

student tested negative for SARS-CoV-2, they returned to the general population after the one-day delay. 195 

To account for imperfect app usage, we set the daily probability of detection to 0.5, corresponding to an 196 

expected one-day delay between symptom onset and detection. In addition to symptom-monitoring, the 197 

University randomly tested residential students based on a targeted sampling design and non-residential 198 

students using a simple random sample (SRS) (see Sampling Strategy). Since the model integrated the 199 

structure of university residences into its contact networks and differentiated students by housing status, 200 

we designed a second testing-based intervention to replicate the targeted design for residential students 201 

and a third to replicate the SRS for non-residential students.   202 

Contact tracing interventions were carried out by university contact tracers. To reflect this, after a 203 

testing-based intervention moved an infectious agent into isolation, a contact-tracing intervention 204 

retrieved the infectious individual’s contact network and quarantined its contacts to the isolated 205 

population. In our implementation, contact tracing always successfully identified roommate contacts, but 206 

all remaining contacts had a 0.75 probability of identification. To be cautious, there was a two-day delay 207 

within the simulation between when contact tracing started and when identified contacts moved to 208 

isolation; however, real tracing usually required less time. Quarantined individuals reentered the general 209 

population after 14 days if they tested negative for SARS-CoV-2 virus and after entering the recovered 210 

compartment if they tested positive. 211 

Simulation setup  212 

We simulated COVID-19 dynamics in the University’s student body between Aug. 31 and Nov. 213 

24, 2020, the period between the beginning of classes and the Thanksgiving holiday; nearly all university 214 
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students remained at home following Thanksgiving. Every simulation contained 3,636 residential 215 

students, each associated with a university property through their contact network structure (see Contact 216 

Network Structure), and 3,789 non-residential students, leading to a total population of 7,425 students. 217 

These population sizes slightly differ from the actual population sizes in fall 2020, which were 218 

unavailable during the summer. Every agent was randomly assigned an age between 18 and 22. Each 219 

simulation implemented the four interventions above (i.e., app-based symptom monitoring, targeted 220 

surveillance testing of residential students, simple random surveillance testing of non-residential students, 221 

and contact tracing). In accordance with the University’s testing schedule, the surveillance testing 222 

interventions ran on every simulated Tuesday and Wednesday. The symptom monitoring and contact 223 

tracing interventions ran daily. We estimated Connecticut’s COVID-19 prevalence to be roughly 2.8 224 

infectious individuals per 1,000 residents based on the statewide case incidence between Aug. 30 and 225 

Sept. 2, 2020 (S1 Appendix). This estimate informed the rate of imported infections in the simulations. 226 

We simulated four main scenarios, each pairing one of two R0 values (see Conversion from R0 to 227 

Probability of Transmission), 1.5 or 2.5, and one of two average contact rates, 8 contacts/day or 10 228 

contacts/day. Bharti et al. (26) informed the contact rates. Table 1 lists how the contacts were allocated 229 

across pools. Since non-residential students only belonged to the community pool, we allocated their 230 

remaining contacts to non-students under the assumption that non-residential students would mix more 231 

with the surrounding community. The rate of imported infections under each scenario was established 232 

based on the scenario’s probability of transmission and average contact rate (Table 2; S1 Appendix). 233 

Every scenario was run 1,000 times to generate a distribution of possible outcomes. The median outcome 234 

on each day was used as a prediction, and the 5th and 95th percentiles provided a 90% prediction interval. 235 

Table 1. Average number of contacts per day from each pool under two total contact rates. 236 

 8 contacts/day 10 contacts/day 

Pool Residential Non-Residential Residential Non-Residential 

Community 2.5 2.5 4 4 

Floor 2 - 2 - 
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Bathroom 3 - 3 - 

Room Full Pool - Full Pool - 

Non-Student 0.5 5.5 1 6 

 237 

Table 2. The rate of imported infections (in infections/week) under four scenarios with different basic 238 

reproductive numbers (R0) and average contact rates. 239 

   Average Contact Rate 

(contacts/week) 

   8 10 

Residential 

R0 

1.5 0.8279664 1.324746 

2.5 1.379944 2.207910 

Non-Residential 

R0 

1.5 9.490872 8.282943 

2.5 15.81812 13.80490 

 240 

Although it did not inform policy, we also assessed model sensitivity to the rate of imported 241 

infections by rerunning each main scenario with half and twice the rates provided in Table 2. Since there 242 

were initially no infected individuals in the simulations, every transmission chain must begin with an 243 

imported infection. Assuming that the expected number of infections in every transmission chain is 244 

constant given residential versus non-residential designation and that the susceptible pool does not 245 

become significantly depleted, the expected number of infections at the end of a simulation should be 246 

proportional to the rate of imported infections. We therefore measured the model’s sensitivity to the rate 247 

of imported infections as the scaling constant on this relationship as estimated using a least-squares line 248 

through the median predictions that is constrained to pass through the origin. Least-squares lines were fit 249 
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using routines in the SciPy Python library (27,28). Python code to implement each scenario is available in 250 

S2 Additional Material. 251 

Sampling strategy for surveillance testing 252 

To minimize the risk of initial spread, every student completed a PCR test for SARS-CoV-2 prior 253 

to coming to campus in August 2020 and again within two weeks of campus arrival. Subsequently, 254 

students were randomly sampled for testing. The student body was divided into four categories: 255 

residential students, non-residential undergraduates, non-residential graduate students, and student 256 

athletes (S1 Appendix).  257 

Most Quinnipiac students were residential students. For these students, we applied a targeted 258 

sampling design that combined strict stratified and cluster sampling methods. We defined building floors 259 

and off-campus houses as strata and determined the number of students to select from each stratum. 260 

Guided by model results, the sampling rate for each stratum was initially 15%. The choice of 15% gave 261 

the university the highest likelihood of detecting an outbreak, without having to test all students. 262 

Although a stratified sampling strategy would reduce the standard error on any resulting incidence 263 

estimate, our goal was to increase the likelihood of detecting an outbreak through even sampling coverage 264 

across floors, suites, and houses, rather than estimating epidemiological parameters. After establishing the 265 

sample size for each stratum, we used a cluster sampling method to randomly select students to test. Each 266 

cluster was a dorm room or suite. First, SRS selected the appropriate number of dorm rooms or suites for 267 

each stratum; then one student was sampled from each selected dorm room and suite through SRS. Such 268 

an approach maximized the number of dorm rooms and suites being selected.  269 

We used more traditional sampling designs for the remaining three student sub-populations. The 270 

sampling rate for student athletes was initially 80% and was stratified by team (e.g., men’s hockey, 271 

woman hockey, etc.). Non-residential undergraduate and graduate students were generally selected via 272 

SRS and initially at 25% and 15%, respectively, although each week’s sample had to contain at least one 273 
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student from every address that housed three or more students. As the semester progressed, we adapted 274 

each subpopulation’s sampling rate in response to trends in the observed case incidences (Table B in S1 275 

Appendix).  276 

Comparison of sampling strategies 277 

 To assess the efficacy of our targeted sampling design for surveillance testing, we compared our 278 

model’s predicted infection trajectory under the targeted design to an SRS design and to complete 279 

sampling. To make the SRS design more comparable to the targeted design, the SRS scenarios randomly 280 

sampled 355 students on Tuesdays and 225 students on Wednesdays. Due to rounding error at each 281 

stratum and the desire to split surveillance testing across two days, the targeted design used these same 282 

sample sizes before accounting for individuals in quarantine or isolation. The complete sampling 283 

scenarios evenly split surveillance tests between Tuesdays and Wednesdays. We compared these three 284 

strategies under the four main scenarios described in Simulation Setup. 285 

To further explore the relationship between sampling designs for surveillance testing and other 286 

public health interventions, we also ran holdout scenarios where contact tracing or app-based symptom 287 

monitoring were withheld. Since targeted sampling was only used on residential students, each holdout 288 

scenario solely simulated residential students. We also ran a baseline all-interventions scenario where all 289 

interventions were used to assess the impact of removing non-residential students from the simulation. 290 

There were two holdout scenarios for app-based symptom monitoring. In the app-based symptom 291 

monitoring intervention, the expected waiting time between when an individual developed symptoms and 292 

when the individual sought testing was one day to reflect the application’s impact. To assess how each 293 

sampling design might have performed in the absence of app-based monitoring, we changed the expected 294 

waiting time to 4.82 days, the estimated mean waiting time between symptom onset and first clinical visit 295 

in Khalili et al. (29). We called this the delayed-symptom-testing scenario. As an upper extreme, we also 296 

ran a scenario with no symptom-based monitoring (i.e., all testing was surveillance testing). In all holdout 297 
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scenarios, R0 was 2.5, and the average contact rate was 10 contacts/day. These holdout scenarios also 298 

provided guidance on the impact of individual interventions and the role of non-residential students in 299 

disease transmission. 300 

As with the main scenarios, 1,000 simulations comprised each holdout scenario. We assessed the 301 

differences between holdout scenarios based on their median cumulative infections across simulations and 302 

on their 90% prediction intervals (i.e., 5th and 95th percentiles). Python code to implement each sampling-303 

strategy and holdout scenario is available in S2 Additional Material. 304 

Ethics Statement 305 

Quinnipiac University’s Institutional Review Board determined that the surveillance sampling 306 

design detailed here fell under the category of public health surveillance and not research, and thus, the 307 

design did not require further board consideration. All case incidence data reported here was used 308 

retrospectively and was fully anonymized before the researchers accessed it. Therefore, this data does not 309 

fulfill the US Office for Human Research’s definition of human subject data. 310 

Results  311 

Adjustments to sampling strategy 312 

Throughout the fall semester, we adjusted the proportion of students sampled in each category 313 

(i.e., residential undergraduates, non-residential undergraduates, non-residential graduate students, and 314 

student athletes) based on their observed case incidences. The testing proportions were determined by the 315 

modeling subgroup and the university COVID-19 taskforce.  316 

Following universal testing of students prior to and within two weeks of arrival, we implemented 317 

surveillance testing based on model results. Beginning on the third week, 25% of non-residential 318 
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undergraduates, 15% of graduate students and residential undergraduates, and 80% of student athletes 319 

were selected for testing. If a student tested positive, they were removed from the sampling frame for 90 320 

days under the assumption that they had acquired natural immunity and based in Centers for Disease 321 

Control and Prevention guidance that did not recommend PCR testing within 90 days of confirmed 322 

infection (30). In response to an increase in cases beginning in October, the sampling rate for non-323 

residential students was adjusted to 35%. Following a super-spreader event in late October that caused a 324 

marked increase in cases during the first week of November, the University increased the proportion of 325 

students tested and implemented new mitigation policies, including switching to online course instruction 326 

and restricting all students to their dormitories for 14 days. In the second week of November, every 327 

student was tested. A limited number of in-person classes resumed the week before Thanksgiving. In line 328 

with most other IHEs, students remained home after the Thanksgiving Break and classes continued 329 

remotely. 330 

Observed incidence rate and main-scenarios comparison 331 

There was a total of 613 reported COVID-19 cases at Quinnipiac University between September 332 

16, 2020, and Nov. 24, 2020 (Fig 1). Cases were not evenly distributed across this period. Before October 333 

11, there were only six reported cases. The infection rate gradually increased through October before an 334 

off-campus super-spreader event at the end of the month led to 495 cases between Nov. 1 and Nov. 6.   335 

 336 
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 337 

Fig 1. Predicted cumulative infections and reported cases under four scenarios compared to the 338 

observed cumulative cases. Solid, colored lines represent the median prediction across 1,000 replicate 339 

simulations. Shaded regions represent 90% prediction intervals spanning the 5th and 95th percentiles. 340 

Predicted cumulative infections are depicted in orange. Predicted cumulative reported cases are depicted 341 

in blue. Solid black lines depict observed cumulative reported cases.  Vertical dashed lines indicate dates 342 

where the sampling scheme was adjusted. A) R0 = 1.5, 8 contacts/day, B) R0 = 1.5, 10 contacts/day, C) R0 343 

= 2.5, 8 contacts/day, D) R0 = 2.5, 10 contacts/day. 344 

 345 

 The fit between the observed case incidence and those predicted by the model also changed 346 

through time. Until Nov. 8, the R0 = 1.5 scenarios fit the observed cumulative cases relatively well, with 347 

the 10 contacts/day scenario performing slightly better than the 8 contacts/day scenario (Fig 1). The 348 

observed cases fell within the R0 = 1.5, 10 contacts/day scenario’s prediction intervals on Sept. 6 and 349 

between October 25 and November 1. Although the observed cumulative cases between September 13 350 

and October 18 were below this scenario’s prediction intervals, the difference between the observed cases 351 

and the interval’s lower boundary was no more than six cases between September 13 and September 20 352 
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and between October 11 and October 18. After Nov. 1, no scenario’s prediction interval for diagnosed 353 

cases contained the observed cumulative cases. However, the observed cumulative cases fell within the R0 354 

= 2.5, 10 contacts/day scenario’s prediction interval for total infections throughout this period. 355 

Qualitatively, the model predicted steady increases in the case incidence under all four scenarios. 356 

The epidemiological trajectory in the R0 = 1.5 scenarios were similar, regardless of the contact rate, 357 

whereas the contact rate differentiated the R0 = 2.5 scenarios to a more noticeable degree. This same 358 

pattern occurred in each scenario’s final median cumulative infections (R0 = 1.5, 8 contacts/day: 178 359 

infections, R0 = 1.5, 10 contacts/day: 182 infections, R0 = 2.5, 8 contacts/day: 438 infections, R0 = 2.5, 10 360 

contacts/day: 484 infections).  In contrast, the observed cumulative cases increased at a heterogenous rate. 361 

Early in the semester, there were few observed cases. Beginning in October, the cumulative incidence 362 

began to rise at a greater, though still largely steady, rate. After the super-spreader event, the cumulative 363 

incidence sharply increased and grew nonlinearly. 364 

Sensitivity analysis for the rate of imported infections 365 

 To assess how the rate of imported infections impacts the model’s epidemiological trajectory, we 366 

repeated all four scenarios but scaled the rate of imported infections by one half and two relative to the 367 

values in Table 2. As expected, the median total infections in each scenario was roughly proportional to 368 

the rate of imported infections (Fig 2). The proportional relationship is stronger when R0=1.5 than when 369 

R0=2.5. The estimated scaling constant for this relationship was similar between the R0=1.5 scenarios 370 

(R0=1.5, 8 contacts/day: 17.10; R0=1.5, 10 contacts/day: 18.67). The estimated scaling constants for the 371 

R0=2.5 scenarios were greater in magnitude than in the R0=1.5 scenarios and were better differentiated 372 

between contact rates (R0=2.5, 8 contacts/day: 24.12; R0=2.5, 10 contacts/day: 27.63). 373 
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 374 

Fig 2. Median cumulative infections against rate of imported infections under four epidemiological 375 

scenarios. Dashed lines represent the least-squares line for its corresponding scenario, constrained to pass 376 

through the origin. Black circles: R0=1.5, 8 contacts/day, blue triangles: R0=1.5, 10 contacts/day, grey 377 

diamonds: R0=2.5, 8 contacts/day, orange squares: R0=2.5, 10 contacts/day  378 

 379 

Comparison of sampling strategies 380 

 Predictions for final cumulative infections differed minorly to moderately across targeted testing, 381 

SRS, and complete sampling when R0 =1.5 (Fig 3 A, B). The median predictions for targeted testing and 382 
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SRS differed by no more than three infections, whereas the difference between complete sampling and 383 

targeted sampling was 19 infections under 8 contacts/day and 24 infections under 10 contacts/day. The 384 

lower boundaries on the 90% prediction intervals (i.e., 5th quantile) differed less. No more than 16 385 

infections separated the lower boundary of any design under either scenario. The differences between 386 

complete sampling and the random sampling strategies were more pronounced in the 90% predictions 387 

intervals’ upper boundaries (i.e., 95th quantile). Relative to targeted sampling, complete sampling had 388 

32.05 fewer infections at the under boundary under 8 contacts/day and 44 fewer infections under 10 389 

contacts/day. In contrast, targeted sampling and SRS had very similar upper boundaries that differed by 390 

no more than three infections. 391 

 392 

 393 

Fig 3. Comparison of three sampling designs for surveillance testing under four epidemiological 394 

scenarios. Solid and dashed lines represent the median cumulative infections across 1,000 replicate 395 

simulations. Shaded regions represent 90% prediction intervals spanning the 5th and 95th percentiles. 396 

Targeted sampling is depicted in orange. Simple random sampling (SRS) is depicted in purple. Complete 397 
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sampling is depicted in magenta. A) R0 = 1.5,  8 contacts/day, B) R0 = 1.5, 10 contacts/day, C) R0 = 2.5, 8 398 

contacts/day, D) R0 = 2.5, 10 contacts/day  399 

 400 

 When R0 = 2.5, complete sampling led to many fewer infections relative to the random sampling 401 

strategies (Fig 3 C, D). In the R0 = 2.5, 8 contacts/day scenario, the median cumulative infections was 110 402 

infections lower under complete sampling relative to targeted sampling and was 146 infections lower in 403 

the R0 = 2.5, 10 contacts/day scenario. Once again, the upper boundaries on the 90% confidence intervals 404 

showed even more pronounced differences between complete sampling and targeted sampling (8 405 

contacts/day: 182 infections, 10 contacts/day: 206.85 infections). The differences between targeted 406 

sampling and SRS, however, were comparably minor. The median predictions differed by no more than 407 

two infections and the lower boundaries on the prediction intervals differed by no more than 9.05 408 

infections. The greatest difference between these two scenarios occurred in the upper boundary under 8 409 

contacts/day (15 fewer infections under targeted testing). The difference was minute, however, when 410 

there were 10 contacts/day (one fewer infection under targeted testing). 411 

 Under most holdout scenarios, the median cumulative infections and lower boundaries on the 412 

90% prediction intervals differed very little between targeted sampling and SRS (Fig 4). On the last day 413 

of the simulation, the medians and the lower boundaries for targeted sampling and SRS were all within 414 

three cases of each other under the all-interventions, no-contact-tracing, and delayed-symptomatic-testing 415 

scenarios. The no-symptomatic-testing scenario was the exception. In this case, the median prediction for 416 

SRS was 19 infections greater than that for targeted sampling, and the lower boundary on SRS’s 417 

prediction interval was 83.3 infections greater than that of targeted sampling. In contrast, targeted 418 

sampling had 90% confidence intervals with noticeably lower upper boundaries than SRS under every 419 

holdout scenario (all-interventions: 14.0 infections, no-contact-tracing: 19.2 infections, delayed-420 

symptomatic-testing: 18.0 infections, no-symptom-monitoring: 38.8 infections). The difference between 421 
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the two strategies’ upper boundaries displayed an upward global trend through time. This may indicate 422 

that the difference between the two strategies would have become even more pronounced if the 423 

simulations were allowed to continue, although each scenario had a declining local trend on the 424 

simulation’s last day. It is also worth noting that there was substantial variation in how many infections 425 

were predicted in each scenario. Under targeted sampling, the all-intervention scenario had 139 426 

infections, the no-contact-tracing scenario had 212.5 infections, the delayed-symptomatic-testing scenario 427 

had 318.5 infections, and the no-symptomatic testing scenario had 1,458 infections. 428 

 429 

 430 

Fig 4. Differences between the cumulative infections under targeted sampling and SRS when other 431 

interventions are removed. Black, solid lines represent the difference between the median predicted 432 

cumulative infections under SRS and that under targeted sampling. Blue, dashed lines represent the 433 

difference between the 90% prediction interval’s upper boundary under SRS and that under targeted 434 
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sampling. Gold, dashed-and-dotted lines represent the difference between the 90% prediction interval’s 435 

lower boundary under SRS and that under targeted sampling. A) All-interventions scenario, B) No-436 

contact-tracing scenario, C) Delayed-symptomatic testing scenario, D) No-symptomatic testing scenario 437 

 438 

Discussion 439 

Overview of university response 440 

 Like most IHEs, Quinnipiac University developed a plan to provide an in-person learning 441 

experience in fall 2020 while mitigating the spread of SARS-CoV-2. Given the novelty of COVID-19, 442 

there was limited data available to guide policy decisions. Therefore, the University extended an existing 443 

model of SARS-CoV-2 dynamics to help inform the University’s COVID-19 policies. The modeling team 444 

devised, implemented, and updated a targeted sampling scheme to choose students for surveillance testing 445 

with the goal of quickly detecting and then responding to outbreaks within university residences. Finally, 446 

the University had a devoted team of contact tracers and asked students to actively monitor themselves for 447 

symptoms using a cellular phone application.   448 

Many research groups housed across several universities used models of COVID-19 dynamics to 449 

inform university re-opening plans for fall 2020. These models utilized varied strategies, including not 450 

only agent-based models (14,31–34), but also models based on classic compartmental structures (e.g., 451 

(15,35–41)), network theory (22,42), and probability theory (43). Our agent-based model was a specially 452 

modified version of the Institute for Disease Modeling’s Covasim model (16). Extending Covasim, rather 453 

than building our own model from scratch, allowed us to capitalize on a well-structured model of disease 454 

dynamics that incorporated the best estimates for epidemiological parameters that were available in 455 

summer 2020 (16). Our limited personnel could then focus on refining the model to account for social and 456 

epidemiological properties unique to our situation, such as the structure of university-owned residences. 457 
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Because the University’s response to COVID-19 was so time sensitive, it would not have been feasible to 458 

develop such a complicated model without drawing on publicly available, open-source programs, and 459 

such programs could likely facilitate university responses to future EIDs and Disease X scenarios.   460 

Even with the intellectual head start that the original Covasim provided us, certain policy 461 

decisions had to be made using versions of the model that lacked features described here. For instance, 462 

decisions about what sampling coverage to use for surveillance testing and whether to use our targeted 463 

sampling design rather than SRS had to be informed using a version of the model that only simulated 464 

residential students, did not incorporate dedensification in university-owned properties, and set the 465 

probability of transmission to Covasim’s default value. Indeed, policy decisions made for spring 2020 and 466 

fall 2021 were informed using model features that were not described here because they were introduced 467 

in newer versions of Covasim (e.g., waning immunity, vaccinations, and co-circulating strains (44)) or 468 

were created after fall 2020 (e.g., a separate graduate student category for agents). 469 

Model performance 470 

One of the primary roles that our model played in Quinnipiac’s COVID-19 response was to 471 

assess how disease properties that were not well understood in summer 2020 impacted case and infection 472 

rates. In the work described here, we explored four main scenarios that differed in basic reproductive 473 

number (R0) and average contact rate: i) R0 = 1.5, 8 contacts/day, ii) R0 = 1.5, 10 contacts/day, iii) R0 = 474 

2.5, 8 contacts/day, iv) R0 = 2.5, 10 contacts/day. No scenario universally fit the observed case incidence 475 

data well. The R0 = 1.5, 10 contacts/day scenario performed adequately until a super-spreader event led to 476 

a sudden shock in the observed incidence rate on Nov. 8 (Fig 1B). The observed cumulative cases on and 477 

after Nov. 8 exceeded those predicted in every scenario. However, the University substantially increased 478 

its surveillance testing efforts during this period in response to the super-spreader event and moved to 479 

sampling all students on Nov. 15 (Table B in S1 Appendix). Since no scenario included this shift in effort, 480 

we would expect the observed case rate to exceed that of the model, even if the disease dynamics were 481 
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accurately simulated. However, the predicted cumulative infections provided an absolute cap on how 482 

many diagnosed cases could have occurred in the model. Since the observed cumulative cases on and 483 

after Nov. 8 remained within the prediction interval for cumulative infections under the R0 = 2.5, 10 484 

contacts/day scenario, the model may have still provided a reasonable approximation to disease dynamics 485 

during this period (Fig 1D). Differences between the model’s sampling rate and the achieved sampling 486 

rate during testing may have also contributed to the model’s tendency to overpredict the number of 487 

reported cases early in the semester. Although the model’s sampling rates and the requested sampling rate 488 

during testing initially matched, frequently only around 70% of students selected for surveillance testing 489 

actually responded.  490 

It is noteworthy that both scenarios that fit the observed data best included an average of 10 491 

contacts/day. Model-based estimates for the student contact rate at Villanova University were also around 492 

10 contacts/day ([8.2020,10.9953]) (41), suggesting that this may be a reasonable approximation to 493 

university student behavior under pandemic conditions. However, further estimates from a more diverse 494 

set of IHEs are needed. 495 

The scenarios’ shifting fits indicate that the model may have performed better if model parameter 496 

values were dynamic. As previously suggested, the R0 = 2.5, 10 contacts/day scenario’s 90% prediction 497 

interval for cumulative diagnosed cases could have bounded the observed cases if the surveillance-testing 498 

interventions’ sampling rates had shifted within the simulation. Shifts in other model parameters could 499 

have allowed a single scenario to accurately represent the University’s disease dynamics and to better 500 

capture the curvature in the observed cases’ trajectory. Periods where parameter shifts would improve the 501 

fit may reflect changes in the University’s disease dynamics. The two best fitting scenarios used the same 502 

contact rate but differed in R0, which under the model’s assumptions, suggests a shift in the probability of 503 

transmission. Such a shift would occur, for instance, if students became lax toward public health policies 504 

as the semester progressed (e.g., violating the universal mask policy more frequently). In addition, the 505 
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R0=2.5 scenario had a higher rate of imported infections, which may reflect the rising COVID-19 506 

prevalence within the surrounding community as the semester progressed.  507 

Alternatively, the model’s fit may have also been improved by representing the super-spreader 508 

event as a sudden increase in the number of infections without any in-simulation transmission. This 509 

strategy would have emphasized the uniqueness of the super-spreader event as a violation of the 510 

University's usual disease dynamics. A compartmental model of COVID-19 transmission at Villanova 511 

University provided a better fit to observed case numbers when it was allowed to include similar shocks 512 

(41).  513 

Relationship between IHEs and their surrounding communities 514 

Both the observed cumulative cases and the model results underscore the interconnection between 515 

student populations and an IHE’s surrounding community. The rate of imported infections is the model’s 516 

primary representation of how the student body interacts with the surrounding community. The model’s 517 

assumptions favor a proportional relationship between the final cumulative cases and the rate of imported 518 

infections. We therefore measured the model’s sensitivity to the rate of imported infections using the 519 

slope of a least-squares line passing through the origin that relates the cumulative number of infections to 520 

the rate of imported infections. If the rate of imported infections had no net effect on local transmission, 521 

we would expect the line’s slope to be 12.29 because there are 12.29 weeks (i.e., 86 days) in each 522 

simulation. However, the slope exceeded this limit in every scenario. The model becomes more sensitive 523 

to the rate of imported infections at higher R0 values and higher contact rates. In the R0 = 1.5, 8 524 

contacts/day scenario, one additional imported infection per week is estimated to cause 17.1 more 525 

infections by the end of the simulation, but the same increase is estimated to cause 27.6 more infections 526 

under the R0 = 2.5, 10 contacts/day scenario. This latter slope is over twice the baseline rate of 12.3 527 

infections, suggesting a significant role for on-campus-off-campus interactions in an IHE’s disease 528 

dynamics. These findings corroborate results found in other models of IHE COVID-19 dynamics that 529 
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suggested that imported infections can have a major effect on an IHE’s incidence rate or can hinder the 530 

effectiveness of an IHE’s interventions (14,35,43) (though see (31)).  Interestingly, Gressman and Peck 531 

(32) found nearly the same proportional relationship between the cumulative number of infections and the 532 

daily contact rate in their model as we found between the cumulative number of infections and the rate of 533 

imported infections under the R0 = 2.5, 10 contacts/day scenario. The significance, if any, of this 534 

similarity is unclear, though.  535 

Two key patterns in the observed cumulative cases suggest a linkage between campus disease 536 

dynamics and events in the surrounding community. First, after a low incidence rate in August and 537 

September, the University’s rate considerably increased at the beginning of October (Fig 1). During this 538 

same interval, the case incidence in New Haven County, in which Quinnipiac is located, rose from an 539 

average of 26.73 new cases per day in September to 92.74 new cases per day in October, suggesting a 540 

possible relationship between community prevalence and campus prevalence (45). Although this study is 541 

not equipped to evaluate the nature of this proposed relationship, the roughly 7,100 students attending 542 

Quinnipiac in person during the fall 2020 semester is small relative to the 864,835 residents of New 543 

Haven County (11,46). Further, the case incidence in New Haven County had already begun to rise in 544 

September from an average of 20.45 cases per day in August (45). As a result, it seems likely that 545 

increases in the surrounding community’s prevalence led to increases in the University’s incidence rate 546 

and not vice-versa. This interpretation would be consistent with the rate of imported infection’s sensitivity 547 

analysis since the estimated prevalence in the community partially determined this rate (S1 Appendix).  548 

The second major pattern in the observed case data was the incidence’s sudden increase after the 549 

late October super-spreader event (Fig 1). This event was associated with an off-campus Halloween party. 550 

Although student behavior was the core cause of the event, the event was also linked to alleged violations 551 

of state public health laws at a business in the surrounding community (47). So, despite being a campus-552 

specific phenomenon, it arose from a combination of on-campus factors (i.e., student behavior) and off-553 

campus factors (i.e., legal lapses in the community). 554 
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Here, we have focused on the role that the surrounding community may have played in increasing 555 

an IHE’s case incidence rate, but both model-based and empirical evidence suggest that disease dynamics 556 

at IHEs can also increase the case and mortality rates in the surrounding community (48–51). Further 557 

research is needed to better understand this complex relationship, including under what conditions IHEs 558 

have a negative impact on surrounding communities and under what conditions surrounding communities 559 

have negative impacts on IHEs. Currently, compartmental model results suggest that surrounding 560 

communities have a larger role in augmenting incidence rates at IHEs when the IHE has effectively 561 

controlled transmission through public health interventions (35).  562 

The interconnection between campuses and communities may challenge containment efforts in 563 

the face of future EIDs. Ultimately, IHE officials only have jurisdiction over the campus itself. As such, 564 

successful containment may require close collaboration between university and local, county, and state 565 

officials (48,52). Yet, the interconnection also means that information about the surrounding community 566 

can inform on-campus policies. For example, a university could increase surveillance testing or impose 567 

more stringent requirements to enter campus when community transmission is high.  568 

Sampling strategy for surveillance testing 569 

Like many IHEs, Quinnipiac conducted surveillance testing on the student body to detect 570 

asymptomatic and subclinical infections. Unlike most IHEs, residential students were sampled for 571 

surveillance testing using a targeted design that combined features of stratified and clustered sampling. 572 

The design’s goal was to ensure even and consistent coverage across rooms, suites, and floors in 573 

university-owned properties, but the targeted design was partially extended to include externally owned 574 

properties if three or more non-residential students were known to share the address. Observed cases in 575 

university-owned properties did tend to cluster within rooms and floors, suggesting that our strategy 576 

likely did facilitate the discovery of case clusters. Further, we divided the student body into residential 577 

students, non-residential undergraduates, non-residential graduate students, and student athletes. Each 578 
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subpopulation received its own sampling rate. Because we had categorized students in this manner, we 579 

were able to rapidly increase testing in subpopulations where we had identified increased case rates. We 580 

were also able to determine whether any additional strategies employed to interrupt transmission in those 581 

subpopulations were effective.  582 

To the best of our knowledge, no other IHE used the same sampling strategy as Quinnipiac. 583 

However, other universities had favorable results with similar targeted strategies. An Indiana university 584 

used a stratified sampling design and adapted each stratum’s sampling rate in response to new case data, 585 

which likely contributed to the containment of a major outbreak (12). Similarly, empirical and model-586 

based evidence suggest that a targeted sampling design at Clemson University that focused surveillance 587 

tests towards university-own residences that experienced a new case played an important role in 588 

mitigating disease prevalence (15). 589 

Simulation results suggest that our targeted sampling strategy and SRS would have had 590 

comparable effects on the infection rate when contact tracing and app-based symptom monitoring were 591 

also implemented (Fig 3). Complete sampling decreased the cumulative infections under every scenario, 592 

but the degree of difference relative to targeted sampling depended on R0. In the R0=1.5 scenarios, 593 

complete sampling reduced the median cumulative infections by no more than 24 infections, whereas the 594 

median cumulative infections was reduced by at least 110 infections in both R0=2.5 scenarios. Assuming 595 

comparable results would occur using the effective reproductive number, these results validate the 596 

University’s strategy of shifting sampling rates based on current incidence data. If a university has limited 597 

resources to test for an EID, a more economical strategy for surveillance testing may be to sample the 598 

student population at a lower rate when the observed transmission rate is low because the reduction in 599 

infections per test will also be lower. This would then reserve resources for increased sampling during 600 

periods of high transmission when the reduction in infections per test is high. A similar strategy appeared 601 

to provide favorable results at Furman University (13). This conclusion is similar to Paltiel et al. (39), 602 

who found that the effective reproductive number altered what sampling frequency was most cost 603 
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effective, and to Hambridge, Kahn, and Onnela (34), who found that increasing the frequency of 604 

surveillance testing has smaller effects on the infection rate when R0 is low than when it is high. A 605 

university using this adaptive sampling design would need to implement other public health interventions, 606 

though. The model results were predicated on contact tracing and app-based symptom monitoring’s 607 

inclusion, and surveillance testing in the low-rate phase would predominantly monitor whether the rate 608 

needs to be shifted upward, so other inventions would be necessary to regulate transmission. 609 

In the holdout scenarios, we withheld individual interventions in the model to explore each 610 

intervention’s impact on a population of residential students. These results suggest that targeted sampling 611 

and SRS had comparable effects on the infection rate in our main epidemiological scenarios because other 612 

public health interventions were effectively controlling transmission. When either contact tracing or 613 

symptom monitoring was absent, the targeted strategy provided some benefit over SRS (Fig 4B-D). 614 

Interestingly, under most holdout scenarios, the major difference between strategies was in the upper 615 

boundary of the 90% prediction intervals rather than the median prediction. Given that complete sampling 616 

also had a greater impact on the upper boundary, the sampling strategy used for surveillance testing may 617 

have more value in mitigating the worst-case outcome than the typical outcome. Previous work has 618 

similarly suggested that the frequency of surveillance testing may have a greater role in controlling the 619 

maximum size of outbreaks than the average size (14). Which intervention is removed also influences 620 

targeted sampling’s effect. In the no-contact-tracing and delayed-symptom-monitoring scenarios, targeted 621 

sampling had a noticeable but modest impact on the 90% prediction interval’s upper boundary and no 622 

noticeable impact on the lower boundary or median prediction. In contrast, targeted sampling caused 623 

sizeable reductions in both the prediction interval’s boundaries and even moderately reduced the median 624 

prediction.  625 

App-based symptom monitoring as a containment strategy 626 
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Comparisons between the holdout scenarios under targeted sampling suggest that app-based 627 

symptom monitoring may have a high efficacy for controlling transmission. App-based symptom 628 

monitoring was assumed to reduce the expected waiting time between when a student developed 629 

symptoms and when the student sought testing and quarantined. We set this expected waiting time to one 630 

day in the main and all-intervention scenarios. The delayed-symptom-monitoring scenario assumed the 631 

symptom-monitoring application was missing, and the students’ expected waiting times for testing were 632 

4.82 days, the same as the general population (29). The median prediction for final cumulative infections 633 

under the all-interventions scenario had 179.5 fewer infections than that of the delayed-testing scenario. 634 

This difference is not only twice as great as that of the no-contact-tracing scenario but is even greater than 635 

the difference between targeted sampling and complete sampling under the R0=2.5, 10 contacts/day 636 

scenario. App-based monitoring’s apparent efficacy in the model results may arise because the symptom-637 

monitoring application instructed symptomatic students to immediately quarantine after seeking testing 638 

but before receiving results; in contrast, surveillance testing and contact tracing both delayed quarantining 639 

until test results became available. Other models have found similar relationships between testing delays 640 

and surveillance testing’s efficacy, either through increased effectiveness when testing is implemented 641 

more frequently (35,38,39) or when test results are returned more quickly (31,35,38,43). However, the 642 

actual impact that app-based monitoring had on the University’s COVID-19 dynamics is less clear. Our 643 

model assumed every student faithfully used the application daily and would report symptoms to the app 644 

earlier than they would otherwise seek treatment. In reality, community uptake was limited, and no data is 645 

available on whether the application altered student behavior. 646 

Role of non-residential students in disease transmission 647 

Finally, since the R0 = 2.5, 10 contacts/day and all-interventions scenarios were identical except 648 

for the inclusion of non-residential students in the former, a comparison between the two provides 649 

insights into the role that non-residential students may have played in disease transmission. Even though 650 
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residential students comprised 49.0% of the student population in the R0 = 2.5, 10 contacts/day scenario, 651 

the cumulative infections under the all-interventions scenario was 38.9% that of the R0 = 2.5, 10 652 

contacts/day scenario after subtracting the expected number of imported infections from each scenario’s 653 

cumulative infections. This suggests that non-residential students have a disproportional impact on a 654 

university’s local transmission. Indeed, the University’s observed testing data supported this hypothesis. 655 

The gradual case increases that began in the first week of October were due to an increase in cases in non-656 

residential students. Other universities also witnessed higher case rates in non-residential students than 657 

their residential peers, although the relative sizes of these subpopulations were not always clear (9,12). In 658 

these scenarios, non-residential students may have experienced high infection rates through a combination 659 

of increased mixing with the surrounding community and decreased oversight from the University’s 660 

public health team. However, this pattern was far from universal, and other universities reported a 661 

disproportional number of cases in their residential populations, although the difference was not always 662 

statistically significant (10,13,15). 663 

Implication for future emerging infectious diseases 664 

The implications these results have for future EID outbreaks is complicated. App-based symptom 665 

monitoring heavily reduced the infection rate in the model and requires few resources to implement. 666 

Further, because symptom monitoring is a strategy that translates to most diseases, app-based symptom 667 

monitoring would be relatively easy to launch in the face of a new Disease X scenario. Yet, individual 668 

students are responsible for monitoring their own health under this intervention, and as the late October 669 

super-spreader event and comparable events at other universities (e.g., (12,13,41)) illustrate, student 670 

behavior can be difficult to predict. A website-based symptom monitoring program failed to prevent a 671 

major outbreak at an Indiana university (12). University officials may have more success with app-based 672 

monitoring if they include measures to encourage adherence. Indeed, the Indiana university attributed 673 

their successful containment efforts partially to a public health educational campaign (12), and model-674 
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based results indicate that educational programs can decrease infection rates when combined with other 675 

interventions (38).  In any case, app-based symptom monitoring would need to be used in conjunction 676 

with other interventions in a Disease X scenario, as its effectiveness will depend on disease-specific rates 677 

and severities of symptoms. 678 

Contact tracing was also effective in controlling the transmission rate in simulated results. This 679 

intervention has a long and proven track record in public health policy, translates well to novel diseases, 680 

and was found to have a comparable effectiveness to surveillance testing with complete sampling in other 681 

modeling studies of COVID-19 (41). However, contact tracing requires trained personnel that may not be 682 

available at every university.  683 

Finally, like numerous other modeling studies (e.g., (39,41)), we found that surveillance testing 684 

with complete sampling can substantially decrease infection rates. Complete sampling requires a vast 685 

amount of financial, logistical, and human resources to implement, though, and cannot be launched in 686 

Disease X situations until reliable tests are developed. Many universities will not have the means to make 687 

this strategy feasible. Even when complete sampling is infeasible, though, targeted sampling and SRS can 688 

still assist in outbreak detection at a significantly reduced cost, as it did for Quinnipiac. Although the 689 

model results found that the use of targeted sampling to obtain students for surveillance testing did not 690 

impact the infection rate differently than SRS, there are still reasons why a university might choose to use 691 

targeted sampling in the face of an EID or Disease X scenario. First, the holdout scenarios suggested that 692 

targeted sampling does control worst-case infection rates better than SRS when the delay between 693 

developing symptoms and testing is increased. This suggests that targeted testing's relative advantage 694 

depends on features of the disease’s presentation, such as the severity of illness, the rate of asymptomatic 695 

infections, and degree of infectiousness before symptom onset. These properties are variable between 696 

diseases and may not be well-understood early in an EID outbreak. Targeted testing does not require 697 

many more resources than SRS, so a university might elect to use targeted sampling to capitalize on any 698 

potential benefits with little penalty. Second, the even sampling coverage that targeted testing provides 699 
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can help to reassure students, faculty, staff and parents that a campus is safely opening. Although not 700 

directly related to disease progression, the reduction in anxiety and stress could yield significant mental 701 

health benefits. 702 

Disease X scenarios pose major threats to global public health because policy responses need to 703 

be made before a substantial amount of information is available about the disease. COVID-19 was one 704 

example of such a scenario, so careful documentation and study of how institutions, such as IHEs, 705 

responded to COVID-19 could improve responses to future Disease X scenarios. Here, we described 706 

Quinnipiac University’s response and its effectiveness. However, IHEs contain diverse populations and 707 

exist in varied contexts that can influence an intervention’s effect. For example, Quinnipiac University 708 

and Furman University launched comparable COVID-19 responses (e.g., app-based symptom monitoring, 709 

adaptive sampling rates for surveillance testing), but the case data for the two universities sometimes 710 

yielded contradictory patterns (e.g., the proportion of off-campus students in the case data) (13). Thus, 711 

one major limitation to this study is the limited scope of its population. A more thorough review of IHE 712 

responses and their effectiveness would help to build more robust responses. Although some attempts 713 

have been made to create such a review (49), limited and inconsistent documentation across IHEs have 714 

stifled these efforts. A second major limitation is that COVID-19 is just one Disease X scenario. The next 715 

Disease X may have very different medical and epidemiological properties to COVID-19 and strategies 716 

effective for COVID-19 may not be effective in these scenarios. Public health and IHE officials will 717 

therefore need to remain flexible when preparing for future EIDs and Disease X scenarios and build 718 

contingency plans into their responses to account for differential effectiveness. 719 
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Supporting information 880 

S1 Appendix. Derivation of model parameters and detailed targeted sampling description. 881 

S2 Supporting Information. Python and R scripts to replicate the analyses in this paper.  882 
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S1 Appendix. Derivation of model parameters and detailed targeted sampling description. 884 

Estimating the Rate of Imported Infections and COVID-19 Prevalence.  885 

In the modified version of Covasim used in our study, the number of imported infections on each day is a 886 

Poisson random variable whose rate parameter differs between the residential and non-residential sub-887 

populations. Under the assumption that the community surrounding the university is well mixed, the rate 888 

parameter for sub-population i (λi) was assumed to be: 889 

𝜆𝑖 = 𝑛𝑖𝑐𝑖𝑝𝛽 890 

(1) 891 

Here, ni is the size of sub-population i, ci is the expected number of contacts between one student in sub-892 

population i and non-student members of the community, p is the COVID prevalence in the university's 893 

surrounding community, and β is the base transmission probability. Whereas ni and β were already 894 

parameters within the model, ci and p required additional specification. 895 

To determine reasonable values for ci, we established the average number of contacts that each 896 

student will have in a day, excluding roommates, based on empirical estimates in Bharti et al. (1), then 897 

allocated these contacts to the in-simulation contact pools and to out-of-system community members. For 898 

residential students, contacts were predominantly allocated to the in-system pools; only one contact per 899 

day or one contact every other day was allocated to out-of-system individuals (Table 2 in main text). In 900 

contrast, non-residential students used the same number of community contacts as residential students, 901 

but all remaining contacts were allocated to out-of-system individuals. Here, we assumed individuals 902 

living outside of university-owned properties were more likely to interact with non-students.  903 

Within this study, the area surrounding the university was defined as the entire state of 904 

Connecticut. Then, case incidence data led to rough estimates for p. All case incidence data came from 905 

COVID Act Now and were smoothed as seven-day averages (2).  To estimate p, we decomposed the 906 
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number of infectious individuals on a given day (Nit) into the number of symptomatic individuals (Nst), 907 

the number of asymptomatic individuals (Nat), and the number of pre-symptomatic individuals (Npt). We 908 

assumed there was a fixed probability that a symptomatic resident of Connecticut led to a reported case 909 

on any given day (pd) and that only symptomatic individuals contribute to the reported incidence rate. 910 

Under these assumptions, the number of days between symptom onset and detection is a geometric 911 

random variable, but in some cases, the symptomatic individual will recover before being detected. 912 

Therefore, the probability that a symptomatic infection will eventually lead to a reported case (pD|S) would 913 

be the following: 914 

𝑝𝐷|𝑆 = ∑ 𝑝𝑑(1 − 𝑝𝑑)𝑖−1

𝑇

𝑖=1

 915 

(2) 916 

Here, T is the duration between symptom onset and recovery. Furthermore, define the reporting rate (ρ) as 917 

the probability that a randomly selected infection, be it symptomatic or asymptomatic, will lead to a 918 

reported case. Under this definition, ρ = pD|SpS, where pS is the probability that an infection will be 919 

symptomatic.   920 

Based on Khalili et al. (3), we set T to 18 days. Furthermore, CDC seroprevalence studies in 921 

Connecticut estimated that between 12.82% and 23.26% of all infections led to a reported case (4); 922 

therefore, we set ρ to 0.20. Finally, we set pS to 0.6 based on Oran and Topol (5). Based on these 923 

estimates and Equation 2, we used numerical optimization algorithms in R ver. 4.2 to solve for pd under 924 

the constraint that the value must be between 0 and 1 (6) (S2 Supporting Information). The estimated 925 

value was 0.022274. 926 

 The previous assumptions further imply that the total number of reported cases on a given day is 927 

a binomial random variable where the number of trials is Nst and the probability of success is pd. Since the 928 

binomial distribution is unimodal, we estimated Nst as the integer value that places the distribution’s mode 929 
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at the observed number of reported cases on day t (ncases,t) under a strategy akin to maximum estimation. 930 

The mode of this binomial distribution is  ⌊(𝑁𝑠𝑡 + 1)𝑝𝑑⌋, where ⌊… ⌋ is the floor function, so the estimate 931 

was roughly: 932 

�̂�𝑠𝑡 =
𝑛𝑐𝑎𝑠𝑒𝑠,𝑡

𝑝𝑑
− 1 933 

(3) 934 

The remaining estimates for Nat and Npt followed from �̂�𝑠𝑡. Since: 935 

𝑝𝑠 ≈
𝑁𝑠𝑡

𝑁𝑠𝑡 + 𝑁𝑎𝑡
 936 

(4) 937 

An approximate estimate for Nat is: 938 

�̂�𝑎𝑡 = 𝑁𝑠𝑡

1 − 𝑝𝑠

𝑝𝑠
 939 

(5) 940 

Finally: 941 

�̂�𝑝𝑡 = ∑(�̂�𝑎𝑡+𝑗 + �̂�𝑠𝑡+𝑗)

𝑑

𝑗=1

 942 

(6) 943 

Where d is the duration between when an individual becomes infectious and when the individual develops 944 

symptoms, assuming a symptomatic infection. Based on Tindale et al. (7), we set d to three days. Our 945 

method for estimating Npt represents an upper limit, though, as it assumes that symptomatic individuals or 946 

individuals that could be established as asymptomatic on day i do not overlap with those same groups on 947 

day (i + 1).  Finally, to convert these estimates to a final prevalence for the state of Connecticut, the 948 

estimates were summed and divided by the estimated population of Connecticut according to the US 949 
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Census Bureau’s July 1, 2019 estimate (8). R code for implementing these calculations is available in S2 950 

Supporting Information. 951 

Derivation of a Relationship Between R0 and the Probability of Transmission.  952 

Covasim does not explicitly use the basic reproductive number (R0) as a model parameter. The closest 953 

analog is the base probability of transmission (β). Yet, because R0 is a prominent parameter in public 954 

health guidelines, there is a utility to linking β to an a priori value for R0 in a manner that is consistent 955 

with Covasim’s assumptions and its default values for epidemiological parameters. Assume that there is a 956 

well-mixed population of susceptible individuals, that this population is arbitrarily large, and that disease 957 

transmission occurs in a manner identical to its depiction in Covasim. Define R0 as the expected number 958 

of new infections in this population that directly result from introducing a single infectious individual. 959 

Since the population is arbitrarily large and well-mixed, the probability that the infectious individual will 960 

contact the same susceptible individual twice is approximately zero. Therefore, under Covasim’s 961 

assumptions on disease transmission, the number of new infections depends on the total number of 962 

contacts the infectious individual makes before recovery and on the probability of transmission. Further, 963 

every contact is a Bernoulli trial that ends in either transmission or no transmission. Therefore, R0 is the 964 

sum of the expected probability of transmission for each contact. 965 

The probability of transmission for each contact is the product of β and two scaling factors. The 966 

first factor represents the relative susceptibility of the contacted individual (sj), which is age-dependent 967 

(Table A) (9). Therefore, the expected susceptibility is the sum of each age group’s susceptibility 968 

weighted by the proportion of the population that belongs to that age group. To establish this expected 969 

value, we used the age distribution of the entire US population rather than the population of the 970 

university, as this made our definition of R0 more consistent with that of the broader literature (Table A). 971 

 972 

 973 
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 974 

Table A. The susceptibility constants associated with each age group in Covasim’s defaults, as well as 975 

the proportion of the US population that belongs to each age group (10). 976 

Age Group Susceptibility Constant Proportion of the US Population 

0-9 0.34 0.121 

10-19 0.67 0.131 

20-59 1 0.525 

60-69 1.24 0.1095* 

+70 1.47 0.1135* 

* These values slightly differ from the proportions in (10). There, the population proportion in the 60-69 977 

age group is 0.115, and the population proportion in the over 70 age group is 0.108. The values have been 978 

left as-is for consistency with the model used in fall 2020. Correcting this difference minorly changes the 979 

relationship to 𝛽 ≈
𝑅0 

8.083054𝑛𝑐
 and does alter β by more than 6x10-5. 980 

 981 

The second scaling factor represents the relative transmissibility of the infectious individual at the time of 982 

contact (rit), which accounts for the infectious individual’s viral load. Covasim’s defaults assume that, in 983 

most cases, the transmissibility scaling factor is two during the first 30% of the infectious period and one 984 

during the final 70%. Assuming this generalization holds for the infectious individual, R0 can be 985 

expressed as the sum of the expected number of new infections during the first 30% of the infectious 986 

period and the expected number during the last 70%, which simplifies subsequent calculations. The 987 

duration of a simulated infectious period is a log normal random variable that depends on health 988 
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outcomes, such as whether an individual is asymptomatic or symptomatic, whether the individual requires 989 

hospitalization, and whether the individual requires admission to an intensive-care unit. We assumed the 990 

infectious period was nine days long, which is Covasim’s default expected duration for an asymptomatic 991 

infection or a symptomatic infection that does not require hospitalization. Since the model uses a one-day 992 

timestep, this means that the period of elevated transmissibility lasts two days whereas the period of lower 993 

transmissibility lasts seven days. In addition to viral load, rit is further scaled by a random constant that is 994 

unique to that individual (ci), which accounts for idiosyncratic factors (e.g., comorbid conditions, genetic 995 

factors, behavioral factors). Since 100𝑐𝑖 ~ 𝑁𝑒𝑔𝐵𝑖𝑛𝑜𝑚(0.45, 0.45
100.45⁄ ), E[ci]=1.  996 

Put together: 997 

𝑅0 = E[2(𝑛𝑐,ℎ𝑐𝑖𝑠𝑗𝛽) + 𝑛𝑐,𝑙𝑐𝑖𝑠𝑗𝛽 ] = (2E[𝑛𝑐,ℎ] + E[𝑛𝑐,𝑙])E[𝑐𝑖]E[𝑠𝑗]β 998 

Here, nc,h is the number of contacts the infectious individual has during the first 30% of the infectious 999 

period, nc,l is the number of contacts the infectious individual has during the final 70% of the infectious 1000 

period, and all other parameters are as defined above. Notice that although nc,h, nc,l, ci, and sj are all 1001 

random variables, they are all mutually independent, so the second equality holds. Recalling that the 1002 

model assumes that the number of contacts an individual has in one day is a Poisson random variable, 1003 

E[nc,h] and E[nc,l] are the expected number of contacts in one day times the duration of each parameter’s 1004 

associated period. Adding the assumption that the infectious period is nine days, the expression can be 1005 

rearranged to provide an approximate relationship between R0 and β when the expected number of 1006 

contacts (nc) is known: 1007 

𝛽 ≈
𝑅0 

8.766238𝑛𝑐
 1008 

R code for implementing these calculations is available in S2 Supporting Information. 1009 

 1010 
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Detailed Sampling Strategy. 1011 

All students had to provide confirmation of a negative COVID test in late August prior to the start 1012 

of the fall semester and were tested again on campus at the beginning of the semester. After this, a 1013 

targeted sampling plan for weekly COVID testing began.  1014 

Residential Undergraduate Students 1015 

We applied a strict stratified and cluster sampling method to students in residential dormitory 1016 

buildings. Dormitories at Quinnipiac University have varied floor plans. Some dormitories contain typical 1017 

student dorm rooms along a hallway, while other buildings have suites in which students share a living 1018 

area and bathrooms but have separate bedrooms. Since students in the same suite lived in such close 1019 

proximity, though, suites were treated as if they were a single dorm room. Similarly, the university owns 1020 

multiroom houses that serve as student residences, but because students in the same house frequently 1021 

contacted each other, QU-owned houses were treated comparably to a single dorm room. Occupancy per 1022 

room varies largely by building, suite, or house. Starting in the fall of 2020, the university allowed a 1023 

maximum of two students per dorm room. To guarantee at least one student from a close-contact living 1024 

space was selected, we defined building floors (i.e., those containing dorm rooms) and houses as strata in 1025 

stratified sampling. We utilized a proportionate sampling method to determine the number of students 1026 

being selected from each stratum and then used cluster sampling to draw students from dorm rooms, 1027 

suites, and houses.  1028 

Non-Residential Undergraduate Students 1029 

About 40% of undergraduate students commuted to school. They either lived with relatives or 1030 

rented an apartment or house in the local community. Since they had greater exposure to the community, 1031 

the plan was to sample 25% of non-residential undergraduates each week. Based on student records, we 1032 

could determine the number of students who shared an address. Students who shared an address with no 1033 

more than one other student were entered in a pool for simple random sampling (SRS). Students who 1034 
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shared the same address with two or more students (i.e., the residence contained at least three students), 1035 

including those living in the same apartment building as other students, were kept in a separate pool from 1036 

which at least one student was selected weekly to be tested.  1037 

Graduates and Student Athletes  1038 

We assumed that graduate students, even those living off campus, would be more responsible and 1039 

exhibit more precautious behaviors than undergraduates. Thus, we used SRS with a smaller sampling rate 1040 

of 15%. However, graduate students who shared the same residence with undergraduate students or who 1041 

lived in university-owned properties were placed in the undergraduate student pool and sampled in the 1042 

same way as undergraduate students. Finally, we sampled 80% of student athletes weekly to meet the 1043 

requirements set by the Metro Atlantic Athletic Conference of the National Collegiate Athletic 1044 

Association. Student athletes were stratified by team.  1045 

Table B. Weekly proportion of students sampled and case incidence for each week. 1046 

 
 Sampling Percentages 

 Week Ending Day 

Case 

Incidence 

Res 

Undergrad 

Non-res 

Undergrad Graduate Athletes 

Pre-arrival - 100% 100% 100% 100% 

08/30/2020 - 100% 100% 100% 100% 

09/06/2020 2 100% 100% 100% 100% 

09/13/2020 0 15% 25% 15% 80% 

09/20/2020 1 15% 25% 15% 80% 

09/27/2020 0 15% 25% 15% 80% 

10/04/2020 3 15% 25% 15% 80% 

10/11/2020 20 15% 35% 15% 80% 

10/18/2020 7 15% 35% 15% 80% 

10/25/2020 18 15% 35% 15% 80% 

11/01/2020 48 15% 60% 40% 80% 

11/08/2020 296 15% 60% 40% 80% 

11/15/2020 151 100% 100% 100% 100% 

11/22/2020 67 25% 25% 15% 80% 

Res Undergrad = Residential undergraduate students, Non-res Undergrad = Non-residential 1047 

undergraduate students, Graduate = Non-residential graduate students, Athletes = Student athletes 1048 
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