1	Ductiles of the composite biomerizer specific for B
1	Profiles of the composite biomarker specific for β-
2	amyloid accumulation in the brain relevant to age and
3	sex
4	
5	
6	Kouji Satoh ¹ , Maremi Sato-Ueshima ¹ , Hiroyo Kagami-Katsuyama ¹ , Masakazu
7	Nakamura ² , Akihiko Ogata ² , Mari Maeda-Yamamoto ³ , Jun Nishihira ^{1*}
8	
9	
10	¹ Department of Medical Management and Informatics, Hokkaido Information
11	University, Ebetsu, Hokkaido, Japan
12	
13	² Department of Neurology, Hokkaido Neurosurgical Memorial Hospital, Sapporo,
14	Hokkaido, Japan
15	
16 17	³ National Agriculture and Food Research Organization, Tsukuba, Ibaraki, Japan
18	* Corresponding Author
19	E-mail: <u>nishihira@do-johodai.ac.jp</u> (JN)
20	

21 Abstract

22	Accumulation of β -amyloid (A β) in the brain occurs in the early phase of				
23	Alzheimer's disease (AD), without symptoms of cognitive decline. Therefore, early				
24	detection of the accumulation phase is essential to prevent or delay AD. In this study,				
25	we investigated the effects of age, sex, apoprotein-E (ApoE) genotype and cognitive				
26	dysfunction on the ratio of A β_{1-42} , A β_{1-40} , and amyloid β precursor protein (APP) ₆₆₉₋₇₁₁				
27	(composite biomarker: CM) in plasma using a sensitive Time of flight mass				
28	spectrometry (TOF-MS). In healthy subjects, the average CM value of males aged 30-				
29	59 years was significantly higher than that of females, but no difference was observed				
30	between those aged 60 and 79 years. CM values increased considerably after 50 years of				
31	age, especially in females. The effect of the ApoE4 genotype on CM was greater in				
32	females than in males. The CM value of patients with AD was higher than that of				
33	healthy subjects and that of patients with Parkinson's disease (PD). The CM value of				
34	patients with PD complicated by AD was higher than that of patients with PD. These				
35	results suggest that the CM value is influenced by age, sex, ApoE4 genotype, and				
36	central nervous system disorder. In addition, the CM value could be a reliable				
37	biomarker to distinguish not only patients with AD and healthy subjects but also AD				

- 38 and patients with PD. Since the measurement of CM is less invasive to the subjects, the
- 39 method is helpful for the early detection of accumulation of A β before the appearance
- 40 of AD symptoms. Moreover, this practical method can be used for differential diagnosis
- 41 among a variety of patients with dementia.

42 Introduction

43	The World Health Organization (WHO) reports that dementia affects more than 55
44	million people worldwide, and 60–70% of these people have Alzheimer's disease (AD).
45	In addition, treatment for AD is crucial because AD can also occur in other central
46	nervous system disorders [1-3]. In the brain, an early symptom of AD is the
47	accumulation of amyloid β (A β), produced by mutations in β - and δ -secretase [2,4,5].
48	A β accumulation triggers pathological findings in AD, including amyloid plaques and
49	neurofibrillary tangles (NFTs). NFTs interact abnormally with cellular proteins and
50	inhibit neuronal function. The hyperphosphorylation of tau occurs downstream of $A\beta$
51	accumulation and activates $A\beta$ synthesis. In the late phase of the neurodegenerative
52	cascade in the AD brain, cholinergic deficits occur due to choline acetyltransferase
53	deficiency. In addition, excitotoxicity, defined as an overexposure to glutamate or
54	overstimulation of the N-methyl-D-aspartate (NMDA) receptor, plays an essential role
55	in progressive neuronal loss in AD[2]. In this way, AD causes the accumulation of A β
56	in the early stages, which leads to a cognitive decline in the brain.
57	Various factors influence AD development, including sex differences and genotypes
58	of the ApoE gene [5,6]. Sex differences are one of the factors that affect the

59	development of AD, and their effects are broad and include brain structure, stress
60	response, and sex hormones. Serum and brain concentrations of the male hormone
61	testosterone were significantly lower in patients compared to healthy individuals. In
62	addition, endogenous testosterone deficiency caused by orchiectomy causes an increase
63	in soluble A β concentrations in rat brains, and androgen administration reduces A β
64	concentrations [5,7]. The female hormone, estrogen, is also involved in the risk of
65	developing AD. Decreased estrogen levels in adulthood increase the risk of developing
66	AD. In addition, ovariectomized mice show elevated levels of soluble $A\beta$ in the brain,
67	followed by an accelerated accumulation of $A\beta$ with rapid worsening of cognitive
68	behavior.[5,7].
68 69	behavior.[5,7]. With regard to the ApoE gene, people with one copy of E4-allyl in the ApoE gene
69	With regard to the ApoE gene, people with one copy of E4-allyl in the ApoE gene
69 70	With regard to the ApoE gene, people with one copy of E4-allyl in the ApoE gene have a nearly three-fold higher risk of developing AD, and those with two copies have
69 70 71	With regard to the ApoE gene, people with one copy of E4-allyl in the ApoE gene have a nearly three-fold higher risk of developing AD, and those with two copies have an 8-12 times higher risk than those without the copy [5]. Furthermore, with regard to
69707172	With regard to the ApoE gene, people with one copy of E4-allyl in the ApoE gene have a nearly three-fold higher risk of developing AD, and those with two copies have an 8-12 times higher risk than those without the copy [5]. Furthermore, with regard to sex differences, females with E4-allyl have faster cognitive decline than males [5,8].
 69 70 71 72 73 	With regard to the ApoE gene, people with one copy of E4-allyl in the ApoE gene have a nearly three-fold higher risk of developing AD, and those with two copies have an 8-12 times higher risk than those without the copy [5]. Furthermore, with regard to sex differences, females with E4-allyl have faster cognitive decline than males [5,8]. Although there are many patients with AD worldwide, effective treatments and

77	the development of therapeutic drugs to be used before cognitive decline (preclinical
78	phase) is currently in progress[2]. The accumulation of A β and formation of NFTs in
79	the brain occur before signs of cognitive decline. In this context, measuring the
80	accumulation of $A\beta$ in the brain using central spinal fluid (CSF) or positron emission
81	tomography (PET) is critical. However, these specialized techniques are unfavorable
82	because of their high cost, invasiveness, and limited availability in routine clinical
83	practice.
84	In 2018, Nakamura et al. measured A β concentration in plasma using mass
85	spectrometry and showed 90% diagnostic accuracy for AD [9]. They demonstrated that
86	$A\beta_{1-42}$ concentrations decreased in the plasma of patients with AD, while $A\beta_{1-40}$ and
87	APP ₆₆₉₋₇₁₁ concentrations remained unchanged. Furthermore, the ratio of (A β_{1-40} / A β_{1-42})
88	to (APP ₆₆₉₋₇₁₁ / A β_{1-42}) (composite biomarker value: CM value) correlated with the
89	accumulation of A β in the brain. By measuring A β in plasma, it has become possible to
90	manage many samples in a limited period without invasiveness.
91	In this study, we measured the CM of patients ($n = 112$) with central nervous system
92	disorders and healthy individuals (n=603). In addition, we investigated the change in
93	CM value with age, sex, ApoE, and between patients with AD and healthy subjects.
94	Here, we show that CM is a valuable biomarker for the definition of AD in healthy

95 individuals and patients with AD and Parkinson's disease (PD) patients.

96

97 Materials and Methods

98 Subjects

99	The subjects were essentially healthy registered volunteers managed by the Health
100	Information Research Center at Hokkaido Information University. They thoroughly
101	understood the significance, contents, and purposes of this study, "Accumulation and
102	analysis of biomarkers involved in the prevention and improvement of dementia in
103	healthy subjects," and provided written consent. Healthy Japanese adult males and
104	females between 30 and 79 years ($n = 603$) participated in the study. The data included
105	age, sex, family history of dementia, blood chemistry results, and other clinical data. On
106	the other hand, Japanese patients with central nervous system disorders between the
107	ages of 50 and 91 ($n = 112$) joined the study after consultations with registered
108	neurologists at the Hokkaido Neurosurgical Memorial Hospital (Sapporo, Japan).
109	Written consent was obtained from patients or family members to participate in further
110	studies.

111

112 Laboratory tests

113	Blood samples were collected from healthy subjects and patients and sent to the
114	Sapporo Clinical Laboratory, Inc. (Sapporo, Hokkaido, Japan). Complete blood count,
115	liver function (aspartate aminotransferase, alanine aminotransferase, gamma-glutamyl
116	transpeptidase, alkaline phosphatase, and lactate dehydrogenase), kidney function
117	(blood urea nitrogen, creatinine, and uric acid), lipid metabolism (total cholesterol, low-
118	density lipoprotein, high-density lipoprotein, and triglyceride), and glucose metabolism
119	(blood glucose and hemoglobin A1c) was performed. We also measured the fatty acids
120	(dihomo-γ-linoleic acid (DHLA), arachidonic acid (AA), eicosapentaenoic acid (EPA),
121	docosahexaenoic acid (DHA), Zn, and 25-OH vitamin D.
122	
123	Aβ measurement
124	Peripheral blood A β levels were measured according to the method of Nakamura et

- al. [9]. Whole blood was collected in 7 mL EDTA-2Na tubes (Venoject II, TERUMO,
- 126 Shibuya, Tokyo, Japan) and centrifuged at 2400 g for 5 min at room temperature within
- 127 60 min after blood collection. Plasma (500 µL) was transferred to storage tubes (96
- 128 Jacket Tubes 0.7 mL, FCR&Bio, Kobe, Hyogo, Japan) and frozen in a -80°C freezer.
- 129 After they were isolated and enriched from abundant plasma proteins by

130	immunoprecipitation, the specific affinity of the antibody plasma A β levels was
131	measured using IP-MS (immunoprecipitation-mass spectrometry, Shimadzu
132	Corporation, Kyoto, Kyoto, Japan). They used an analytical technique to quantify $A\beta$ -
133	related peptides of different masses using MALDI-TOF mass spectrometry (matrix
134	assisted laser desorption/ionization-time of flight mass spectrometry, Shimadzu
135	Corporation, Kyoto, Kyoto, Japan). Shimadzu Corporation blindly performed IP-MS
136	analysis.

137

138 Genotyping of ApoE gene

139	Whole blood was collected in a 4 mL EDTA-2K tube (Venoject II, TERUMO), and
140	DNA was isolated from 400 uL whole blood using a QIAamp DNA Blood Minikit
141	(QIAGEN, Hulsterweg, Venlo, Netherlands). We quantified the DNA content in the
142	concentrated solution using Nano-Drop (Thermo Fisher, MA, USA). The genotype of
143	the ApoE gene was analyzed by the Probe PCR method using two TaqMan probe sets
144	(C_60538594A_10, C_60538594 B 20, Thermo Fisher, MA, USA). The reaction
145	solution was mixed with 1ng/uL DNA solution. ApoE was analyzed using predesigned
146	TaqMan genotyping assays (Applied Biosystems, CA, USA). Approximately 1 ng of
147	genomic DNA was amplified in a 5 μ L reaction mixture in a 96-well plate containing 1 9

148	\times Probe PCR ExTaq master mix (Takara Bio, Shiga, Japan) and 1 \times Taqman probe mix					
149	containing the respective primers and probes. QuantStudio 3 was used with a standard					
150	endpoint genotyping program (Thermo Fisher Scientific, MA, USA). According to the					
151	manufacturer's protocol, PCR was performed with an initial denaturation at 94°C for 5					
152	min, followed by 40 two-step cycles (denaturation for 30 s at 94°C, primer annealing,					
153	and extension for 60 s at 60°C).					
154						
155	Statistical analysis					
156	All statistical analyses were performed using the Statistical Package for Social					
157	Science (SPSS® Statistics version 25, IBM Corp, NY, USA) . Statistical significance					
158	was set at $p < 0.05$. The age, sex, and ApoE genotype of healthy subjects were					
159	randomly divided into several groups. We used the Mann–Whitney U test or Kruskal–					
160	Wallis H test to compare two or more multiple groups.					
161						
162	Ethics					
163	This study was conducted in accordance with the guidelines of the Declaration of					
164	Helsinki [10]. The ethics committee approved all procedures involving human subjects					
165	at Hokkaido Information University (for healthy people, approved on November 26,					

166 2019; approval number: 2019-31; for patients, approved on July 31, 2020;	; approval
--	------------

- 167 number: 2020-19). Therefore, this study complied with the ethical guidelines for human
- 168 medical research as per the Ministry of Education, Culture, Sports, Science, and
- 169 Technology and the Ministry of Health, Labour, and Welfare.

170

171 **Results**

172 Effects of age and sex on composite biomarker values in

173 healthy subjects

We investigated the CM values of healthy subjects between the ages of 30 and 79

175 years. The male-to-female ratio was approximately 2:5 (181 males, 422 females). The

highest ratio was approximately 1:1 (male = 26, female = 29) between 70 and 79 years,

and the lowest ratio was approximately 1:4 (male = 35, female = 135) between 50–59

178 years. Most subjects were aged between 50 and 59 years, and the smallest group was

aged between 70 and 79 years (Table 1). Healthy subjects were divided into two groups,

180 male and female, to analyze the effects of age and sex on the CM values. We subdivided

- 181 these two groups into five age groups (30–39 years, 40–49 years, 50–59 years, 60–69
- 182 years, and 70–79 years of age) (10 groups in total) and then calculated the average CM

183	of each group. Fo	or the group-to-	group comparison,	we used the Mani	n–Whitnev U test
			0		

- 184 (Table 1, Fig 1). Under 59 years of age, the CM value of males was higher than that of
- 185 females (30–39 years: p = 0.038, 40–49 years: p = 0.013, 50–59 years: p = 0.007).
- 186 However, the CM value of males over 60 years of age was similar to that of females
- 187 (Table 1). The CM value increased with age, especially after 50 years of age (males: p =
- 188 0.038, comparison between 40–49 and 50–59, females: p = 0.006 and 0.018
- comparisons between 40–49 and 50–59, between 50–59 and 60–69, Fig 1). The results
- 190 showed that the standard deviation of the CM values increased for both males and
- 191 females aged 60 years and older, especially in females (Table 1).
- 192

193 Table 1. The effect of CM value on sex and age

Age	Sex	No. of Subjects	Ave. of CM	Std
30-39	male	20	-0.547	0.349
	female	53	-0.741	0.391
40-49	male	37	-0.509	0.341
	female	102	-0.694	0.333

50-59	male	35	-0.357	0.382
_	female	135	-0.535	0.429
60-69	male	63	-0.276	0.474
_	female	103	-0.335	0.623
70-79	male	26	-0.076	0.644
	female	29	-0.097	0.718

195

197	Fig 1. The relationship of CM value on sex and age. The bar plot showed the
198	distribution of the CM values of the healthy subjects. The number of subjects is listed in
199	Table 1. The difference in the distribution of CM values between males (blue) and
200	females (red) was examined using the U-test (+: $p \le 0.05$, ++: $p \le 0.01$). The difference
201	in the CM value distribution between ages of the same sexgender was also examined
202	using the U-test (*: $p \le 0.05$, **: $p \le 0.01$). X-axis: age. Y-axis: CM value.
203	
204	We surveyed subjects between 60 and 79 years of age to determine the relationship
205	between the CM value and the subjects' ages in males and females (Fig 2). The

206	frequency of subjects with $CM \ge 0$ was similar between male and female (male = 26/89)
207	(29.2%), female = $32/132$ (24.2%)). However, in subjects with CM ≥ 0 , the frequency
208	of subjects with $CM > 0.5$ was significantly higher in females than in males (male =
209	9/26 (34.6%), female = 20/32 (62.5%), p = 0.035, χ^2 test). This result suggests that the
210	females are more dominant aged people with higher CM values.
211	
212	Fig 2. The distribution of CM value of subjects ages 60 to 79 years. It shows the
212 213	Fig 2. The distribution of CM value of subjects ages 60 to 79 years. It shows the distribution of CM values among healthy subjects aged 60 to 79 years. a: Male (n =
213	distribution of CM values among healthy subjects aged 60 to 79 years. a: Male ($n =$
213 214	distribution of CM values among healthy subjects aged 60 to 79 years. a: Male (n = 89);, b: Female (n = 132). Green: CM value < 0; yellow: $0 \le CM$ value ≤ 0.5 ; red: CM

218 healthy subjects

219 We investigated the relationship between ApoE4 genotypes and CM values of

- 220 healthy subjects. Healthy male subjects tended to have higher CM values in the
- 221 population with ApoE4; however, there was no significant difference between subjects
- 222 with ApoE4 and those without ApoE4 (Fig 3). Among healthy female subjects, CM
- values were higher in the ApoE4 group (p = 0.078, U-test) from 50–59 years of age.

There was a significant difference between the group with ApoE4 and those aged 60
years or older without ApoE4 (p = 0.026, U-test) (Fig 3).

226

227	Fig 3. The relationship between CM value and ApoE genotype. The bar plot
228	shows the distribution of the CM values of the healthy subjects. In addition, the
229	difference in the distribution of CM values between subjects with E4 allyl (red) and
230	those without E4 allyl (blue) was analyzed using the U-test. a) The number of male
231	subjects was 52 for those aged 30-49 years (E4 allyl: 15, no E4 allyl: 37), 35 for those
232	aged 50–59 years (E4 allyl: 8, no E4 allyl: 27), and 87 for those aged 60–79 years (E4
233	allyl: 23, no E4 allyl: 64). b) The number of female subjects was 151 for those aged 30-
234	49 years (E4 allyl: 31, no E4 allyl: 120), 133 for those aged 50–59 years (E4 allyl: 25,
235	no E4 allyl: 108), and 128 for those aged 60–79 years (E4 allyl: 21, no E4 allyl: 107). +:
236	p < 0.05. X-axis: 30–49: 30–49 years old, 50-59: 50–59 years old, 60–79: 60–79 years
237	old. Y-axis: CM value.
238	
239	Comparison of CM values between healthy subjects and

240 patients with central nervous system disorder

241 We compared the CM values of healthy subjects aged 60–79 years (n = 221, male =

242	89, female = 132, average age = 66.4) and patients with central nervous system
243	disorders (n = 112, male = 49, female = 63, average age = 77.9), includingAD,
244	argyrophilic grain dementia, corticobasal degeneration, dementia with Lewy bodies,
245	mild cognitive impairment, multiple system atrophy, normal pressure hydrocephalus,
246	Parkinson's disease (PD), Parkinson disease with dementia (PDD), progressive
247	supranuclear palsy, senile dementia, vascular dementia, and other diseases with
248	dementia (Table 2) . In the ages of 60 to 79 years, the CM value of patients was higher
249	than that of healthy subjects (patients: $CM = 0.501$, healthy: $CM = -0.257$, $p = 0.000$).
250	Furthermore, from the distribution of CM values, 75% or more of healthy subjects
251	between the ages of 60 and 79 years had a CM value of less than 0, whereas more than
252	half of the patients had a CM value of 0 or more (Fig 4).
253	

253

254 Table 2. The number of healthy subjects and patients with central nervous

255 system disorders.

	Total	male	female
Healthy	221	89	132
Patients	112	49	63

AD	13	2	11
PD	33	14	19
PDD	23	12	11
PD+AD	18	7	11
others	25	14	11

256

257 AD: Alzheimer's disease, PD: Perkinson's disease, PDD: PD with dementia,

258 PD+AD: PD with AD.

259

260

261 Fig 4. The distribution of CM value in healthy subjects and patients with

262 dementia. The distribution of CM values of healthy subjects (50-79: gray) and patients

263 with central nervous system disorders (red). The large red circles indicate the CM

264 values of patients with AD. X-axis: age; Y-axis: CM value.

- 265
- 266 We compared the CM values among healthy subjects, patients with AD (n = 13, male
- = 2, female = 11), patients with PD (n = 33, male = 14, female = 19), patients with PDD 267

268	(n = 23, male = 12, female = 11), and patients with PD+AD $(n = 18, male = 7, female = 12)$
269	11) using the Kruskal Wallis H test and Mann-Whitney U test (Table2). The CM values
270	among the healthy, AD, and PD groups differed significantly ($p = 0.000$). The average
271	CM value in healthy subjects was -0.257, and those in patients with AD, PD, PDD, and
272	PD+AD were 1.281, 0.406, 0.512, and 0.720, respectively (Fig 5). The CM value in AD
273	patients was significantly highest, and the value in healthy subjects was significantly
274	lowest. The CM values with PDD patients were similar to those in PD patients (p =
275	0.344), but those with PD+AD patients were significantly higher than those in PD
276	patients ($p = 0.043$).
277	
278	Fig 5. The distribution of CM value in each disease group. The bar plot shows the
279	distribution of CM values of healthy subjects ($n = 221$), patients with AD ($n = 13$), PD
280	(n = 33), PD with dementia (PDD, $n = 23$), and PD+AD ($n=18$). The number of

281 participants is shown in Table 2. The U-test calculated the difference in the CM values

282 between each other. *: p < 0.05, **: p < 0.01, ***: p < 0.001. Y-axis: CM value.

283

284 **Discussions**

285	In 2019, Nakamura et al. measured APP ₆₆₉₋₇₁₁ , A β_{1-40} , and A β_{1-42} in peripheral blood
286	and calculated the CM value from the ratio of their concentrations. Since the CM value
287	is 0.376 or higher and contains approximately 90% of patients with AD [9], detecting
288	the accumulation of $A\beta$ in the brain with high sensitivity has become possible.
289	Furthermore, this method uses plasma from available blood collection, with a minimal
290	burden on the patient [9]. In this study, we carried out CM measurements for a large
291	number of people, including not only patients with dementia but also healthy subjects,
292	and the correlation between CM value and age, sex, and central nervous system
293	disorders (especially AD and PD) was analyzed.
294	
205	The influence of age, and geneture on CM value

The influence of age, sex, and genotype on CM value

In this study, we first measured the CM values of healthy subjects. The CM levels tended to increase with age. In subjects younger than 60 years, the male group had significantly higher CM values than the female group; however, there was no difference in CM values between males and females over 60 years (Fig 1). In males, the CM value increased consistently with age; however, in females, the CM value increased after 50 years of age. These results suggest that after the age of 50 years, changes in blood A β levels differ between males and females.

303	One of the factors contributing to these sex differences may be sex hormone levels. In
304	males, blood testosterone concentration and the risk of developing AD have been
305	correlated, based on a report that male patients with AD have lower serum testosterone
306	levels [11,12]. In addition, an inverse correlation exists between testosterone and $A\beta$
307	concentrations in the brain [13]. These findings suggest that a decrease in testosterone
308	levels promotes the accumulation of A β in the brain [6,7,11-13]. In addition,
309	testosterone levels decrease linearly with the age of 20 in males [14,15]. These findings
310	imply that the accumulation of $A\beta$ in the brain increases consistently with age, and the
311	consistent increase in the brain is similar to the change in the CM value of males. In
312	females, reduced estrogen levels appear to be associated with an increased risk of AD
313	[6,16]. Estrogen levels decrease sharply during menopause [14]. These facts indicate
314	that the accumulation of $A\beta$ in the brain increases sharply after 50 years of age, which is
315	similar to the change in the CM value of females. Moreover, at the age of 60-79, the
316	proportion of male subjects with high CM values was higher than that of female
317	subjects (Fig 2). The standard distribution of CM values in females was greater than that
318	in males (Table 1). These facts suggest that the CM value in female subjects may be
319	influenced by sex hormones, as well as other factors.
320	In this study, we found a significant increase in the CM value due to the ApoE4 gene 20

321	in females aged 60-79 (Fig 3). This suggests that the effect of ApoE4 on the CM value
322	was different between males and females. Individuals with the ApoE4 gene have an
323	increased risk of developing AD [5], and the influence of the ApoE4 gene is present in
324	both males and females. However, the effect of ApoE4 on the onset of AD may differ
325	between males and females [5]. In addition, the effects of ApoE4 were more
326	pronounced after menopause in females. This suggests that the interaction of estrogen
327	with ApoE4 increases the risk of developing AD [5]. These reports imply that the
328	accumulation of $A\beta$ in the brain is more pronounced in females carrying the ApoE4
329	gene. This enhancement of A β accumulation in women by the ApoE4 gene is similar to
330	the increase in CM values in females with the ApoE4 gene. This similarity between the
331	change in CM value in blood and the accumulation of $A\beta$ in the brain indicates that, in
332	healthy people, the CM value in the blood reflects the accumulation of $A\beta$ in the brain.
333	
334	The difference in CM value between healthy subjects and
335	patients with central nervous system disorder.
336	We measured the CM values in 112 patients with central nervous system disorders.
337	Certified neurologists diagnosed patients with central nervous system disorders (Table

338 2). The CM values of healthy subjects were lower than those of patients with central

339	nervous system disorders. Therefore, we can distinguish CM values between healthy
340	individuals and patients with central nervous system disorders. Moreover, the average
341	CM value in patients with AD (1.282) was significantly higher not only in healthy
342	subjects (-0.257) but also in patients with PD (0.406). Notably, the CM value in patients
343	with PD was higher than that in healthy subjects. This result implies that the CM value
344	can be distinguished between healthy individuals, patients with central nervous system
345	disorders, and patients with either AD or PD (Fig. 5). In addition, this result implies that
346	patients with a central nervous system disorder, regardless of the type of disease, may
347	have a more accumulation of $A\beta$ in the brain than healthy individuals. PD and dementia
348	with Lewy bodies are categorized into a group of diseases called α -synucleinopathy, in
349	which toxic oligomeric α -synuclein accumulates in nerve cells. In patients with PD, the
350	concentration of α -synuclein in the CSF is lower than that in healthy individuals [17]. It
351	is positively correlated with the concentration of $A\beta_{1-42}$ in the CSF [18]. These reports
352	imply that the concentration of $A\beta_{1-42}$ in the blood is lower in patients with PD than in
353	healthy individuals. Therefore, patients with PD may have higher CM values than
354	healthy individuals. We also found that the CM value in patients with PD complicated
355	by AD (0.720) was significantly higher than in patients with PD (Fig 5). This result
356	suggests that the CM value measured by this method can be used for early detection of 22

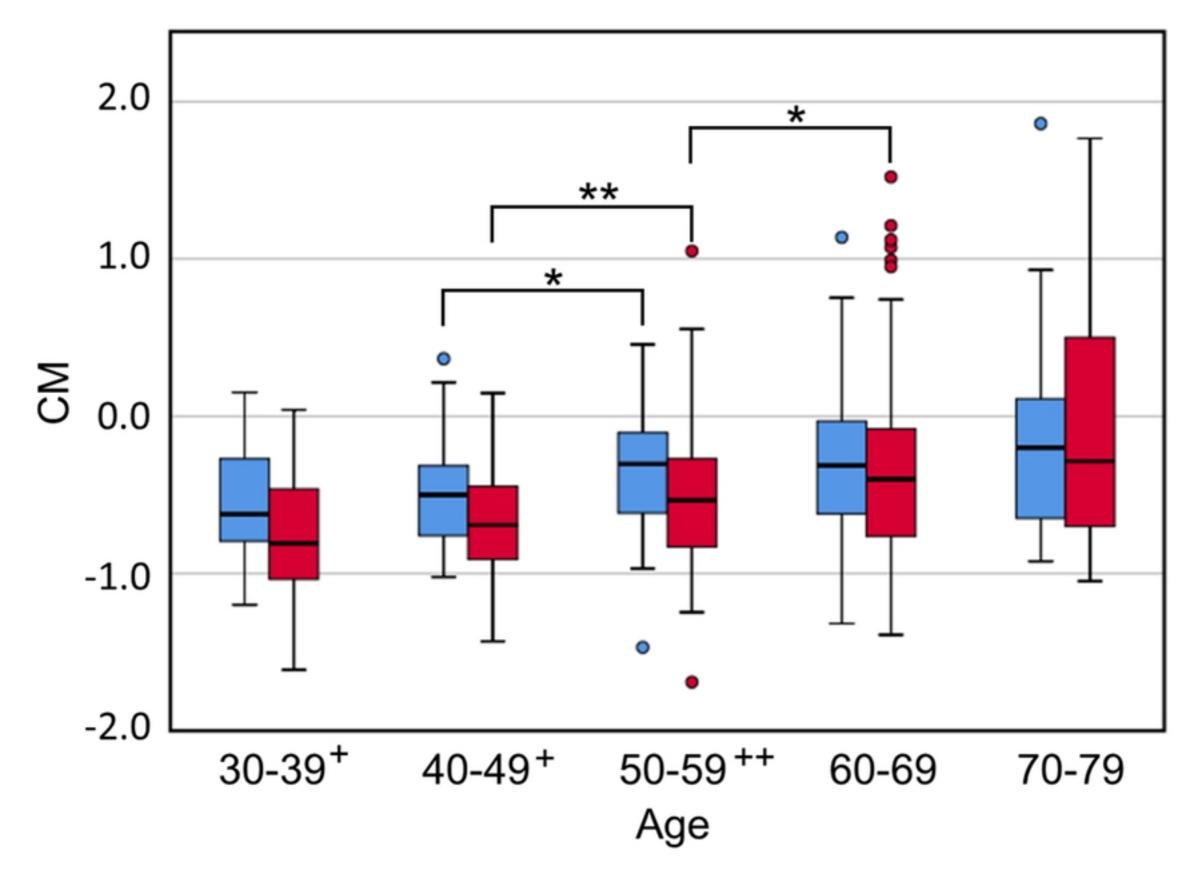
357	AD in healthy subjects and differential diagnosis of patients complicated with other
358	central nervous system disorders. Thus, the CM value is a valuable biomarker for
359	detecting AD and other central nervous system disorders, with a decrease of $A\beta_{1-42}$ in
360	CSF.

361

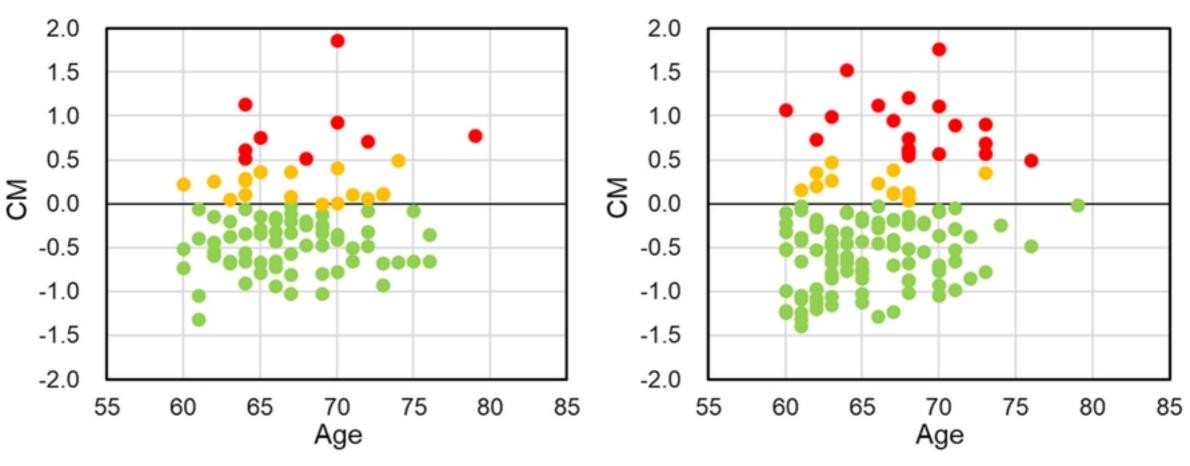
362 Conclusion

363	We demonstrated that the CM value calculated from $A\beta$ concentration in the blood is
364	an index for distinguishing between patients with central nervous system disorders and
365	healthy individuals. Moreover, the CM value differentiates patients with AD from
366	patients with PD and healthy people. As the measurement of $A\beta$ in the peripheral blood
367	used in this study has a significant advantage with little burden on subjects, it is possible
368	to measure patients with AD and healthy people. Furthermore, measurements over time
369	can be used to investigate changes in the speed of $A\beta$ accumulation, which helps
370	determine the preclinical phase.

371


372 Acknowledgments

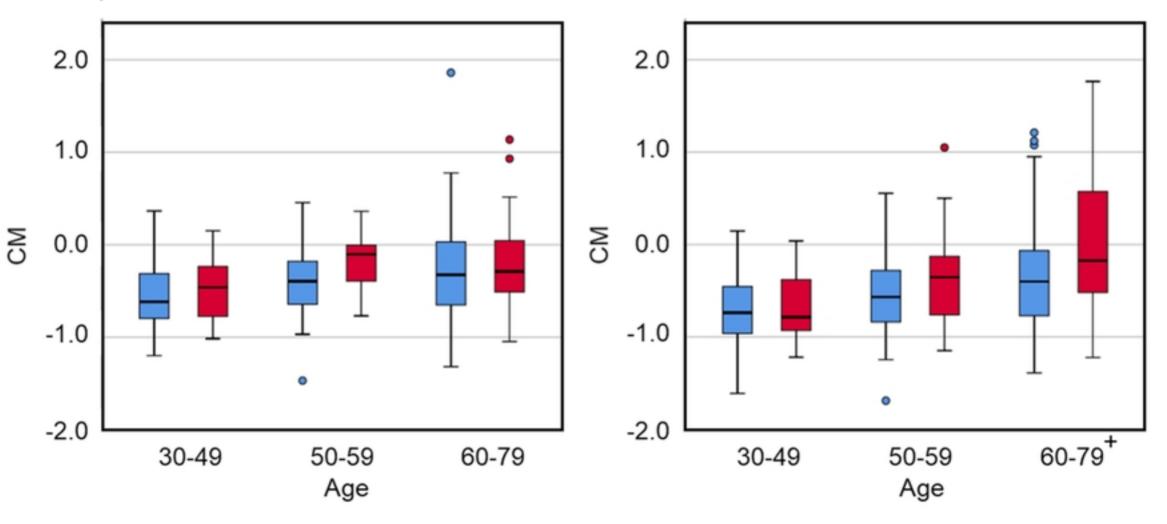
373	We thank members of Hokkaido Information University, Center of Health
374	Information Science, and Hokkaido Neurosurgical Memorial Hospital for their technical
375	assistance with the clinical trial and data treatment. This study was supported by the
376	cross-ministerial Strategic Innovation Promotion Program (SIP), "Technologies for
377	Smart Bio-industry and Agriculture" and Public/Private R&D Investment Strategic
378	Expansion PrograM (PRISM).

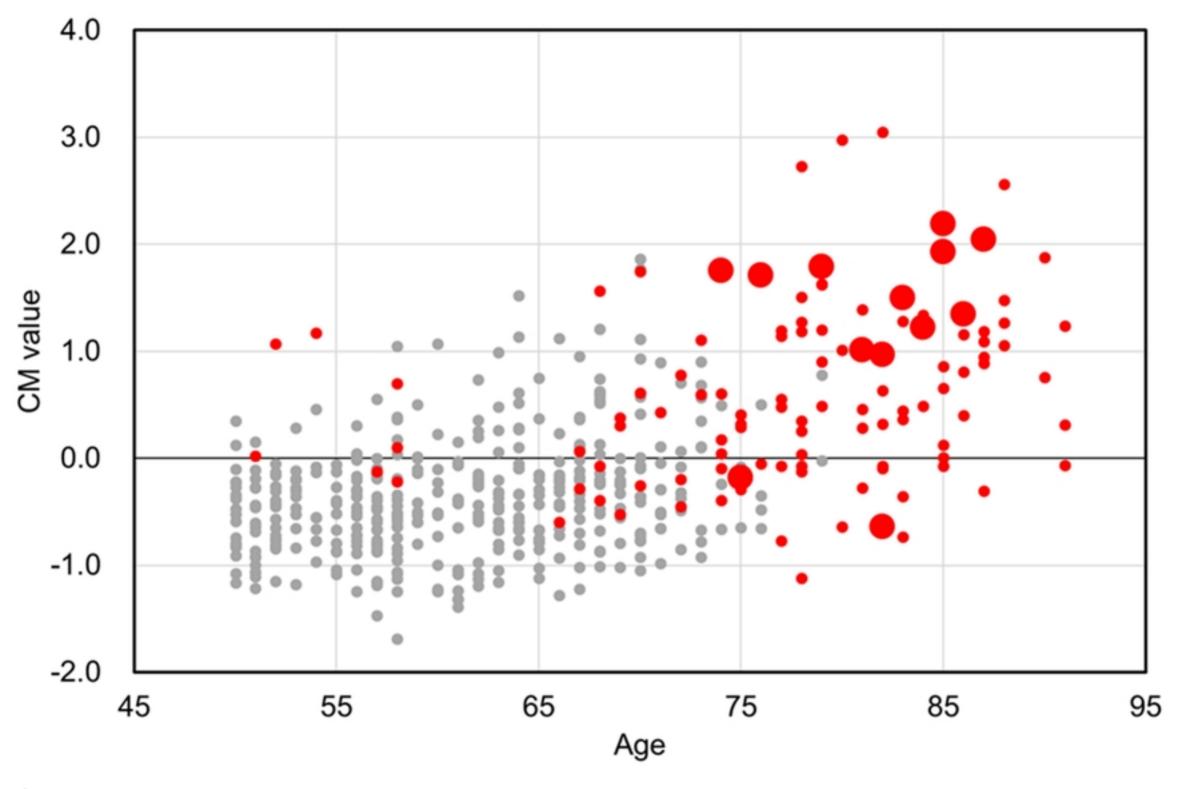

References

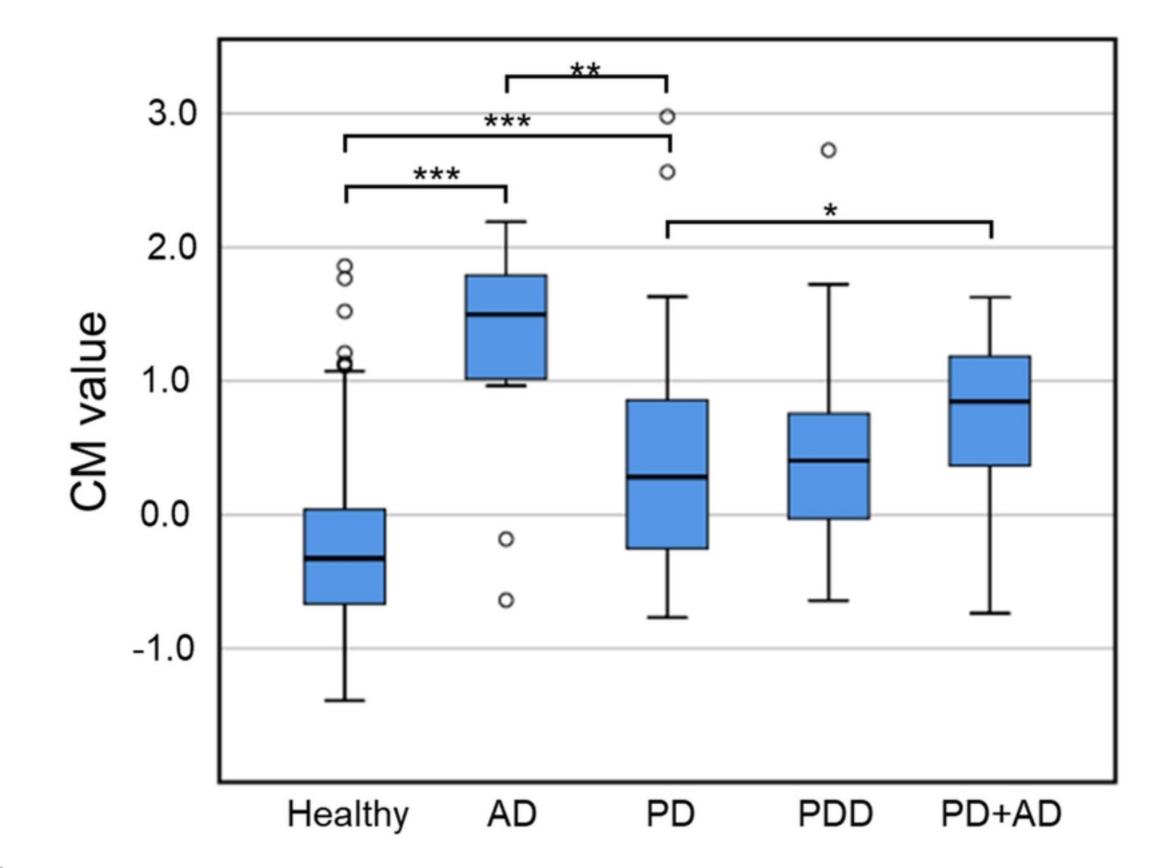
381	1.	World Health Organization. Dementia [Interner]. 2022.
382		https://www.who.int/news-room/fact-sheets/detail/dementia
383	2.	Briggs R, Kennelly SP, O'Neill D. Drug treatments in Alzheimer's disease. Clin
384		Med (Lond). 2016;16: 247-253.
385	3.	Venkat P, Chopp M, Chen J. Models and mechanisms of vascular dementia. Exp
386		Neurol. 2015;272: 97-108.
387	4.	Avila J, Perry G. A Multilevel View of the Development of Alzheimer's Disease.
388		Neuroscience. 2021;457: 283-293.
389	5.	Zhu D, Montagne A, Zhao Z. Alzheimer's pathogenic mechanisms and
390		underlying sex difference. Cell Mol Life Sci. 2021;78: 4907-4920.
391	6.	Mielke MM. Sex and Gender Differences in Alzheimer's Disease Dementia.
392		Psychiatr Times. 2018;35: 14-17.
393	7.	Bianchi VE. Impact of Testosterone on Alzheimer's Disease. World J Mens
394		Health. 2022;40: 243-256.
395	8.	Rocca WA, Mielke MM, Vemuri P, Miller VM. Sex and gender differences in
396		the causes of dementia: a narrative review. Maturitas. 2014;79: 196-201.
397	9.	Nakamura A, Kaneko N, Villemagne VL, Kato T, Doecke J, Doré V, et al. High
		24

398		performance plasma amyloid-β biomarkers for Alzheimer's disease. Nature.
399		2018;554: 249-254.
400	10.	World Medical Association. WMA Declaration of Helsinki - Ethical Principles
401		for Medical Research Involving Human Subjects. [Internet]. 2013.
402		https://www.wma.net/policies-post/wma-declaration-of-helsinki-ethical-
403		principles-for-medical-research-involving-human-subjects/
404	11.	Moffat SD, Zonderman AB, Metter EJ, Kawas C, Blackman MR, Harman SM, et
405		al. Free testosterone and risk for Alzheimer disease in older men. Neurology.
406		2004;62: 188-193.
407	12.	Paoletti AM, Congia S, Lello S, Tedde D, Orrù M, Pistis M, et al. Low
408		androgenization index in elderly women and elderly men with Alzheimer's
409		disease. Neurology. 2004;62: 301-303.
410	13.	Rosario ER, Chang L, Head EH, Stanczyk FZ, Pike CJ. Brain levels of sex
411		steroid hormones in men and women during normal aging and in Alzheimer's
412		disease. Neurobiol Aging. 2011;32: 604-613.
413	14.	Lamberts SW, van den Beld AW, van der Lely AJ. The endocrinology of aging.
414		Science. 1997;278: 419-424.
415	15.	Iwamoto T, Yanase T, Koj E, Norie H, Baba K, Namiki M, et al. Reference
416		ranges of serum total and free testosterone in Japanese male adults. Nihon
417		Hinyokika Gakkai Zasshi. 2004;95: 751-760. (In Japanese)
418	16.	Jayaraman A, Carroll JC, Morgan TE, Lin S, Zhao L, Arimoto JM, et al. 17β-
419		estradiol and progesterone regulate expression of β-amyloid clearance factors in
420		primary neuron cultures and female rat brain. Endocrinology. 2012;153: 5467-
421		5479.
422	17.	Tokuda T, Salem SA, Allsop D, Mizuno T, Nakagawa M, Qureshi MM, et al.
423		Decreased alpha-synuclein in cerebrospinal fluid of aged individuals and subjects
424		with Parkinson's disease. Biochem Biophys Res Commun. 2006;349:162-166.
425	18.	Murakami H, Tokuda T, El-Agnaf OMA, Ohmichi T, Miki A, Ohashi H, et al.
426		Correlated levels of cerebrospinal fluid pathogenic proteins in drug-naïve
427		Parkinson's disease. BMC Neurol. 2019;19: 113.
100		

a) male




Figure


b) female

a) male

b) female

