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Abstract

Electromyography is a valuable diagnostic procedure for diagnosing patients with 

neuromuscular diseases; however, it has some drawbacks. First, diagnosis using 

electromyography is subjective, and in some cases, there is the potential for inter-individual 

discrepancies. Second, it is a time- and effort-intensive process that requires expertise to yield 

accurate results. Recently, a deep learning algorithm shows effectiveness for the analysis of 

waveform data such as electrocardiography. To overcome limitations of electromyography, 

we developed a deep learning-based electromyography classification system and compared 

the performance of our deep learning model with that of six physicians. This study included 

58 subjects who underwent electromyography and were finally confirmed as having 

myopathy or neuropathy, or to be in a normal state between June 2015 and July 2020 at Seoul 

National University Hospital. We developed a one-dimensional convolutional neural network 

algorithm and divide-and-vote system for diagnosing subjects. Diagnosis results with our 

deep learning model were compared with those of six physicians with experience in 

performing and interpreting electromyography. The accuracy, sensitivity, specificity, and 

positive predictive value of the deep learning model for diagnosis as to whether subjects have 

myopathy or neuropathy or normal were 0.875, 0.820, 0.904, and 0.820, respectively, 

whereas those for the physicians were 0.694, 0.537, 0.773, and 0.524, respectively. The area 

under the receiver operating characteristic curves of the deep learning model for predicting 

myopathy, neuropathy, and normal states was better than the averaged results of six 

physicians. Our study showed that deep learning could play a key role in reading 

electromyography and diagnosing patients with neuromuscular diseases. In the future, large 

prospective cohort studies incorporating diverse neuromuscular diseases can enable deep 

learning-based electrodiagnosis on behalf of physicians.
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Introduction

Electromyography (EMG) is an electrophysiological procedure that records electrical 

activity generated by nerves, muscles, and neuromuscular junctions. EMG is performed via a 

needle electrode that is inserted into a muscle or surface electrode during resting and 

volitional states [1–6]. Peripheral nerve and muscle disorders are characterized by EMG 

signal abnormalities, which reflect the anatomical and physiological states of peripheral 

nerves and muscles [1–6].

The signal recorded during muscle contraction comprises the motor unit action 

potential (MUAP), which can be detected from muscles in the volitional state. In a clinical 

setting, neuropathy and myopathy are difficult to discern because their symptoms can be 

significantly similar and overlap in some cases, and MUAP plays a significant role in 

distinguishing them [1,5–12]. Patients with peripheral neuropathy commonly exhibit MUAPs 

with high amplitudes, long durations, and reduced recruitment, whereas those with myopathy 

commonly exhibit MUAPs with small amplitudes, short durations, and early recruitment 

[1,5–12].

Although EMG plays an important role in distinguishing neuromuscular diseases, 

EMG evaluation has some limitations. First, the accuracy of EMG-based diagnosis is reliant 

on the examiner’s proficiency. Previous studies have reported an EMG sensitivity of 47–83% 

for the diagnosis of neuromuscular disease, with a specificity of 73–81% and an interrater 

reliability of 62–81% [13–15]. Second, considerable time and effort are required to accurately 

detect EMG signal abnormalities. The increasing prevalence of neuromuscular disease places 

a burden on physicians owing to the surge in the number of patients requiring EMG [16–19]. 

An accurate, efficient, and automated approach for reading EMG may help physicians arrive 

at the diagnosis more readily.
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Recently, deep learning has been used to analyze large datasets in several fields. It 

has been applied to clinical data, including waveform and time-series data, such as 

electrocardiographic and electroencephalographic data [20–23]. Numerous studies have also 

investigated the medical applications of deep learning, wherein the performance of the deep 

learning model was comparable to or surpassed that of humans [24–27]. Previous EMG 

studies have predominantly used deep learning to analyze EMG signals during the resting 

state or gestures unrelated to neuromuscular disease diagnosis [28–32]. To the best of our 

knowledge, few studies have used deep learning to analyze MUAP signals evoked during 

volitional states, which are more integral for the diagnosis of neuropathy and myopathy.

To overcome the diagnostic limitations of EMG and investigate the feasibility of deep 

learning in reading of EMG, we developed a deep learning model that could classify 

individuals into myopathy, neuropathy, or normal state categories based on volitional state 

EMG signals and compared the classification results of the deep learning model with the 

results of electrodiagnosis by six physicians.

Materials and Methods

Study Design and Preparation

We retrospectively reviewed the electronic medical records of individuals who 

visited Seoul National University Hospital and underwent EMG between June 2015 and July 

2020. Twenty subjects who underwent EMG and were diagnosed with myopathy during this 

period were selected. Among individuals who were diagnosed with neuropathy and normal, 

20 with variable types of neuropathy were selected and 20 were selected randomly for the 

normal group to match the number of subjects in the myopathy group.

EMG evaluation was performed using the Nicolet EDX EMG system and monopolar 
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needle electrode (Natus, Middleton, WI, USA). The filter was set at 20 Hz (low cut) and 10 

kHz (high cut). The EMG signals were recorded with a sampling rate of 48 kHz.

Certified physicians reviewed the EMG data and confirmed the diagnosis for all 

subjects, and results were used for ground-truth in machine learning. Among the waveform 

data, electromyographic artifacts that resulted from the needle electrode or patient 

movements were removed at the beginning and end of EMG data recording. The muscles 

close to the trunk were labeled as proximal muscles and those far from the trunk were labeled 

as distal muscles using the elbow and knee joints as reference points of the upper and lower 

extremities, respectively.

Ethical Approval, and Informed Consent

This study was approved by the Institutional Review Board of Seoul National 

University Hospital (No. 2008-055-1147) and was conducted in accordance with the 

Declaration of Helsinki. The requirement for informed consent was waived owing to the 

retrospective nature of this study, and private subject information was anonymized before 

analysis.

Classification by the Deep Learning Model

The EMG signals were down-sampled to 10 kHz to reduce computational 

complexity. Data were sliced into segments with lengths of 0.4 s and hop sizes of 0.1 s.

A one-dimensional convolutional neural network (CNN) was used as the deep 

learning model [33]. The CNN was designed following the basic structures of residual neural 

and visual geometry group networks, which were verified for the classification of complex 

data [34, 35]. Our CNN comprised seven spatial reduction blocks, five residual blocks, and 
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fully connected layers (S1 Figure). The Softmax function was applied to the final three-

output layer. Hyper-parameters were determined empirically with a learning rate of 10-3, 

batch size of 32, and epochs of 100.

The deep learning model classified subjects through two steps. In the first step, it 

received multiple segments sliced from the EMG data of individual muscles and annotated 

the muscle as myopathy, neuropathy, or normal. In the second step, after considering the 

probabilities of all muscles from individual subjects, a feature vector was produced for 

classifying the subject into myopathy, neuropathy, or normal. Two methods were used to 

generate feature vectors, one with and without consideration of muscle location information. 

The first was to generate a three-dimensional vector (i.e., myopathy/neuropathy/normal) by 

averaging the probability without muscle location information, and the other was to generate 

a six-dimensional vector (i.e., myopathy/proximal neuropathy/normal probabilities of 

proximal muscles and myopathy/neuropathy/normal probabilities of distal muscles) by 

averaging the probability with muscle location information. A mean probability of 1/3 was 

imputed to prevent undesired bias for subjects who did not have any muscle probability for 

some muscle location labels.

Classification by Physicians

A web-based EMG signal labeling platform that replayed EMG signal was developed 

to allow physicians to perform electrodiagnosis. Two neurology and four rehabilitation 

medicine physicians with more than one year of experience in performing and interpreting 

EMG initially annotated EMG signal of individual muscle and subsequently classified 

subjects based on the overall muscle annotation results without any clinical information 

except the EMG signals.
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Performance Assessments

Performance of the deep learning algorithm was compared with results obtained by 

physicians using the following metrics: accuracy, positive predictive value (precision), 

sensitivity (recall), specificity, and F1 score. The performance metrics were calculated using 

the following formulae:

(1) accuracy = (true positives + true negatives) ÷ (true positives +  true negatives
+ false positives + false negatives)

(2) precision = true positives ÷ (true positives + false positives)
(3) recall = true positives ÷ (true positives + false negatives)
(4) specificity = true negatives ÷ (true negatives + false positives)
(5) F1 score = (2 × precision × recall) ÷ (precision + recall)
Additionally, per-class receiver-operating characteristic (ROC) and precision-recall 

curves of the deep learning model were depicted, and the classification results by physicians 

were also depicted on plots of the deep learning model. Moreover, we compared the results 

classified by the two versions of the deep learning model with and without muscle location 

information.

Statistical Analysis

Statistical analyses were performed using R statistical software (version 4.1.0; R 

Foundation for Statistical Computing, Vienna, Austria) and Python programming language 

(version 3.6; Python Software Foundation, Delaware, United States). Normal distribution for 

the continuous variables was assessed using the Shapiro–Wilk test. Differences in categorical 

and continuous variables across myopathy, neuropathy, and normal states were assessed 

using Pearson’s χ2 and Kruskal–Wallis tests, respectively. Data are expressed as the 

mean±standard deviation for continuous variables and as a number (%) for categorical 

variables. All metrics, except accuracy, had binary classifications and were measured by 
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averaging each class metric using the one-versus-rest method. A p-value < 0.05 was 

considered statistically significant.

Results

Subjects’ Characteristics

Two subjects with neuropathy (n=1) and myopathy (n=1) were excluded as their EMG 

data was unsuitable for analysis. Overall, 20 normal subjects, 19 subjects with neuropathy, and 

19 subjects with myopathy were included. Detailed demographic characteristics of subjects 

and detailed information of EMG data are presented in Table 1 and S1 Table, respectively.

Table 1. Demographic characteristics of subjects

SubjectsFeature

Myopathy

(n = 19)

Neuropathy

(n = 19)

Normal

(n = 20)

p-value

Female, n (%) 14 (73.7) 12 (63.2) 13 (65) 0.761

Age, mean (SD), 

years

52.2 (20.1) 58.4 (15.1) 60.2 

(16.9)

0.329

Idiopathic 

generalized 

myopathy (11)

Diabetic 

polyneuropathy (1)

Diagnosis (n)

Statin-induced toxic 

myopathy (1)

Polyradiculopathy (1)

NA NA
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Limb girdle muscular 

dystrophy (1)

Median and ulnar 

neuropathy around 

the wrist (1)

Inflammatory 

myopathy (2)

Brachial plexopathy 

(7)

Emery–Dreifuss 

muscular dystrophy 

or dysferlinopathy (1)

Lumbosacral 

radiculopathy (3)

X-linked FHL1-

related myopathy (1)

Cervical 

radiculopathy (2)

Steroid-induced toxic 

myopathy (1)

Critical illness 

polyneuropathy (1)

Chemotherapy-

induced 

polyneuropathy (1)

Postpolio syndrome 

(1)

Critical illness 

myopathy (1)

Progressive muscular 

atrophy (1)

SD, standard deviation; NA, not applicable

Classification Results of the Deep Learning Model without 

Muscle Location Information

The classification results of the deep learning model that did not consider muscle 
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location information are presented as the following metrics: the accuracy, precision, recall, 

specificity, and F1 score of the deep learning model were 0.875 (95% confidence interval 

[CI], 0.864–0.887), 0.820 (95% CI, 0.802–0.839), 0.820 (95% CI, 0.801–0.839), 0.904 (95% 

CI, 0.898–0.911), and 0.820 (95% CI, 0.801–0.839), respectively (Table 2). The area under 

the ROC curves of the per-class deep learning model classification results were 0.874 (95% 

CI, 0.858–0.889), 0.781 (95% CI, 0.723–0.839), and 0.906 (95% CI, 0.899–0.913) for 

myopathy, neuropathy, and normal, respectively (Fig 1).

Fig 1. Per-class receiver-operating characteristic and precision-recall curves of the deep 

learning model and six physicians.

(A) Areas under the receiver-operating characteristic curve and (B) precision-recall curve were 

measured and depicted by dividing all data into myopathy, neuropathy, and normal classes.

Individual physician performance is indicated by the blue cross, and average physician 

performance is indicated by the red dot.

Abbreviation: DLM, deep learning model

Table 2. Results of classification results obtained using the deep learning model and by six 

physicians

Deep learning model 

(95% CI)a

Physicians

 (95% CI)b

Accuracy 0.875 (0.864–0.887) 0.694 (0.664–0.724)

Positive predictive value (precision) 0.820 (0.802–0.839) 0.602 (0.553–0.651)

Sensitivity (recall) 0.820 (0.801–0.839) 0.537 (0.491–0.583)

Specificity 0.904 (0.898–0.911) 0.773 (0.750–0.795)
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F1 score 0.820 (0.801–0.839) 0.524 (0.469–0.578)

The metrics, except for accuracy, are the averages of the binary classification scores for each 

class from the one-versus-rest method.

aAverage results of classification using deep learning model

bAverage results of classification by six physicians

Abbreviation: CI, confidence interval

The overall prediction pattern was identified from the confusion matrix of the deep learning 

model. The correctly predicted ratios for myopathy, neuropathy, and normal of physicians vs. 

the deep learning model were 49.49%±13.04% vs. 80.70%±4.96%, 79.41%±2.94% vs. 

64.71%±4.80%, and 32.14%±12.20% vs. 69.05%±12.14%, respectively (Fig 2).

Fig 2. Confusion matrices of the results of physicians and the deep learning model.

(A) prediction result of physicians (B) prediction result of the deep learning model

Classification Results by Physicians

The classification results by physicians are presented as the following metrics: the 

accuracy, precision, recall, specificity, and F1 score were 0.694 (95% CI, 0.664–0.724), 0.602 

(95% CI, 0.553–0.651), 0.537 (95% CI, 0.491–0.583), 0.773 (95% CI, 0.750–0.795), and 0.524 

(95% CI, 0.469–0.578), respectively (Table 2). The overall prediction pattern was identified 

from the confusion matrix of physicians (Fig 2). The correctly predicted ratios for myopathy, 

neuropathy, and normal by the physicians were 49.49%±13.04%, 79.41%±2.94%, and 

32.14%±12.20%, respectively (Fig 2).

Classification Results of the Deep Learning Model Considering 
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Muscle Location Information

The performance of the deep learning model did not change significantly with the 

addition of muscle location information. The precision, recall, specificity, and F1 score are 

shown in S2 Table. The ROC and precision-recall curves are depicted in S2 Figure. The 

classification results of the deep learning model with muscle location information for myopathy, 

neuropathy, and normal were not satisfactory (S3 Fig).

Learned Features of the Deep Learning Model

Waveform characteristics were identified by learned features of the deep learning 

model. The generated signals were similar to the typical characteristics of neuropathy, 

myopathy, and normal. Waveforms that were most likely to predict myopathy showed small 

amplitudes and short durations (Fig 3A), whereas those that most accurately predicted 

neuropathy showed high amplitudes and long durations (Fig 3B). Thus, we validated the 

hypothesis that the deep learning model made predictions based on relevant features rather 

than artifacts. We reviewed misclassified EMG signals to analyze the reasons for the 

misclassification (S4 Fig).

Fig 3. Feature visualization results of the deep learning model.

(A) Myopathy (B) Neuropathy (C) Normal.

Discussion

Overall, the deep learning model outperformed physicians on all performance 

metrics, with an accuracy of 0.875 (95% CI, 0.864–0.887), which was higher compared to 

0.694 (95% CI, 0.664–0.724) for physicians for the classification of EMG signal without 
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additional clinical information.

Deep learning reportedly performs well when used for EMG signal analysis [28–32]. 

However, previous studies on EMG mainly focused on EMG signals in the resting state 

[30,31]. We analyzed EMG signals using the deep learning model and confirmed that the 

model outperformed physicians in diagnosing myopathy and neuropathy.

In some instances, abnormal EMG signals are obtained in limited muscles, and the 

number of muscles examined may differ among patients. Considering those variations, the 

EMG results of all tested muscles should be taken into account to diagnose patients with 

neuromuscular disease. We addressed this variation issue by constructing feature vectors for 

subjects from the muscle signal prediction probabilities and utilizing an additional classifier 

to determine the classification results. This method allows the deep learning model to 

consider all the signals measured from different muscles of different subjects in a consistent 

format and classify EMG signals based on signal characteristics rather than the number of 

certain muscle types (i.e., the deep learning model correctly classified whether muscles 

innervated by specific nerve or spinal roots were more examined or not).

Muscle involvement usually follows typical patterns (i.e., patients with peripheral 

neuropathy and myopathy predominantly exhibit abnormalities in distal and proximal 

muscles, respectively) [36]. Although muscle location is meaningful in differentiating 

between neuropathy and myopathy, the addition of muscle location information did not 

significantly enhance the performance of the deep learning model. This may be due to the 

following two reasons. First, some types of myopathies may present with abnormalities of 

both proximal and distal muscles. For instance, in muscular dystrophy, the distribution of the 

affected muscles depends on the disease process. Both the proximal and distal muscles are 

affected in statin-induced and critical illness myopathies. Myotonic dystrophy types 1 and 2 

or distal myopathy may affect distal muscles more frequently than proximal muscles [36–38]. 
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Second, the relatively small sample size was insufficient to generate significant features 

derived from muscle location information.

Several instances where the signals were misclassified by the deep learning model 

were inspected (S4 Fig). Signals that contained parts with high and low amplitudes were 

misclassified as neuropathy (S4A Fig) and myopathy (S4B Fig), respectively. The amplitudes 

of mispredicted EMG signals may dominate the recruitment and interference patterns, 

thereby resulting in incorrect predictions.

Interestingly, the diagnostic accuracy of the physicians was lower than expected. 

This can be attributed to the following. First, 38 of the 58 subjects had neuromuscular 

diseases, which was considerably higher than the real-world prevalence of approximately 200 

per 100,000 individuals [39]. Second, electrodiagnosis by physicians differed from the real-

world diagnostic process. Physicians usually consider both the EMG signals and additional 

patient information such as demographics or symptoms, which were absent in this study.

The present study has some limitations. First, we used retrospective data from a 

single institution. Additional data from other institutions can be used to perform external 

validation to further verify the model performance. Second, a larger amount of EMG data 

needs to be examined to demonstrate the stability of performance of the deep learning model 

in EMG classification. The sample size was insufficient to demonstrate the utility of this deep 

learning model, and a larger cohort may elicit useful muscle location information. Third, 

diagnoses were only divided into neuropathy, myopathy, and normal. There are diverse 

subtypes of neuromuscular diseases, such as chronic inclusion body myositis, ongoing-state 

dermatomyositis, and late-stage muscular dystrophy, which co-exhibit the MUAPs of 

myopathy and neuropathy, with short and long durations. Additional EMG data for more 

specific neuromuscular diseases can improve the performance of deep learning for assisting 

physicians. Finally, resting-state EMG data should be considered together for more accurate 
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diagnosis. In some neuromuscular diseases, such as Pompe disease, EMG abnormalities may 

be revealed only in the resting state of the paraspinal muscles rather than that of the limb 

muscles [36,40]. Future prospective studies with resting and volitional state EMG data can 

further enhance the applicability of deep learning for EMG electrodiagnosis.

We demonstrated that deep learning could analyze EMG signals in a short time and 

with high accuracy and that our relatively simple model has the potential to be embedded in 

an EMG device. Embedding a fast, accurate, and simple deep learning model into an EMG 

device can allow for clinical assistance to be contained within the device without the need for 

sharing personal medical information. This would reduce the burden on physicians and lead 

to a widely applicable, low-cost clinical decision-aiding system for use in medical institutions 

with limited resources.

Conclusion

Deep learning has considerable potential to contribute to the development of 

automatic computer-aided diagnosis systems for patients with neuromuscular diseases.
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Supporting information

S1 Table. Characteristics of electromyography data.

S2 Table. The results of classification using the deep learning model with and without 

muscle location information.

S1 Fig. Structure of the deep learning model.

The spatial reduction blocks consisted of convolutional layers, batch normalization, rectified 

linear unit (ReLU), and max pooling. The residual blocks contained similar layers with added 

residual connections. The fully connected layers consisted of 512, 256, 64, and 16 

sequentially decreasing hidden layer neurons with a leaky ReLU activation function. Early 

stopping was performed by evaluating the accuracy of the validation set after every 30 

updates, and the patience value was set to 100. Cross-entropy loss was used as the loss 

function, with class weights applied in an inversely proportional manner to the number of 

signal segments from the training set. Deep learning performance was measured through 5 × 

3-fold cross validation due to the small number of subjects

S2 Fig. Per-class receiver operating characteristic (ROC) and precision-recall curves of 

the deep learning model with and without muscle location information.

The areas under the (A) ROC and (B) precision-recall curves were measured and depicted by 

dividing all data into the myopathy, neuropathy, and normal groups.

Individual physician performance is indicated by the blue cross, and average physician 

performance is indicated by the red dot.

ROC and precision-recall curves of the deep learning model depending on whether muscle 

location information was considered (green lines, with muscle location) or not (pink lines, 

without muscle location).
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Abbreviations: DLM, deep learning model; ML, muscle location

S3 Fig. Confusion matrices of the deep learning model (A) without and (B) with muscle 

location information.

S4 Fig. Examples of electromyographic signals mispredicted by the deep learning 

model.

Electromyographic signals mispredicted as (A) and (B) neuropathy, (C) and (D) myopathy, 

and (E) and (F) normal signals.
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