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Abstract: Gait disturbances are common manifestations of Parkinson’s disease (PD), with unmet 

therapeutic needs. Inertial measurement units (IMU) are capable of monitoring gait, but they lack 

neurophysiological information that may be crucial for studying gait disturbances in these patients. 

Here, we present a machine-learning approach to approximate IMU angular velocity profiles, and 

subsequently gait events from electromyographic (EMG) channels. We recorded six parkinsonian 

patients while walking for at least three minutes. Patient-agnostic regression models were trained 

on temporally-embedded EMG time series of different combinations of up to five leg muscles bi-

laterally (i.e., tibialis anterior, soleus, gastrocnemius medialis, gastrocnemius lateralis, and vastus 

lateralis). Gait events could be detected with high temporal precision (median displacement <50 

msec), low numbers of missed events (<2%), and next to no false positive event detections (<0.1%). 

Swing and stance phases could thus be determined with high fidelity (median F1 score ~0.9). In-

terestingly, the best performance was obtained using as few as two EMG probes placed on the left 

and right vastus lateralis. Our results demonstrate the practical utility of the proposed EMG-based 

system for gait event prediction while allowing the simultaneous acquisition of an 

electromyographic signal. This gait analysis approach has the potential to make additional meas-

urement devices such as IMU and force plates less essential, and thereby to reduce financial and 

preparation overheads and discomfort factors in gait studies. 

Keywords: electromyography; inertial measurement units; gait phase prediction; machine learn-

ing; Parkinson’s disease 

 

1. Introduction 

Gait and balance disturbances are common and important clinical manifestations of 
Parkinson’s disease (PD), leading to mobility impairment and falls [1]. Current treat-
ments (pharmacological and deep brain stimulation, DBS) provide only partial benefits 
in gait derangements in PD, with a wide variability in outcomes [2–5].  

Despite detailed testing, specific factors that are critical to predict locomotor deteri-
oration in PD remain elusive [6–9]. Besides the subtle onset and clinical heterogeneity 
[10], technical limitations have hampered the timely and direct recording of supraspinal 
locomotor derangements in these patients. Only recently have advances in portable 
electroencephalography systems [11,12] and new DBS devices capable of on-demand 
recording from the chronically-implanted electrodes (e.g., Activa PC+S and Percept PC 
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[Medtronic PLC] or AlphaDBS [Newronika Srl]) [13–15] enabled recording of ongoing 
brain activity during actual gait in PD [16–18].  

Precise assessment of gait dynamics should account for its context dependency. 
New study setups employing fully-immersive virtual reality (VR) or augmented reality 
allow gait assessment (with optoelectronic systems, force plates, etc.) in environments 
that deliver patient-specific triggers of gait impairment (e.g., [19]). These setups could 
facilitate the identification of biomarkers for the fine-tuning of therapy delivery, e.g., 
adaptive DBS programming and so-called VR Exposure Therapy [20]. 

An open challenge is the continuous monitoring of gait parameters in laboratory as 
well as real-world environments. Technically, parameters such as timings of heel-strike 
and toe-off events, which define swing and stance phases and provide valuable infor-
mation about cadence patterns, etc., can be assessed with optoelectronic systems and 
force plates. Both systems, however, are expensive, require qualified personnel and do 
not offer monitoring in ecological settings. Video-based analyses of gait have been pro-
posed as well [21], although it is unclear whether these would reach the required preci-
sion to identify individual events within a gait cycle, especially for clinical applications 
and in ecological settings. Wearable motion sensors such as inertial measurement units 
(IMU) are another viable option to capture gait events in natural environments with high 
temporal accuracy [22,23]. However, they do not contain further neurophysiological in-
formation that may be crucial to understand and predict gait derangements [24]. Surface 
electromyography (EMG) provides the missing link between neural signals and kine-
matics that enables comprehensive characterization of pathological gait. EMG meas-
urements have been used to predict lower limb motion in advance [25,26] for real-time 
control of a prosthesis [27–29] or adaptive DBS devices [16–18,25,26,30,31]. EMG profiles 
of the gait cycle have also been shown to anticipate specific gait derangements in PD such 
as freezing of gait [32], a sudden episodic inability to produce effective stepping despite 
the intention to walk. The combined use of IMU and EMG signals would enable descrip-
tion of the motor actions and intentions underlying gait kinematic features and altera-
tions. 

However, some practical limitations should be considered when applying addi-
tional sensors on severely ill patients, especially when performing recordings after sus-
pension of medications. For example, in patients with PD, overnight suspension of do-
paminergic drugs is fundamental to evoke and study PD-related symptoms, but greatly 
reduces the time window available for experimental recordings. Limiting the preparation 
period by limiting the number of sensors may help considerably in this regard. Also, an 
excessive number of sensors may alter the natural behavior of subjects, undermining the 
advantages of working in ecological environments. Another crucial aspect is the cost of 
multiple sets of sensors. Considering that probes comprising both IMU and EMG are 
generally more expensive than standalone solutions, the need for IMU and EMG in the 
fine-grained evaluation of gait may be a limiting factor for many laboratories and appli-
cations in clinical routine. The use of multiple devices may also not be practical in clinical 
routine, as synchronization or different recording software may be needed.  

Considering this, the development of novel technologies that can extract multiple 
types of signals from the same set of sensors is highly desirable. While the same kine-
matics can be produced by different muscular patterns, lower limb kinematics can be 
inferred by analysis of the EMG [33]. The idea of detecting gait events directly from EMG 
signals, circumventing additional IMU or force plates, is gaining traction [34–38]. Ziegler 
and colleagues [39] report high accuracy in classifying the stance and swing phases 
during human gait based on EMG recordings. They first extracted a weighted signal 
difference that exploits the difference of the EMG activity between corresponding mus-
cles of the two legs, and then trained a support vector machine to classify gait phases. 
Using a deep learning approach, Morbidoni and colleagues [35] were also able to classify 
stance and swing phases and predict foot-floor contacts in natural walking conditions in 
healthy subjects. Other studies showed similar results in learned and unlearned subjects 
[37], and using intra-subject training only [34]. This would not only simplify future re-
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cording setups but also permit the re-analysis of EMG datasets recorded without IMU or 
in cases of data loss due to technical problems with the IMU. This second scenario is 
particularly problematic when recordings cannot be repeated due to the patient's clinical 
condition. Additionally, the extraction and prediction of gait events from lower limb 
EMG activity is of fundamental importance for the development of an EMG-driven 
prosthesis, where predicting the subsequent gait phase from muscular signals increases 
prosthesis efficiency and responsiveness [33]. To the best of our knowledge, no approach 
has yet aimed to reconstruct complete time series encoding gait-related activity such as 
IMU traces instead of discrete gait events. Moreover, we are not aware of any approach 
that has been tested on unmedicated PD patients during long periods of continuous 
walking. 

In the present study, we explore the possibility of identifying fundamental gait 
events from surface EMG in parkinsonian patients using a machine-learning approach. 
Compared to previous studies, we did not frame the problem as one of detection (i.e., to 
identify the timings of a fixed set of events) or classification (i.e., to segment the data into 
contiguous gait phases). Instead, we used an innovative regression approach to ap-
proximate continuous angular velocity profiles as measured by IMU. We consider this 
approach strictly more powerful and flexible than previous approaches, as access to the 
predicted IMU time series allows us not only to extract predetermined types of gait 
events but also biomechanical quantities such as joint angular velocity and further pa-
rameters on which our model has not been trained. Our study is further set apart from 
published work in that we focus on a clinical cohort rather than healthy participants. To 
our knowledge, our study is the first to demonstrate the feasibility of accurate gait pa-
rameter estimation from EMG in such a population. Remarkably, our approach accounts 
for the substantial across-patient variability observed in gait patterns of clinical popula-
tions, allowing it to be applied without any patient-specific calibration. 

2. Materials and Methods 

2.1. Participants 

Table 1. Demographic and clinical features. Abbreviations: Hoehn and Yahr stage (H&Y); Levo-

dopa equivalent daily dose (LEDD); Unified Parkinson’s Disease Rating Scale motor part 

(UPDRS-III); Meds-off: practical medication-off state, i.e., overnight withdrawal (>12 h) of all do-

paminergic drugs; Meds-on: medications-on state 30-60 min after receiving 1 to 1.5 times the 

levodopa-equivalent of the morning dose. UPDRS-III is presented as total score/tremor sub-score 

left/tremor sub-score right/bradykinesia-rigidity sub-score left/ bradykinesia-rigidity sub-score 

right.  

 Gender Age, years 
Age 

at onset, years 
LEDD, mg 

UPDRS-III 

meds-off 
UPDRS-III 

meds-on 
H&Y 

WP1 M 46-50 36-40 1167 50/2/4/14/11 15/1/0/3/4 3 

WP2 M 56-60 45-50 900 28/3/7/4/9 5/0/0/0/4 2 

WP3 F 56-60 51-55 362 18/2/0/2/8 11/1/0/1/7 1 

WP4 F 51-55 45-50 640 9/0/0/6/2 5/0/0/4/1 1 

WP5 M 61-65 51-55 610 12/0/0/2/8 5/0/0/0/4 2 

WP6 M 61-65 56-60 610 30/0/1/5/13 21/0/0/2/8 2 

 
We recruited six patients with idiopathic PD according to the UK Brain Bank criteria 

who did not suffer from any other disease, including cognitive decline (i.e., Mini-Mental 
State Examination score >27), vestibular disorders, and orthopedic impairments that 
could interfere with walking. An additional inclusion criterion for this preliminary study 
was the ability of the patient to walk continuously and without assistance for at least 
three minutes. Disease severity was evaluated using the MDS-Unified Parkinson’s Dis-
ease Rating Scale motor part (UPDRS-III) and the stage of the disease using the Hoehn 
and Yahr (H&Y) scale. Using items 3.15–3.17 of the UPDRS-III (hands and feet), a sum 
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rest tremor sub-score was created for the right and left side separately. Similarly, a sum 
bradykinesia-rigidity score (items 3.3–3.8) was obtained for each side. 

Demographic and clinical features are listed in Table 1. The study was approved by 
the Ethics Committee of the University of Würzburg and conformed to the declaration of 
Helsinki. All patients gave their written informed consent to participation. 

2.2. Experimental setup and procedure 

Patients were investigated in a practical medication-off state, i.e., on the morning 
after overnight withdrawal (>12 h) of all dopaminergic drugs (meds-off). Kinematic data 
were recorded using two IMU (Opal, APDM), with a sampling rate of 128 Hz, placed 
bilaterally on the outer anklebones. Each sensor was placed with its vertical axis aligned 
to the tibial anatomic axis. Surface leg muscle activity as measured by 10 EMG probes 
(FREEEMG, BTS) was recorded bilaterally from the tibialis anterior (Ta), soleus (S), gas-
trocnemius medialis (Gm), gastrocnemius lateralis (Gl), and vastus lateralis (Vl), at a 
sampling rate of 1000 Hz. Two transistor-transistor logic signals (TTL) were provided at 
the beginning and end of each trial to both EMG and IMU devices to allow data syn-
chronization. Patients started walking barefoot after a verbal signal at their self-selected 
speed along a large ellipsoidal path of about 60 m length. We recorded between three to 
six trials (243 ±71 sec duration) of unperturbed, steady-state, overground walking ac-
cording to the clinical condition of each subject. Overall, 26 walking trials with a total 
duration of 105 min were obtained.  

 

Figure 1. Top-view scheme of the experimental setup, with a patient depicted at the starting posi-

tion of the circuit. Patients were asked to continuously walk along an elliptical circuit of approxi-

mately 60 m around the workstation. The inner boundary of the circuit was marked with four ob-

jects at its corners (gray dots). A clinician was close to the patient during all recordings. 
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2.3. Selection of EMG channels 

We focused on the muscles of the lower leg, which are highly involved during the 
gait cycle. The Ta and S are distal monoarticular muscles with distinct and synergistic 
contributions to human gait [40]. According to [41], they are the most active muscles 
during gait and display the lowest inter-subject variability. We therefore hypothesized 
that models based on bilateral pairs of these muscles may be particularly suitable and 
potentially sufficient for predicting gait-related angular velocity profiles. The gas-
trocnemius muscle (biarticular) was added for a comprehensive evaluation of the triceps 
surae. Note that, since medial and lateral gastrocnemii fulfill somewhat independent 
roles [42,43], both were added. Given the knee flexor activity of the gastrocnemius mus-
cle, we then positioned the last available probe on the Vl, a major (monoarticular) knee 
extensor muscle. 

Models based on different muscle combinations were compared to the model in-
cluding all five pairs of muscles. We were interested in identifying minimal subsets of 
EMG probes that would enable accurate IMU reconstruction. Thus, we further exhaust-
ively tested all possible 25-1 = 31 sets containing between one and five pairs of distinct 
muscles. Note that all considered models included either none or both the left and right 
EMG signals for each studied muscle. Thus, all models comprised an even number of 
muscles between two and ten. 

2.4. Data preprocessing 

EMG data were bandpass-filtered, rectified, and down-sampled to 200 Hz. IMU 
traces were up-sampled to 200 Hz using nearest-neighbor interpolation. IMU and EMG 
data were aligned to the rising edge of the first TTL signal for synchronization. A number 
of preprocessing steps were devised to facilitate the prediction of angular velocity traces 
from EMG data. To smooth out local extrema occurring due to noise, IMU data were 
processed with a moving-median filter with 100 msec window length, followed by a 
moving-mean filter with 40 msec window length. To achieve a similar degree of 
smoothness, EMG data were processed with a moving-median filter with 200 msec 
window length, followed by a moving-mean filter with 40 msec window length. All 
moving filters were centered. As a simple high-pass filter, the minimum in a moving 
window of 10 sec length was subtracted from the EMG data. To standardize scales across 
patients, EMG activation time courses were further normalized by subtracting the first 
percentile and dividing by the 95th percentile. Percentiles were estimated separately for 
each recording. Each recording was cropped to the exact on- and offsets of the walking 
period. 

2.5. Extraction of biomechanical parameters 

Swing peak velocity (SWP), heel contact (HC), and toe-off (TO) events were ex-
tracted from the angular velocity profiles measured with respect to the medio-lateral axis 
by the IMU (see [44] and [45] for an extensive description on gait event detection in IMU 
data). This was done separately for the left and right IMU sensor as follows. First, SWP 
events were identified as local maxima with at least 150º/sec peak height and 0.7 sec in-
ter-peak distance. Two consecutive SWP events defined one gait cycle. Next, local min-
ima within each cycle were used to define corresponding HC and TO events. The HC 
event was defined as the earliest local minimum occurring in the sub-interval between 
10% and 45% of the cycle. If no local minimum could be found, the global minimum 
within that sub-interval was used. Similarly, the TO events were defined as the latest 
local minimum occurring in the sub-interval between 55% and 90% of the cycle. Again, if 
no local minimum could be found, the global minimum within that sub-interval was 
used. At random, events extracted by the described algorithm were checked by an expert 
(C.P.) and were in agreement with a manual determination based on the same IMU data. 
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The procedure was used to define “ground-truth” gait events from recorded IMU data, 
as well as approximate event timings derived from reconstructed angular velocity time 
series based on EMG activity (see below). 

2.6. Prediction of angular velocity profiles from EMG 

We used multiple linear regression to approximate the angular velocity with respect 
to the medio-lateral axis of the left and right ankle from the combined activation traces of 
multiple muscles within a window around the prediction point. The regression coeffi-
cients were fitted to minimize the mean-squared error between measured and approxi-
mated IMU traces on training data, consisting of pairs of IMU and EMG activity traces. To 
enable the prediction model to utilize the temporal dynamics of the EMG channels 
around the prediction time point, a temporal embedding of the EMG time series was 
performed. To this end, each selected EMG channel was complemented by temporal-
ly-shifted versions ������ � �	��� 
 ���, … , 	��� 
 ����� , � � 1, … , � ,  where 	��� 

 � was the activity of the m-th EMG sensor at time �+ �. Here, we used �=21 equally 
spaced shifts, ranging from �� = -500 msec to ��� = +500 msec in steps of 50 msec. Thus, 
the prediction of the IMU signal at time � was based on EMG information within a 
window around � of one second length. The relation between the embedded signal of all 
� EMG sensors, ����� � �������, … , ������, 1�� (including an offset term) and the angular 
velocity ���� (either at the left or right ankle) was assumed to be linear according to the 
model ���� � ������� . The �� · � 
 1� -dimensional coefficient vector ���	 �
�������


�

����  was estimated using ordinary least-squares (OLS) regression, where 

�� � ����1�, … , ������, � � ���1�, … , �����, and T denoted the number of available paired 
measurements of EMG and IMU activity in the training set. Using the fitted model, 

EMG-based IMU predictions were obtained as ����� � ���	������. 

2.7. Performance analysis 

Models were evaluated exclusively on holdout data using leave-one-patient-out 
cross-validation. Models were fitted on the concatenated trials of all but one patient (the 
training data) and were evaluated on all trials of the held-out (test) patient, where each 
patient served as the hold-out patient once. This evaluation scheme provided an unbi-
ased assessment of the prediction performance. Model predictions ����� � �������� were 
obtained by multiplying the coefficient vector � estimated on the training data to em-
bedded EMG data ������ from each trial of the test patient.  

Predicted and ground-truth data were compared on a per-trial and leg basis using 
the Pearson correlation coefficient (r). Gait events (SWP, HC, and TO) were extracted 
from the predicted IMU time series as described in Section 2.5. Separately for each leg, 
ground-truth and predicted HC and TO events were used to divide each trial into alter-
nating segments representing the swing and stance phases of the gait cycle. The resulting 
binary time series were compared using the F1-score (see also [34]). In addition, the ab-
solute displacement between matching true and predicted events was measured. 
Matching events were defined as those being <600 msec apart from each other. Predicted 
events lacking a matching ground-truth counterpart were counted as false detections. 
The false discovery rate (FDR) was defined per event type as the number of false detections 

divided by the number of total event detections. Conversely, true events lacking a 
matching prediction were counted as false negatives (misses). The false negative rate (FNR) 
for each event type was defined as the number of missed events divided by the total 
number of true events. 

3. Results 

Ninety-three minutes of gait activity and 5253 full gait cycles were analyzed across 
the six patients. The median gait cycle duration ranged from 1045 to 1140 ms, corre-
sponding to cadences between 51 and 59 cycles per minute (see Table 2). The gait cycle 
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duration variability was measured as the median absolute deviation from the median 
duration and ranged from 10 to 30 ms.  

 
 
 

Table 2. Gait cycle statistics of individual patients.  

 
Median gait cycle 

duration, ms 

Cadence,  

cycles/min 

Gait cycle duration 

variability, ms 

WP1 1140 51 30 

WP2 1050 57 15 

WP3 1045 57 25 

WP4 1080 54 30 

WP5 1010 59 10 

WP6 1095 55 25 

 
 
Figure 2 illustrates the average activation patterns of individual muscles (measured 

by EMG) relative to the angular velocity profiles (measured by IMU). The upper panels 
show the average IMU and EMG activity across the gait cycles of all patients as a function 
of time within a cycle. All ten muscles exhibited stable activation patterns relative to the 
individual gait events of both legs. Importantly, due to the stable timing of the gait cycle 
in patients with mild PD, the left leg muscles showed precise activation in well-defined 
time windows regarding HC and TO events of the left and right leg, and vice versa. The 
Vl displayed particularly consistent timings (as indicated by dark red colors) both for the 
left and right leg. The lower panels depict cross-correlations (computed on the concate-
nated data of all trials) of temporally-shifted EMG activity traces relative to the IMU 
signal. The same 21 lags were analyzed, ranging from -500 msec to +500 msec relative to 
the IMU signal reported above for the machine-learning models. Thus, the depicted 
correlograms represent the independent linear predictive quality of each of the 10*21 = 
210 EMG features considered in our models, thereby indicating the influence of each 
muscle and delay combination for prediction (see also [46]). The activity profiles of all ten 
individual muscles showed substantial positive and negative correlations with the IMU 
signal within a window of 1 sec. The highest absolute correlations were observed for the 
Vl. Specifically, the left Vl activity lagged the left IMU trace by 150 msec (r=0.78) and led 
the right IMU trace by 350 msec (r=0.76); in contrast, the right Vl activity lagged the right 
IMU trace by 150 msec (r=0.66) and led the left IMU trace by 350 msec (r=0.67). All re-
ported cross-correlations were statistically significant (p<0.05 after Bonferroni correc-
tion).  

 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted January 14, 2023. ; https://doi.org/10.1101/2023.01.13.22282375doi: medRxiv preprint 

https://doi.org/10.1101/2023.01.13.22282375
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 8

Figure 2. Relative timing of muscular and kinematic signals. Upper panels show average angular 

velocity measured by inertial measurement units (IMU) and electromyographic (EMG) activity 

across all gait cycles of all patients as a function of time within cycle. Percentages are relative to the 

95th percentile of the raw data. Averages were cropped below 40%. All ten muscles exhibited stable 

activation patterns relative to the individual gait events of both legs. Lower panels depict 

cross-correlations (computed on the concatenated data of all trials) of temporally-shifted EMG ac-

tivity relative to the IMU signal. All ten muscles showed substantial absolute correlations with the 

IMU signal within a window of 1 sec. Highest correlations (Pearson correlation, r>0.66) were ob-

served for Vl activity at delays of 150 msec relative to the same leg or -350 msec relative to the op-

posing leg. Abbreviations: left and right gastrocnemius medialis (LGm and RGm) and lateralis (LGl 

and RGl); left and right soleus (LS, RS); left and right tibialis anterior (LTa, RTa); left and right 

vastus lateralis (LVl, RVl); TO, toe-off. 

 
Figure 3 shows an example segment of the preprocessed EMG and IMU data of one 

patient, the EMG-based predictions of the IMU time courses based on all ten available 
EMG probes, and the gait parameters extracted from true and predicted IMU time series. 
The EMG time courses of three selected individual muscles (bilateral Ta, S, and Vl) 
showed the clear periodic pattern of the gait cycle (bottom row). Out-of-sample predic-
tions based on temporal embeddings of the activity of ten muscles showed a high corre-
lation with the true IMU data (top row). Furthermore, gait events extracted from the 
predicted time series closely matched those extracted from the original IMU traces (top 
row). True and predicted gait phases based on the extracted events were consequently 
also closely aligned (center row). Results of similar quality were obtained when predic-
tions were based on the left and right Vl only (see quantitative evaluation below).  
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Figure 3. Example segment of the preprocessed electromyography (EMG) and inertial measure-

ment units (IMU); angular velocity at the left and right anklebones) recordings of one patient (P5), 

as well as the EMG-based predictions of the IMU time courses and the gait parameters extracted 

from true and predicted IMU time series. Top row: true IMU data and predictions from temporal-

ly-embedded EMG activity of ten muscles. Predictions were derived from an ordinary 

least-squares regression model fitted data of the other five patients. Gait-related events (swing 

peak velocity, SWP, heel contact, HC, and toe-off, TO) extracted from the predicted time series 

closely matched those extracted from the original IMU traces. Center row: True and predicted gait 

phases based on the extracted events were closely aligned. Bottom row: EMG time courses of three 

selected individual muscles (bilateral soleus, tibialis anterior, and vastus lateralis). 

 
Figure 4 quantitatively summarizes the performance of EMG-based reconstructions 

of IMU time courses and gait events. The median (IQR across all 26 trials) Pearson cor-
relation between measured and reconstructed IMU time courses, based on all ten mus-
cles, was r=0.80 (0.74 to 0.87) for the left ankle and r=0.85 (0.78 to 0.90) for the right ankle. 
Using the left and right Vl, the performance was on par, with r=0.86 (0.78 to 0.88) for the 
left IMU probe and r=0.83 (0.80 to 0.88) for the right IMU probe. Using the left and right 
Ta and S muscles did not lead to competitive performance, with r=0.47 (0.35 to 0.66) for 
the left IMU and r=0.55 (0.46 to 0.66) for the right IMU. Importantly, the combination of 
left and right Vl was found to be on par with the full model for all of performance met-
rics, whereas the combination of S and Ta was competitive in none. For this reason, we 
have restricted our reporting to the model comprising left and right Vl. With few excep-
tions, gait events could be reconstructed with median absolute temporal displacements 
<50 msec from IMU predictions derived from this model. The median (IQR) displacement 
for the SWP was 40 (20 to 60) msec for the left leg and 38 (25 to 60) msec for right leg. For 
HC events, median temporal displacements were 35 (25 to 55) msec for the left leg and 45 
(30 to 60) msec for the right leg. For TO events, median displacements were 43 (30 to 100) 
msec for the left leg and 43 (20 to 95) msec for the right leg. Segmentations of the re-
cordings into dichotomous gait phases based on detected HC and TO events were similar 
for measured and reconstructed IMU data. Median (IQR) F1 scores were 0.89 (0.87 to 
0.93) for the left leg and 0.89 (0.86 to 0.93) for the right leg.  
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Event detection errors were rare and did not occur in most trials. Across all trials, 
events were missed in 1.4% (n=71; left leg) and 1.3% (n=68; right leg) of cases. Numbers 
were nearly identical for all three event types, as HC and TO events were always deter-
mined relative to the two enclosing SWP events (see Section 2.5). False event discoveries 
were rare (<0.1% of the total events detected for both legs and all three event types). In 
absolute terms, between two and four out of over 5000 detected events were false dis-
coveries.  

 
Figure 4. Performance of electromyography (EMG)-based reconstructions of inertial measurement 

units (IMU) time courses and gait events. Lower numbers represent better performance. Top row: 

Pearson correlation (r) between measured and reconstructed angular velocity profiles of the left 

and right ankles. Second row: Accuracy of the reconstructed dichotomous (swing vs. stance) gait 

phases compared to the IMU-based ground-truth, as measured by the F1 score. Bottom three rows: 

Absolute displacement of three types of events (swing peak velocity, heel contact, and toe-off) de-

termined from reconstructed rather than measured IMU data. Results are shown separately for the 

left and right leg and for the best-performing prediction models utilizing between one and five 

pairs of EMG channels. In addition, results for the combination of the left and right soleus and 

tibialis anterior are also shown. Bar plots depict median performance across 26 walking trials of six 

patients in total, while overlaid whiskers depict first and third quartiles. Abbreviations: gas-

trocnemius medialis (Gm); lateralis (Gl); soleus (S); tibialis anterior (Ta); vastus lateralis (Vl). 

4. Discussion 

We have demonstrated the feasibility of accurately determining gait events such as 
HC and TO, defining the swing and stance phases of the gait cycle, in PD patients using a 
single pair of EMG probes placed bilaterally on the Vl muscle. Our proposed method 
may have substantial practical benefits in experimental setups in which EMG derivations 
are indispensable, and where additional equipment for kinematic analysis (e.g., foot 
switches, IMU, or a motion-capturing system) is either unavailable or would introduce 
undesired complexity, especially in severely-ill patients. Furthermore, robust acquisition 
of EMG signals is necessary in experimental and commercial applications to achieve 
control of myoelectric interfaces for neuroprosthetics [29], including future adaptive DBS 
devices [30]. 
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Rather than framing the prediction problem as one of binary classification [34], our 
approach consisted of two steps. First, the angular velocity at the left and right ankle-
bones was predicted from the activity of between two and ten EMG probes. This map-
ping is learned a priori from training data for which both EMG and IMU recordings are 
available. Using carefully-designed data features (temporally-embedded, smoothed 
muscle activation time courses), a simple linear regression approach was found to be 
suitable to achieve sufficient reconstruction performance. Second, predefined rules were 
used to extract prominent events and the main phases of the gait cycle. These rules ac-
commodate domain knowledge about the timing of events relative to each other, which 
constitutes a substantial advantage over algorithms that are completely naïve to the un-
derlying data, framing the gait cycle prediction as an abstract classification problem. 
Importantly, our approach did not require any calibration involving real IMU data, as 
models fitted a priori on a training cohort (e.g., the data reported here) can be readily ap-
plied to new patients. Due to the simplicity of our model, its application amounts to a 
simple linear filtering of the appropriately recorded and preprocessed EMG data and 
does not require any advanced machine-learning software. In addition, our approach of 
approximating IMU time courses instead of individual events or categorial segmentation 
labels offers numerous additional advantages. These include direct interpretation of the 
predicted time courses in terms of gait mechanics. Potential failure modes of the model 
(e.g., due to misplaced or noisy EMG probes) could easily be detected through visual 
inspection of the predicted time courses. Since the SWP could be accurately detected even 
from reconstructed angular velocities, and HC and TO were defined relative to SWP, our 
system achieved low numbers of event-detection errors and a high overall accuracy re-
garding the determination of gait phases. It is also likely that our approach could be 
generalized to the extraction of other biomechanically-relevant parameters of the upper 
and lower extremities. 

Contrary to our prediction, the EMG profiles of the S and Ta muscles were insuffi-
cient to reliably identify major gait cycle events in parkinsonian patients. We based this 
hypothesis on the distinctive and synergistic activity of these two monoarticular (i.e., 
ankle) muscles during human locomotion. Indeed, normal EMG activity for the plantar 
flexors has been reported to occur mainly during the stance phase. In this phase, the tri-
ceps surae restrains tibial rotation controlling for the disequilibrium torque, which is 
responsible for propelling the body [47,48]. The ankle dorsi-flexors are instead mainly 
active during the swing phase, controlling for sufficient foot clearance, with an additional 
contribution in the loading response phase for the lowering of the foot to the ground after 
HC [49], thus assisting the forward momentum of the tibia during the heel rocker action 
at the ankle [50]. These muscles, however, may show large stride-to-stride variability in 
the EMG profiles [49], especially in patients with PD [51,52]. In particular, a great intra- 
and inter-subject variability of the Ta activity during gait has been described in 
parkinsonian patients in the meds-off state [51].  

The prediction model did not improve when replacing the S muscle with the Gm or 
Gl, or by adding this muscle to the S-Ta pair (data not shown). This was unexpected be-
cause while the S muscle may provide less forward propulsion with physiological aging, 
the gastrocnemius muscle has been shown to maintain its contribution in initiating 
swinging limb movement [53,54], thus possibly allowing a more accurate detection of 
kinematic events. Rodriguez and colleagues demonstrated a simplification of modular 
control of locomotion in PD with an individual muscle contribution of the gastrocnemius, 
but not the S, among ankle plantar flexors and the semimembranosus and biceps femoris 
for the knee flexor musculature [55].  

In our study, EMG recordings of the Vl provided the most accurate prediction of 
IMU times series and gait events. The action pattern of this muscle during the gait cycle 
paralleled the activation of the Ta, but was more selectively confined to the HC. This 
muscle controls the knee flexion that occurs after HC and ensures knee extension during 
terminal swing to prepare for ground contact [50,56].  

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted January 14, 2023. ; https://doi.org/10.1101/2023.01.13.22282375doi: medRxiv preprint 

https://doi.org/10.1101/2023.01.13.22282375
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 12

In principle, there are an infinite number of different combinations of muscle acti-
vations that can be applied to maintain a particular posture or produce a given move-
ment [57]. However, despite the apparent redundancy, four or five component activity 
patterns may be distributed to all the muscles that are specifically activated during lo-
comotion; thus, the activation of each muscle involves a dynamic weighting of these basic 
patterns [58,59]. Interestingly, Ta, S, and Vl contributed differently to these factors 
[58,59]. Our results suggest that characteristic activity patterns of one pair – the left and 
right Vl – are sufficient for proper detection of gait events in patients with PD (H&Y: 
I-III). 

 

4.1 Limitations 

Our study is somewhat limited by the fact that IMU data are not considered the 
“gold standard” for defining ground-truth gait parameters. Force plates would have al-
lowed precise detection of HC and TO events, and possibly the individual muscle con-
tribution to ground reaction forces [60,61]. However, it would have been impracticable to 
record the high number of steps and total gait time acquired in our study using force 
plates. IMU systems are sufficiently accurate in the assessment of fundamental gait spa-
tiotemporal parameters [23,62] and have previously been used as ground truth for gait 
event detection [63]. Furthermore, they allow detection of the SWP event, which would 
not have been captured by ground devices, foot switches, or insole pressure sensors.  

The proposed approach was not tested on healthy control data. However, we expect 
our model to effectively predict gait events in healthy controls as patient data are more 
heterogeneous and generally more challenging in terms of gait alterations, inter-subject, 
and inter-trial variability, as well as artifact contamination. We were also only able to 
recruit a few patients for this study. However, it should be considered that walking for 
over three minutes in the meds-off state is very challenging for subjects with PD and 
greatly limited patient recruitment. Another limitation was the relatively homogeneous 
walking speed across all patients. We preferred not to alter the patients’ natural speed 
because we wanted to test our model in an ecological setup. Also, the meds-off state 
limited the recording window and the possibility of exploring more than one gait condi-
tion. It is thus presently unclear how well our prediction model would perform for dif-
ferent speeds when applied out-of-the-box. However, it is straightforward to adapt the 
model to different speeds by either temporally adjusting the embedding delays 
��, … , �� of test participants to their individual walking speed or retraining the model on 
data with matching speed.  

5. Conclusions 

We have demonstrated the accurate and robust detection of gait events in six 
parkinsonian patients using just two EMG probes placed on the left and right vastus 
lateralis. Unlike solutions presented in previous work, our approach proceeds in two 
steps. First, IMU time courses are predicted from EMG activity within a surrounding 
temporal window using multiple linear regressions. And, second, gait parameters such 
as heel strikes and toe-off events are extracted from the predicted time series. This ap-
proach led to accurate results and has the advantage over previous ones that discrete gait 
events and continuous time series of relevant kinematic quantities can be predicted. It is 
further expected to generalize to the extraction of further gait parameters not considered 
here without any model retraining. Our model, an example dataset, as well as Matlab 
code for data preprocessing, model training, model evaluation, and plotting, is made 
publicly available1. Our approach may have practical benefits for gait studies in which 
the application of multiple sensing devices is considered impractical, troublesome, or too 
expensive. Notably, our model was validated using a leave-one-patient-out strategy. We 

                                                           
1 https://github.com/braindatalab/EMGgaitprediction 
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observed very good performance on held-out patients, demonstrating that the model is 
able to accommodate the across-patient variability of the studied clinical population. 
Future work will adapt our approach to varying walking speeds and may further extend 
it to the prediction of other kinematic data obtained from EMG.   
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