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Abstract 

This work seeks to evaluate multiple methods for quantitative parameter estimation from standard 

T2 mapping acquisitions in the prostate. The T2 estimation performance of methods based on 

neural networks (NN) was quantitatively compared to that of conventional curve fitting techniques. 

Large physics-based synthetic datasets simulating T2 mapping acquisitions were generated for 

training NNs and for quantitative performance comparisons. Ten combinations of different NN 

architectures, training strategies, and training corpora were implemented and compared with four 

different curve fitting strategies. All methods were compared quantitatively using synthetic data 

with known ground truth, and further compared on in vivo test data, with and without noise 

augmentation, to evaluate feasibility and noise robustness. In the evaluation on synthetic data, a 

convolutional neural network (CNN), trained in a supervised fashion using synthetic data 

generated from naturalistic images, showed the highest overall accuracy and precision amongst 

all the methods. On in vivo data, this best-performing method produced low-noise T2 maps and 

showed the least deterioration with increasing input noise levels.  This study showed that a CNN, 

trained with synthetic data in a supervised manner, may provide superior T2 estimation 

performance compared to conventional curve fitting, especially in low signal-to-noise regions.  
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1. Introduction 

Quantitative T2 mapping provides a more objective and potentially sensitive imaging biomarker 

for diagnosis and grading of prostate cancer compared to qualitative T2-weighted imaging 1–4. 

Mapping is conventionally performed in a two-step process. The first step generates a series of 

images with increasing echo times, typically using a multi-echo spin-echo acquisition. The second 

step performs curve fitting on a pixel-by-pixel basis across the image series to estimate the 

exponential signal decay constant, T2. This two-step processing is common to a larger group of 

quantitative MR methods, including other relaxometry applications (T1, T2, T2
*, T1rho, etc.), 

estimation of apparent diffusion coefficient or intravoxel incoherent motion (IVIM) parameters from 

diffusion-weighted images (DWI), and measurement of flip angle maps for system calibrations. 

The fitting step requires images with a high signal-to-noise ratio (SNR) and a wide range of echo 

times to accurately estimate T2 values. This need for multiple images and high SNR leads to long 

acquisition times, which limits the adoption of these potentially valuable measurements in both 

clinical and research applications. 

 

A variety of approaches have been developed for reducing acquisition times by merging the 

acquisition and estimation steps. These approaches include magnetic resonance fingerprinting 5–

7, model-based inverse reconstructions 8–11 or deep-learning methods 12–21 that directly estimate 

parameter maps from undersampled k-space data. These end-to-end reconstruction techniques 

can greatly reduce acquisition times, but they require specialized acquisition techniques, and 

cannot be used to retrospectively process images generated by conventional acquisitions.  

 

In this work we focus on the second part of the conventional processing approach, estimating the 

transverse relaxation time (T2) from a series of fully-reconstructed magnitude images obtained 

from a multi-echo acquisition. Estimation is often performed on magnitude images because they 

are routinely generated by MR scanners and are readily available for both prospective and 

retrospective studies.  The standard technique for this processing, using pixel-wise iterative non-

linear least squares (NLLS) fitting, is known to overestimate T2 when SNR is low 22,23. This is 

because magnitude images have noise with a Rician rather than Gaussian distribution. With 

Rician noise the measured signal does not decay to zero at long TEs but rather reaches a plateau 

that depends on the noise level 22,24. Minimizing the square of the difference between the 

measured and estimated data does not give a maximum likelihood estimation of the parameters, 

as it would if the noise were Gaussian distributed. It is possible to address this problem by 

performing a true maximum likelihood optimization incorporating the Rician distribution 25–27, or 
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using approximations that enable the use of efficient least-squares algorithms 23,28–30. All these 

methods require that the per-pixel noise level is known or can be estimated from the images. This 

can be very difficult if the noise is spatially varying, as is the case with parallel imaging 

reconstructions, or if there is not a suitable background region in the images. 

 

Neural networks (NNs) can be used as an alternative to the NLLS fitting step. Several groups 

have shown that NNs can improve robustness to image noise and are more computationally 

efficient than iterative fitting. One strategy, previously demonstrated for diffusion 31 and T2 

relaxometry 32 problems, is to train a one-dimensionally fully-connected neural network using a 

large, synthesized training dataset that simulates a forward signal model with random parameter 

values and Rician noise. These methods improved accuracy and reduced variability compared to 

the conventional NLLS method. Another group has trained 1D NNs using a self-supervised 

approach 33,34, in which estimated parameters were inserted into the signal model to produce an 

estimated signal, and the mean squared error between measured and estimated signal was used 

as a data consistency loss function. Despite the different training strategy this also yielded lower 

variability of parameter estimates compared to the NLLS method. 

 

The above networks performed inference on a per-pixel basis, and thus did not incorporate 

information about the spatial correlation of pixels. Such spatial information can be used by using 

a convolutional neural network (CNN) to operate on patches or whole image sets rather than 

individual pixels. This approach has been combined with the self-supervised training strategy for 

both IVIM parameter mapping 35  and T2
* relaxometry in the brain 36, and gave better noise 

performance than 1D NNs or NLLS fitting. CNNs trained in a supervised fashion have also been 

demonstrated to improve noise performance over NLLS fitting in a prostate T2 relaxometry 

application 37. 

 

These prior works demonstrate that NNs can give performance improvements over NLLS fitting 

in quantitative parameter estimation problems. However, it is not yet clear how these methods 

produce these benefits. Possible contributing factors include a more accurate representation of 

Rician noise, denoising capabilities induced by training on noisy inputs, and incorporation of 

spatial prior information through trained convolutional layers. Improving our understanding of 

these mechanisms can help researchers recognize the strengths and limitations of these relatively 

new analysis techniques and use them to provide better quantitative imaging performance. 
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In this work we expand on these prior developments by implementing multiple NN approaches 

and systematically comparing their quantitative performance for T2 mapping in the prostate. We 

propose a novel method for synthesizing large datasets suitable for training and testing networks 

built from a photographic database. Two synthetic test datasets, one with and one without spatial 

correlation, are used to isolate the contribution of learned spatial priors to method performance. 

Networks using 1D and convolutional architectures are implemented and trained using both 

supervised and self-supervised strategies. The performance of these networks, along with several 

conventional fitting methods, is evaluated on synthetic test datasets with known ground truth, to 

allow quantitative assessments of bias and precision. Our evaluations focus on performance in 

low SNR regions, as improved estimation with low SNR data can be used to increase spatial 

resolution and shorten scan times with higher acceleration factors. Finally, methods are compared 

on in vivo test data, with and without noise augmentation, to evaluate feasibility and noise 

robustness.  

 

2. Methods 

2.1 Signal Model 

In this manuscript we consider only mono-exponential signal decay using normalized parameters. 

The signal is described as 

 ( ) ( )0 x /e p TS S = − , [1] 

where  is the normalized sampling dimension, T is the time constant, and S0 is the signal at =0. 

The sampling dimension is normalized so that the maximum value is 1.0 for a given dataset. This 

normalization generalizes the problem so that it can describe different sampling times and other 

mono-exponential processes (e.g., diffusion). For the specific case of T2 mapping, the echo time 

TE and the relaxation time constant T2 are both normalized by the maximum echo time:  

=TE/TEmax and T =T2/TEmax. 

 

2.2 In Vivo MRI Datasets 

All prostate MR imaging was acquired on a Siemens 3T Prisma scanner with surface and 

endorectal receive coils under an IRB-approved protocol. Multi-echo multi-slice fast spin-echo MR 

images were acquired from 118 participants using the vendor’s spin-echo multi-contrast 

sequence, with parameters TR = 6000 ms, eleven echoes with TE = 13.2-145.2 ms in 13.2 ms 

increments, 256 x 256 images with resolution 1.1 x 1.1 mm, 19-28 axial slices 3 mm thick, 
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accelerated with GRAPPA R=3, total acquisition time 6.5 - 8.5 min. Using the normalized signal 

model of equation 1,  takes values of 0.091, 0.182, 0.272, …, 1.0. An example image series is 

shown in Figure 1. 

 

Each axial slice from these acquisitions was treated as an independent 3D image series, 

consisting of two spatial dimensions and one  dimension. The intensity of each image series 

was normalized so that the maximum value over all three dimensions was 1.0. Prior to fitting and 

analyses, each image series was spatially center-cropped to 128x128 pixels, and the first echo 

was discarded to avoid stimulated echo contamination 38. The full dataset, termed INVIVO herein, 

was randomly split into a test dataset (32 subjects with 695 image series) and a separate training 

dataset (86 subjects with 1988 image series) used for training NNs. 

 

2.3 Synthetic Datasets 

Two datasets of simulated T2 relaxometry measurements with known ground truth were generated 

for training and evaluation. The first dataset, called IMAGENET herein, was synthesized from a 

physics-based signal model using naturalistic images drawn from the publicly-available ImageNet 

dataset 39,40 as the gold standard values for S0 and T. Using naturalistic images as surrogates for 

MR images enables the generation of very large datasets, provides a variety of structures and 

textures, and has been used successfully in training CNNs for MR image reconstruction 41. For 

each generated image series, two unique images were selected for S0 and T, converted to floating-

point grayscale images, and center-cropped to 128x128 pixels. These were scaled so that S0 

[0,1] and T [0.045, 4], and used to create a series of images S() from  = 0.182, 0.272, …, 

1.0 following the signal model of equation 1 and matching the in vivo acquisition. Complex 

Gaussian noise was added to each image, with zero mean and standard deviation  drawn from 

a uniform random distribution in [0.001, 0.1] for each image series, followed by a magnitude 

operation. These synthesized images series simulate relaxometry measurements with variable 

levels of Rician noise, broad parameter ranges, and known ground truth. 

 

The second synthetic dataset, called URAND, used random pixel values for the reference images 

S0 and T. In this dataset, spatially adjacent pixels were randomly drawn, so networks trained on 

this data could not use neighboring pixels to improve accuracy. This approach was designed as 

a comparison to the IMAGENET approach, with the expectation that networks trained on this data 

would be less dependent on the statistics of training dataset and less prone to blurring artifacts. 

This dataset was produced in the same manner as the IMAGENET dataset but using gold 
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standard S0 and T images consisting of random pixel values drawn from a uniform distribution over 

the same ranges.  

 

Examples of image series from all three datasets are given in Figure 1. For both synthetic 

datasets, 10,000 image series were generated for training, and an additional 1000 image series 

(with unique S0 and T images and noise) were generated to create independent test datasets. 

Figure 2 provides a schema showing the structure of all three datasets. 

 

2.4 Curve Fitting Methods 

Four variations of curve fitting were evaluated, which are representative of common practices in 

quantitative MRI. The FIT_LOGLIN method fit a straight line to the natural logarithm of S() using 

the linalg.lstsq() algorithm in NumPy 42. This non-iterative linearized method is widely used due 

to its speed, but the log transformation effectively increases the weighting on the points with higher 

signal 43. The results from the FIT_LOGLIN method were used as initial guesses for all other 

methods.  

 

The FIT_NLLS method used the iterative optimize.curve_fit() method of SciPy 44 with the 

Levenburg-Marquardt algorithm to estimate S0 and R=1/T by minimizing the least-squares 

residuals using equation 1. Note R was fit rather than T to avoid division-by-zero numerical errors. 

The FIT_NLLS_BOUND method was similar but used the Trust Region Reflective algorithm with 

bounds S0 [0,1000] and 1/T [0.25, 22], equivalent to T [0.045, 4], to restrict parameter 

estimates to physically reasonable values. These two methods, FIT_NLLS and 

FIT_NLLS_BOUND, assumed a Gaussian noise distribution.  

 

We did not use a true maximum likelihood method with a Rician distribution in this work. This is 

because our dataset had spatially varying noise (due to parallel imaging), and in our initial 

evaluations we found that estimating three parameters (S0, R, Rice) on a per-pixel basis was 

numerically unstable, likely due to the Bessel functions that describe the Rician distribution. 

Therefore we implemented an approximate method that minimized the residual between the 

measured data and the expectation value of a Rician distribution, as reported by other groups 

23,30. This method, termed FIT_NLLS_RICE, used optimize.least_squares() to fit three parameters 

(S0, R, Rice), and used the same algorithm and bounds as FIT_NLLS_BOUND. Table 1 

summarizes the four fitting methods used in this work.  
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2.5 Neural Networks  

Two neural network architectures were used in this study. The first was a one-dimensional fully-

connected neural network used for estimating parameters one pixel at a time. The network had 

10 inputs (one for each ), 6 hidden layers with 64 weights each, 2 output channels, and used 

ReLU activations in all layers.  

 

The second network was a 2D convolutional neural network based on the enhanced U-Net 

provided in the MONAI 45 library, which extends the original U-Net 46 with residual units in the first 

2 downsampling layers 47. The network had inputs of 128x128 with 10 input channels (one for 

each ), 4 layers of encoding and decoding with increasing widths [128, 128, 256, 512], 3x3 

convolutions in all layers, outputs of 128x128 with two channels (interpreted as S0 , T), and used 

batch normalization and PReLU activations.  

 

Both supervised and unsupervised training strategies were used. Supervised training was 

performed using a mean squared error loss relative to the ground truth S0 and T. Self-supervised 

training was performed as in previous works 33–36: the S0 and T values produced by the networks 

were used to simulate values of S(), and the mean square error between simulated and input 

data was used as the loss function; thus no ground truth labels were required for the self-

supervised training. Note that this self-supervised training approach does not fully account for the 

Rician distribution of the noise: the estimated signal approaches zero at long  values rather than 

a non-zero value expected with Rician noise. This mismatch is expected to lead to overestimation 

of T, similar to methods that assume Gaussian noise (e.g., FIT_NLLS). 

 

Training the 1D networks was performed by loading each image series and iterating over all 

spatial positions to extract single-pixel decay curves. Training was performed for 5 epochs using 

a batch size of 10,000 and the AdamW optimizer 48 with learning rate of 0.002. The training sets 

used 800 image series (thus 128*128*800 = 13.1E6 1D series) for training and 200 image series 

(3.3E6 1D series) for validation. Convolutional networks were trained for 1000 epochs with a batch 

size of 100 image series and an AdamW optimizer with learning rate = 0.002. Each training set 

was further divided into train (80%) and validation (20%) subsets for monitoring training progress. 
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Combining the two training strategies and three datasets, there were five models trained for each 

of the two network architectures, producing a total of ten trained NN models for subsequent 

evaluation. Table 2 summarizes the naming scheme used for all fourteen parameter estimation 

methods compared in this work, including the 10 trained NN models and the four curve fitting 

techniques.  

 

2.6 Evaluation on Synthetic Data 

Comparisons between all 14 parameter estimation methods were performed by evaluating all 

methods on the two synthetic test datasets (IMAGENET and URAND), which allowed for analysis 

of error because the ground truth T maps are available. Each method was used to estimate a T 

map for each image series in the test datasets. The signed error between true and estimated 

maps (Tpred-Ttrue), and the absolute error (|Tpred-Ttrue|), were calculated for each pixel. Errors were 

summarized on a per-slice basis by taking the median error value over each map. The median 

value of the signed error was interpreted as the bias of a method. The interquartile range (IQR, 

75th-25th percentile) of the signed error was interpreted as a measure of precision. The median 

value of the absolute error was interpreted as a measure of overall accuracy, which is dependent 

on both bias and precision, with smaller errors indicating higher accuracy. Decomposing accuracy 

into separate contributions of bias and precision is important for understand potential sources of 

bias in quantitative analyses 49,50.  

 

Errors were also evaluated on a per-pixel basis to assess their dependence on SNR and T. SNR 

was calculated on a per-pixel basis using 

 
( )

2
1020logdB

S
SNR

N





 
=  

 
 

, [2] 

where  is the standard deviation of noise, N is the number of  values, and ||…||2 is the L2-norm. 

With this definition the SNR of the synthetic data varied spatial and ranged from negative infinity 

(where S0 = 0) to 59 dB (for S0 = 1, T = 4,  = 0.1), covering a realistic range of in vivo values. 

Finally, each predicted T map was compared to the true T map using the structural similarity index 

measure (SSIM) 51, a quantitative measure of perceptual similarity between two images, to 

evaluate the suitability of the method for producing subjectively interpretable T maps. 
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2.7 Evaluation on In Vivo Data 

The best-performing methods from the synthetic evaluation were subsequently evaluated on the 

INVIVO test dataset. We compared the results of each method to the results of the FIT_NLLS 

method because there is no true T map available, and FIT_NLLS represents the most 

conventional approach. The T maps were compared qualitatively to determine if their estimation 

performance was consistent with the findings in the synthetic experiment.  

 

Finally, a noise-addition experiment was performed to evaluate the sensitivity of each method to 

progressively increasing noise. Complex Gaussian noise with standard deviation ranging from  

= 0.02 to 0.08 units was added to each normalized image series in the INVIVO test dataset, 

followed by a magnitude operation to generate an image series with increased Rician noise. 

Original and noise-augmented datasets were used as input to estimate T maps using all the 

methods, without retraining any NNs. Each map was compared to the T map generated from the 

original (no added noise) image series using the same method, so that the per-slice error was the 

median over Tadded_noise - Toriginal. Bias, precision, and accuracy with increasing noise levels were 

interpreted in the same manner as in the synthetic evaluation.  

 

All computation for this work was performed in Python using the PyTorch 52 and MONAI 45 libraries 

on a Linux workstation with an AMD 5950X CPU, 32GB RAM, and an Nvidia RTX 3090 GPU. All 

data, code, and trained models used in this work have been made publicly available (see Data 

Availability, below). 

 

3. Results  

3.1 Synthetic datasets 

All 14 parameter estimation methods were evaluated on all image series in the IMAGENET and 

URAND test datasets. An example image series from the IMAGENET test dataset is shown in 

Figure 3, with T maps estimated by all methods. In the high-SNR regions most methods produced 

similar-appearing results, although CNN_IMAGENET had distinctly lower noise. The estimated T 

maps were most different in the low-SNR regions, where the fitting methods showed high noise 

levels, whereas CNN_IMAGENET better recovered a noise-free T map, at the cost of modest 

blurring and distortion. Signed difference maps for each example in Figure 3 are provided in 

supplemental figure S1. 
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Figure 4 provides a quantitative comparison of the methods’ performance in estimating T maps 

on both synthetic datasets. Focusing first on the four fitting methods, the two most common 

approaches (FIT_LOGLIN, FIT_NLLS) performed similarly, and exhibited a positive bias as 

expected. Incorporating bounds to the fitting (FIT_NLLS_BOUND) provided a small improvement 

of overall accuracy (i.e., reduced absolute error). The FIT_NLLS_RICE method had poorer 

accuracy and precision, likely due to the need to estimate three parameters instead of two. 

Considering the NN1D methods, those that were trained in a supervised manner 

(NN1D_IMAGENET and NN1D_URAND) had better overall accuracy than the self-supervised 

variants on both datasets. This is possibly because the self-supervised NN models do not fully 

model the Rician noise distribution, while this is implicitly learned with supervised training.  

 

Looking at the CNN methods, the performance of CNN_IMAGENET on the IMAGENET test 

dataset stands out, showing low bias and the highest overall accuracy, precision, and structural 

similarity with the reference T maps. Notably, this method did not perform as well on the URAND 

test dataset. More generally, the fitting and NN1D methods performed similarly on the IMAGENET 

and URAND datasets, whereas CNNs gave higher accuracy on the IMAGENET dataset. This 

difference in performance suggests that, as expected, the CNNs use the information from spatially 

adjacent pixels to improve performance; when applied on data without spatial correlation the 

performance decreases. 

 

For brevity, a subset of methods that performed well on the IMAGENET dataset of Figure 4 were 

selected for subsequent analyses: the conventional FIT_NLLS, the best performing 

CNN_IMAGENET, and the NN1D_URAND and CNN_SS_INVIVO methods as they both offered 

good performance and represent distinctly different methodologies.  

 

Figure 5 presents the same experiment as Figure 4 but analyzed on a per-pixel basis rather than 

per-slice, in order to evaluate errors as a function of SNR and Ttrue values. The FIT_NLLS results 

(first column) demonstrate the tendency of this method to overestimate T when SNR is at low 

levels. CNN_SS_INVIVO (last column) had similar overall behavior. CNN_IMAGENET showed 

low variability and bias with relative consistency across values of SNR and Ttrue, which are highly 

favorable characteristics for a T estimating method. NN1D_URAND had inconsistent behavior, 

both over- and underestimating T in different regimes of SNR and Ttrue. Note that at high SNR, 

FIT_NLLS and CNN_IMAGENET gave similar performance, with low error and variability. An 

expansion of Figure 5 including all methods is provided in supplemental figure S2. 
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3.2 In vivo dataset 

An example comparing the four selected methods on an INVIVO test case is given in Figure 6. 

Qualitatively, the T maps for all methods appear generally similar, with a few exceptions: 

reconstruction artifacts can be seen in the zero-SNR rectum for both CNN_IMAGENET and 

CNN_SS_INVIVO, and the CNN_IMAGENET map shows less noise but with some evidence of 

blurring. Differences between the methods can be more clearly seen by separately focusing on 

regions with high (prostate, white arrow) and low (muscle, red arrow) SNR. CNN_IMAGENET 

gave similar values to FIT_NLLS in high-SNR regions, but lower values in low SNR regions. 

CNN_SS_INVIVO gave similar values to FIT_NLLS in both high- and low-SNR regions. 

NN1D_URAND gave variable values, with either higher or lower T values depending on SNR and 

T. All of these relationships are consistent with the results shown in the synthetic data. This 

suggests that the observations from the synthetic data apply to the in vivo case: CNN_IMAGENET 

gives accurate T estimates independently of T and SNR, whereas FIT_NLLS overestimates T in 

low SNR regions but gives accurate results where the SNR is high.  

 

The results of the noise addition experiment, shown in figures 7 and 8, also support this 

interpretation. Figure 7 shows an example image series from the INVIVO test dataset and the 

estimated T map from the three methods, with increasing amounts of retrospectively added Rician 

noise. Both the FIT_NLLS and CNN_SS_INVIVO methods showed increasing variation and 

increasing values for T at higher noise levels. In contrast the CNN_IMAGENET showed consistent 

values of T, but moderately increased blurring in the T maps. These trends can be seen across 

all cases in the INVIVO test dataset, as shown in figure 8. The CNN_SS_INVIVO model performed 

similarly to FIT_NLLS, but the CNN_IMAGENET model showed greater robustness to noise, with 

smaller changes in accuracy, bias, precision, and SSIM relative to the T maps calculated from the 

original (no noise added) data. 

 

4. Discussion 

In this work we compared a large variety of methods for estimating T2 from prostate T2 relaxometry 

acquisitions. Our main finding is that a CNN, trained in a supervised fashion with a physics-based 

synthetic dataset (CNN_IMAGENET), gave the best overall accuracy when tested on simulated 

data. Additionally, when evaluated on in vivo data the performance was similar to that of the 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 29, 2023. ; https://doi.org/10.1101/2023.01.11.23284194doi: medRxiv preprint 

https://doi.org/10.1101/2023.01.11.23284194
http://creativecommons.org/licenses/by/4.0/


simulated evaluation, giving values in agreement with conventional NLLS fitting in the high SNR 

regime, and providing better precision and a likely reduction in bias in low SNR regions.  

 

Importantly, the comparison amongst the ten NN variations and four fitting techniques provides 

insight into three critical factors that enable CNN_IMAGENET to outperform the conventional 

NLLS approach. The first factor is the ability of the synthetic training strategy to correctly 

incorporate the Rician noise distribution. While the problem of least-squares fitting in Rician noise 

is widely recognized 23,30, the solutions proposed require knowledge of the noise distribution on a 

per-pixel basis, which is not easily determined retrospectively from images reconstructed with 

parallel imaging. Parallel imaging is routinely used to reduce acquisition times but produces 

images with a spatially-varying noise distribution. Trying to estimate the pixel-wise noise 

simultaneously with the relaxation rate increases the degrees of fitting of the model and leads to 

additional error and bias in the other parameter estimates.  

 

The Rician noise distribution affects not just the NLLS methods but also the self-supervised NN 

models. These were trained with a least-squares loss on data with Rician noise, and consequently 

they show a positive bias for T at low SNR, just like the NLLS methods. It may be possible to 

design training loss functions that incorporate the Rician distribution. We were not successful in 

training such NNs due to the numerical instability of the Bessel functions that analytically describe 

the distribution 25,30,43,53, but this may be possible using approximate loss functions or different 

training methods.  

 

The Rician noise issue is a consequence of the specific problem domain we chose to focus on: 

fitting previously reconstructed magnitude images with spatially varying noise. This issue can be 

avoided by fitting real- or complex-valued data 54,55, or by generating accurate noise maps from 

calibration acquisitions, but these are not generally output from MR scanners, and can be 

sensitive to phase errors. Our focus has broad practical value: it allows these methods to be used 

for retrospective analyses of conventionally-acquired relaxometry datasets available in DICOM 

format, and it can be more readily applied to clinical studies without needing custom pulse 

sequences and reconstructions. 

 

The second factor contributing to improved quantitative performance is that NNs trained in a 

supervised fashion produce outputs that are limited by the range of values present in the training 

data. An unconstrained NLLS fit can lead to a very large range of parameter estimates, particularly 
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in noisy data. Using a constrained fit (FIT_NLLS_BOUND) with relatively wide limits substantially 

reduces the error compared to unbound fitting. The synthetic datasets used for training had values 

of T drawn from a uniform random distribution over the same range as the bounds in 

FIT_NLLS_BOUND (T [0.045, 4]), so these methods had similar range constraints.  

 

The distribution of parameters in the synthetic training data limits the range of values that are 

produced by NN inference, but they can also bias the output values. This bias can be undesirable 

56, but the negative effects can be avoided by careful selection of the training range. In T2 mapping, 

the TE array is generally selected to cover the range of T2s the investigators anticipate. The bias 

of expected T2 values is essentially built directly into the acquisition parameters. By synthesizing 

training data with uniform distribution of T2 values, over a wide range (from 0.25 times the shortest 

TE value to 4 times the largest), the negative impact of bias is minimized.  

 

The third factor is the convolution operator, which takes advantage of the spatial correlation 

between pixels and improves performance in low SNR regions. The training strategy used for 

CNN_IMAGENET, in which the network attempts to predict noise-free T maps from noisy image 

series, provides inherent denoising, as the model implicitly “learns” the Rician distribution and 

seeks to remove it. The spatial convolution operator is a key component of this denoising process 

– we showed that a 1D network trained on the same data (NN1D_IMAGENET) exhibited lower 

overall precision (Figure 4) and greater estimation variance at low SNR levels (see supplemental 

figure S1).  

 

Improvement in noise robustness comes at the cost of some blurring, which can be seen in our 

data as well as in prior studies 37. The amount of blurring depends on the architecture, training 

strategy, and loss functions. Zhao et al. 57 attribute this phenomenon to the use of an L2 loss 

function, and have proposed alternate loss functions that could improve the perceived image 

quality. Improving these artifacts, while maintaining quantitative performance, is a topic for future 

work. 

 

The strategy of synthetic supervised training, using a large synthetic dataset derived from a 

physics-based signal model, has broad applications in the MR field. As first demonstrated with 

the AUTOMAP image reconstruction method 41, this approach can be used to build large datasets 

for training, and can encode signal models with much greater complexity than the simple 

monoexponential decay shown here. The dataset synthesis encodes the forward signal model, 
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and through the training process the network learns a mapping that encodes the inverse signal 

model. In this work we demonstrated its application in prostate T2 relaxometry, but this same 

strategy can be used for other relaxometry applications, diffusion modeling, and potentially 

problems with more complex signal models.  

 

In addition to improving retrospective analyses, the methods demonstrated herein could be used 

to optimize acquisitions for prospective studies. With increased robustness to low image SNR, it 

may be possible to acquire data with higher accelerations or spatial resolution without losing 

quantitative performance. Furthermore, since the CNN_IMAGENET method has lower variability 

than FIT_NLLS in estimating T2 at long values (e.g., T2 > TEmax, or T >1, as shown in figure 5), it 

may be possible to acquire shorter echo trains to reduce heating (specific absorption ratio) and/or 

increase the number of slices acquired within the same scan time.  

 
This study has several limitations. This work used relatively simple NN architectures and training 

strategies, which could be improved upon using architectural variations, different loss functions, 

and expanded or augmented training datasets. A disadvantage of the model architectures used 

is that they are sized and trained to work only for a specific set of  values; to apply this approach 

to data with different TE values, one would need to generate a new synthetic dataset and train a 

new model for that specific set of parameters. We also did not compare our methods with 

Bayesian fitting 58,59 or dictionary-based parameter estimation, two additional strategies that merit 

further exploration. These methods could incorporate Rician noise and restricted parameter 

ranges but would not easily incorporate the learning of spatial priors provided by CNNs. Finally, 

we did not evaluate the performance on in vivo data from multiple sites, vendors, or field strengths. 

Since no information about these factors was used in generating the synthetic training data, the 

performance may extend to heterogeneous datasets, but this assessment was not performed.  

 

5. Conclusions 

We compared conventional NLLS fitting with several neural network architectures and training 

strategies for estimating T2 maps from multi-echo magnitude images acquired for prostate 

relaxometry. We found that a CNN, trained with synthetic data in a supervised manner, gave 

better accuracy and noise robustness than NLLS fitting and other NN methods. By comparing the 

performance of different estimation methods on multiple synthetic datasets we were able to 

identify three specific factors that led to the performance gains: improved Rician noise modeling, 

restriction of the parameter estimation domain, and learning of spatial priors with convolutional 
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layers. Furthermore, we showed the feasibility of using these CNNs for analyzing in vivo prostate 

T2 relaxometry data and demonstrated its excellent performance in the low SNR regime.  
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Tables 

 

 

Table 1 – Summary of the four curve fitting methods used in this study. TRF=Trust region 

reflective, LM=Levenburg-Marquardt 

 

 

 

 

 

 

 

 

Table 2 – Summary of the ten NN models trained and used in this study 
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Figures 

 

 

Figure 1 – Examples of the three datasets used in the study. The INVIVO data included T2-

weighted images at ten echo points from TE = 26.4 - 145.2 ms, normalized to  = 0.18 to 1.0. The 

S0 and T maps from conventional NLLS fitting are shown for this example since the true values 

are unknown. The IMAGENET dataset used photographic images from the ImageNet collection 
39,40 as gold-standard S0 and T, and synthesized exponential image series, with added Rician 

noise, matching the  values from the INVIVO data. The URAND dataset used a uniform random 

image for both S0 and T, and synthesized an exponential image series in the same manner as for 

IMAGENET.  
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Figure 2 – Schema of the datasets used in this study. The upper left box shows the IMAGENET 

training dataset, consisting of 10,000 series, each including 10 images (gray boxes) with 

progressively increasing  values, and the true S0 (blue box) and T2 (green box) maps. Twenty 

percent of this dataset was reserved for validation during the training process. A separate 

IMAGENET test dataset of 1000 image series and associated S0, T2 labels is used for 

independent evaluation. The URAND dataset has the same structure, with randomly generated 

images as described in the text. The INVIVO training and test datasets are smaller than the 

synthetic datasets and do not include true S0 and T2 maps.  
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Figure 3 – Example showing estimated T maps from all 14 methods for a case from the 

synthetic IMAGENET test dataset, with the true S0 and T map shown above. The regions of low 

S0 values (e.g., white arrow) have low SNR, which can be seen as regions of incorrect values in 

each of the estimated T maps. This example shows how the methods vary in performance at 

various noise levels and how they fail in regions of very low SNR. In this example 

CNN_IMAGENET had the smallest MAE (0.09) compared to the conventional FIT_NLLS 

(MAE=0.31) but shows evidence of blurring (black arrow) in the low SNR regions. Note also that 

none of the methods recovered the stripe visible in the Ttrue map (red arrow), underscoring the 

difficulty of this inverse problem. 
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Figure 4 – Comparative performance of the 14 methods for estimating T on the synthetic 

IMAGENET left column) and URAND (right column) test datasets, each consisting of 1000 

image sets. The top row (a,d) plots the per-slice the absolute error (|Tpred- Ttrue|), the middle row 

(b, e) plots the signed error (Tpred- Ttrue), and the bottom row (c,f) plots the structural similarity 

between Tpred  and Ttrue. All box-whisker plots show median, interquartile ranges (IQR), and 

extrema (>1.5*IQR from quartiles), overlaid with the values from each of the 1000 cases. On the 

IMAGENET dataset, CNN_IMAGENET gave the lowest overall error (panel a), very low bias 

and highest precision (panel b), and the highest SSIM (panel c), as indicated by red arrows. 

Numerical values of this data are provided in supplemental table S1. 
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Figure 5 – Estimation error (T

err
=T

pred
-T

true
) as a function of T

true
 and SNR for the four selected 

methods, on the IMAGENET test dataset, evaluated on a per-pixel basis. Both T
true

 and SNR 

dimensions were divided into 100 bins, and the median value and IQR (25th and 75th percentile) 

were calculated for each bin. Top row shows T
err

 as a function of SNR, while the second row 

shows the dependence on T
true

. The bottom two rows plot the median and IQR of T
err

 as a function 

of both T
true

 and SNR to show the interplay of these two effects. Both the FIT_NLLS and 

CNN_SS_INVIVO show positive bias at low SNR (black arrows), while CNN_IMAGENET has low 

bias and variability throughout. NN1D_URAND shows both over- and underestimation of T at low 

SNR (yellow arrow). Plots for all 14 methods are provided in supplemental figure S2.  
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Figure 6 – Comparison of selected methods on a single example slice from the INVIVO test set. 

Since no true value of T is available, the methods were compared to the standard FIT_NLLS. The 

top row shows T maps from each method; the second row shows the signed difference relative to 

FIT_NLLS. In the prostate (white arrow), where the SNR is high, CNN_IMAGENET and 

CNN_SS_INVIVO values were similar to FIT_NLLS, whereas NN1D_URAND gave T estimates 

that were more variable. In the low SNR muscle region (red arrow) results were less consistent, 

and in the rectum region (black arrow, where SNR is 0 due to a perfluorocarbon-filled balloon, 

CNN_IMAGENET and CNN_SS_INVIVO show reconstruction artifacts. The CNN_IMAGENET 

result appears least noisy, but shows blurring in some regions (e.g., black arrowhead). The bottom 

two rows show pixel-by-pixel comparisons of estimated T values over the ROIs in the prostate 

(high SNR) and a muscle region (low SNR). In the high SNR ROI, CNN_IMAGENET gives values 

similar to FIT_NLLS, but the low SNR ROI CNN_IMAGENET gives lower values, consistent the 

synthetic data.  
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Figure 7 – An example case from the noise-addition experiment. The top row shows the 

unmodified data: images of the shortest and longest echo time, and T maps calculated with the 

four selected estimation methods. The next three rows show the same data with increasing 

noise added (with Gaussian standard deviation 0.02, 0.03, and 0.04), and the corresponding T 

maps. At higher levels of added noise, the predicted T maps from FIT_NLLS and 

NN1D_URAND show increasing noise and increased higher values of T throughout the image. 

CNN_SS_INVIVO shows similar behavior, with moderately less noise and some evidence of 

blurring. In contrast, CNN_IMAGENET shows modest blurring (red arrowheads) and no noise 

amplification with increasing added noise.  
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Figure 8 – Results from the noise-addition experiment showing the per-slice median absolute 

error (top row), per-slice signed error (middle row), and SSIM relative to the reference T map, 

which is the map calculated using the same method on the original (no noise added) dataset. 

Plots show the median and IQR of all 694 slices in the INVIVO test set as the level of added noise 

increases from left to right. Annotations indicating definitions of bias, precision, and accuracy are 

included for clarity. CNN_IMAGENET shows the least change in these three metrics with 

increasing added noise. 
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Supplemental Data 

 

Figure S1 - Image maps showing the signed error between predicted and true T maps for each of 

the methods, using the example case provided in figure 3. Red pixels indicate overestimation of 

T (positive errors) while blue pixels indicate underestimation. All values in normalized T units. 

  

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 29, 2023. ; https://doi.org/10.1101/2023.01.11.23284194doi: medRxiv preprint 

https://doi.org/10.1101/2023.01.11.23284194
http://creativecommons.org/licenses/by/4.0/


 

Figure S2: Expansion of figure 5, showing T-estimation error (Terr=Tpred-Ttrue) with all 14 methods 

on both synthetic datasets. The four cases shown in Figure 4 are outlined in red. An ideal 

estimator of T would be deep blue (uniformly zero error) in the colormaps, independent of both 

SNR and Ttrue; CNN_IMAGENET best approximates this ideal method when evaluated on the 

IMAGENET test dataset. See Figure 4 for further explanation and axis labeling. 
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Table S1 – Numerical values of the primary metrics plotted in Figure 4. The best values for each 

dataset (lowest bias, precision, and overall error; highest SSIM) are shown in bold.  
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