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Abstract

According to the World Health Organization (WHO), dengue is the most common
acute arthropod-borne viral infection in the world. The spread of dengue and other
infectious diseases is closely related to human activity and mobility. In this paper we
analyze the effect on the total number of dengue cases within a population after
introducing mobility restrictions as a public health policy. To perform the analysis, we
use a complex metapopulation in which we implement a compartmental propagation
model coupled with the mobility of individuals between the patches. This model is
used to investigate the spread of dengue in the municipalities of Caldas (CO). Two
scenarios corresponding to different types of mobility restrictions are applied. In the
first scenario, the effect of restricting mobility is analyzed in three different ways: a)
limiting the access to the endemic node but allowing the movement of its inhabitants,
b) restricting the diaspora of the inhabitants of the endemic node but allowing the
access of outsiders, and c) a total isolation of the inhabitants of the endemic node. In
this scenario, the best simulation results are obtained when endemic nodes are isolated
during a dengue outbreak, obtaining a reduction of up to 22.51% of dengue cases.
Finally, the second scenario simulates a total isolation of the network, i.e., mobility
between nodes is completely limited. We have found that this control measure reduces
the number of total dengue cases in the network by up to 42.67%.

Author summary

For the World Health Organization, dengue is a disease of public health concern. In
recent years there is an increasing trend in the number of dengue cases despite existing
prevention and control campaigns. The mobility of the population is considered an

January 10, 2023 1/25

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted January 12, 2023. ; https://doi.org/10.1101/2023.01.10.23284416doi: medRxiv preprint 

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.

https://doi.org/10.1101/2023.01.10.23284416
http://creativecommons.org/licenses/by/4.0/


important factor in dengue dispersion. In this paper, we are interested in addressing
how restrictions to human mobility might affect the incidence of dengue in a region.
Our research is relevant because the model can be adapted to other regions or scales,
and the mobility control measures can be taken into account for the development of
public health policies in endemic regions.

1 Introduction

According to the World Health Organization (WHO), dengue fever is the acute
arthropod-borne viral infection with the highest incidence in humans in the world [1].
It is transmitted to humans mainly by the bite of a mosquito Aedes aegypti infected
with Dengue virus (DENV). As a vector-borne disease the transmission between
humans only occurs through the bite of infected mosquitoes, never from one person to
another. In other words, the mosquito does not cause the disease directly, but acts as
a bridge between two people, one with the virus and the other without it. In turn, the
mosquito becomes infected when it feeds on the blood of a person infected with
dengue and transmits the virus when it bites healthy people.

Mathematical models are extremely useful to understand mechanisms that drive a
healthy population toward an epidemic or endemic state, as well as for evaluating
containment measures that help to suppress, or at least mitigate, the incidence of a
given communicable disease. The usual mathematical approach to such tasks is the
use of compartmental models. In these models, individuals in a population can be
divided into classes or compartments according to their epidemiological state. For
instance, in the celebrated Susceptible-Infectious-Recovered (SIR) model, individuals
are divided into susceptible (healthy people who may acquire the virus), infectious
(people who have acquired and can transmit the virus) and recovered (people who
cannot propagate the pathogen and have acquired immunity to the virus) [2–4]. Yet
simple and minimal, the SIR model has been pervasively used to analyse a plethora of
viral infections such as measles [5, 6], rubella [7], malaria [8], zika [9],
COVID-19 [10,11], dengue [12–18], among others.
In the case of vector-borne disease, more refined compartmental models have been
introduced in which both human and vector populations are divided into several
compartments. For instance in [19,20] dynamics of human population is modeled
through a SIR model whereas vectors are divided into Susceptible and Infectious. This
division creates a SIR-SI model which is the compartmental dynamics adopted in our
work. Alternative approaches for the study of the transmission of DENV include the
Ross-Macdonald epidemic model [21] or the addition of further compartments to
capture the growth dynamics of the vector population [22,23]. In all these approaches,
the main goal is to define control strategies that favor the eradication of the virus in
humans population in a population.

Most of control strategies rely on improving hygiene measures, the use of pesticides
or, more recently, the release of Wolbachia-infected vectors in high incidence habitats.
However, human behavior plays an important role in the geographical spread of
pathogens [24,25], and vector-borne diseases are not the exception. One of the most
salient features of human behavior affecting the spread of vector-borne diseases is
human mobility [26]. For the particular case of dengue transmission, mobility
determines the degree of exposure to the disease vectors [27, 28] and, evidently, it is
essential to foster local dengue outbreaks in low incidence areas through the
importation of cases from distant and high incidence regions [29,30]. A remarkable
recent example of such phenomenon was the reintroduction of the dengue virus in
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Singapore [31]. The contribution of human mobility in the spread of dengue cases has
become an essential factor given the expansion of urban environments and the
increased frequency of international travels [32–34]. It has been projected that by 2030
more than half of the world’s population will reside in urban areas in the tropics, due
to population growth and migration from rural areas [35].

The importance of human behavior and, in particular, human mobility in the
spread of communicable diseases has motivated the formulation of different
mathematical frameworks to study the contribution of mobility in the spread of
vector-borne diseases [12, 36]. Most of these approaches bridge the gap between
single-population models to metapopulations by incorporating the complex
architecture of human flows in the form of networks [37] defined through data-driven
frameworks [38–40].
Equipped with this framework, we focus on the analysis of how mobility constraints
affect dengue transmission considering two control scenarios. In the first, mobility
constraints are concentrated in the nodes with the highest incidence. In scenario, the
entire network is connected and two types of mobility restrictions are analyzed.

The first measure is to allow residents to leave but prevent outsiders from entering.
In this scenario, preventing outsiders from entering and allowing residents to leave a
high-incidence municipality was found to be the most effective measure, resulting in a
22.51% reduction in the number of dengue cases in the entire region. The second is to
allow outsiders to enter a high-incidence municipality, but not to allow its residents to
leave. And finally isolation consists of preventing residents from leaving and outsiders
from entering a municipality. The second scenario analyzes the effect of confinement,
i.e., totally restricting mobility throughout the network, preventing visitors from
entering and residents from leaving a municipality. When isolation is applied, a
reduction of cases of 42.67% is obtained compared to the unrestricted case.

This article is organized as follows. Section 2, Materials and methods, describes the
proposed compartmental model, the methodology used for estimating the model
parameters and the coupling of the epidemiological model with the mobility network.
Section 3 presents the results of the case study in which the model was applied in the
department of Caldas - Colombia, where we analyze the effectiveness of the different
mobility restrictions described above. The manuscript rounds off in section 4 with a
brief discussion of the results and their implication for informing public health decision
makers.

2 Materials and methods

According to Satorras [37], we are currently witnessing a golden age in epidemic
modeling: models are improving significantly thanks to the continuous addition of
data, while the powerful computational resources available now make it possible to
extend simulations to new limits. Throughout the years, SIR models have been used
to analyse viral infections such as measles [5, 6], rubella [7], malaria [8], zika [9],
COVID-19 [10,11], dengue [12–18] and others.

2.1 SIR-SI compartmental model

Let us denote the total size of the populations for humans and mosquitoes by Nh and
Nm, respectively. Human population is divided into susceptible (Sh), infectious (Ih)
and recovered (Rh), while mosquitoes population is divided into susceptible (Sm) and
infectious (Im) ones. To define the model, the following assumptions are made:
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• The size of the human population Nh is assumed to be constant, corresponding
to the steady state on the underlying population dynamics, since the period of
the disease is very small in relation with population dynamics.

• Incubation period is neglected for both, humans and mosquitoes.

• Deaths caused by the disease are not considered for either humans or mosquitoes.

• Mosquitoes cannot recover after being infected.

• There is not super-infection for either humans or mosquitoes.

• Susceptible humans can only get infected trough an infected mosquito bite.

• Human recruitment rate is constant.

• Mosquito recruitment rate depends on environmental conditions and is constant
in each region.

The dynamics of dengue transmission between humans and mosquitoes, is defined by
the system of equations (1). A susceptible mosquito can become infectious if it has
contact with an infectious individual, according to the transmission probability of the
vector λm, the bite rate β and the proportion of infectious humans in the node Ih

Nh

.

Therefore, the infection rate for susceptible mosquitoes is given by βλmIh
Nh

Sm. For the
case of humans, the rate of infection is proportional to the biting rate β and the
number of infectious mosquitoes IM , transmission probability λh and inversely
proportional to the total population NH , determining the probability of a given
individual being bitten. Therefore, the infection rate for susceptible humans is then
expressed as βλhIm

Nh

.
Considering the former mechanisms, the dynamical evolution of each compartment

associated to a given municipality is described by the following equations:

˙Sm = Λm − βλmIh

Nh

Sm − δmSm ,

˙Im =
βλmIh

Nh

Sm − δmIm ,

Ṡh = Λh − βλhIm

Nh

Sh − δhSh ,

İh =
βλhIm

Nh

Sh − µIh − δhIh ,

Ṙh = µIh − δhRh ,

(1)

with Nh = Sh + Ih +Rh. In table 1 we specify the definition of the parameters used in
the former equations of the SIR-SI model.

The dynamics of the infectious set in the SIR model according to Allen [41] can
yield two different behaviors, one in which there is an epidemic peak and the other in
which the number of infected individuals decreases monotonically until the end of the
outbreak. In [42] the analysis developed by Allen is extended to the SIR-SI model (1)
and it is shown that the dynamics for the infected population depends on

ρ =

√

β2λmλh

δm(δh + µ)

N∗

m

N∗

h

=

√

β2λmλh

δm(δh + µ)

Λmδh

Λhδm
(2)

When ρ > 1, a maximum occurs (epidemic peak) and then decreases to zero. When
these conditions generate ρ < 1 the infected have a decreasing behavior until they
reach zero.
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Table 1. Parameters description for the SIR-SI model.

Parameter Description

β Average bite rate per time unit of the mosquito.
λh Probability of a human to become infectious.
λm Probability of a mosquito to become infectious.
δm Natural death rate for mosquitoes.
µ Recovery rate for humans.
δh Natural death rate for humans.
Λm Recruitment rate of susceptible mosquitoes.
Λh Recruitment rate of susceptible humans.

2.1.1 Parameters estimation and initialization

The parameters governing contagion dynamics and the mosquito’s life-cycle are
extracted from the work published by Helmersson et al. [43]. In this manuscript, the
authors proposed different equations capturing the reduction of vectorial capacity of
Aedes aegypti when being exposed to either very high (T > 34◦C) or very low
(T < 12◦C) temperatures. The behavior of the parameters as a function of
temperature can be seen in the Fig 1. In particular, the average bite rate reads:

β(T ) = 0.0043T + 0.00943 12.4 ≤ T ≤ 32 , (3)

the probability that a mosquito becomes infectious after biting and infectious human
is:

λm(T ) =

{

0.0729T − 0.9037 12.4 ≤ T ≤ 26.1 ,

1 26.1 < T ≤ 32.5 .
(4)

instead, in the range 12.286 ≤ T ≤ 32.461, the infection probability for humans can be
modeled as:

λh(T ) = 0.001044T (T − 12.286)
√
32.461− T , (5)

while the mosquito death rate goes as:

δm(T ) = 0.8692− 0.1590T + 0.01116T 2 − 3.408 ∗ 10−4T 3 + 3.809 ∗ 10−6T 4 , (6)

for 10.54 ≤ T ≤ 33.41. In Fig. 1 shows the variation of these four parameters as the
temperature increases from 8◦C to 40.7◦C

The other four parameters are defined as follows. For Λh, the approach proposed
by [44] is used, where it is defined as Λh = Nh

EVH∗365
. The recovery rate for humans µ

is set to 0.32288 according to the study developed by Hamdan [14], while δh is
estimated using known specific statistics from the geographical region under analysis.
Finally, to estimate Λm we start from the equation for the vital dynamics of the vector
when Sm = 0, (i.e. Ṡm = Λm − δm), where the carrying capacity (number of
mosquitoes at steady state) is obtained as S∗

m = Λm

δm
. The recruitment rate, therefore,

can be expressed in terms of the carrying capacity Λm = S∗

mδm.
To set the initial conditions for the model, some considerations have to be mentioned.
First of all, it has to be noted that Nh can be fixed based on the known population of
each municipality, while Nm can be estimated with the Index of Domiciliary
Infestation (number of houses with one or more containers positive for immature
Aedes aegypti divided by the number of houses sampled multiplied by 100) and the
average number of people per household in the study region.
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Fig 1. Temperature dependence of the parameters. (a) Bite rate β, (b) Rate of
death of mosquitoes δm, (c) Likelihood of a person becoming infectious λh, (d)
Likelihood of a mosquito becoming infectious λm.

��� ��� ���

��� ��� ���

Fig 2. Behavior of the human population over time in the SIR-SI model.
(a,c) Susceptible, (b,e) Infected and (c,f) Recovered. When ρ < 1 (a, b and c), and
ρ > 1 (d,e and f).

Considering Eqs. (1) and the parametrization described above we shown in Fig 2
the behavior of the model when simulating a region with an average temperature of
31◦C ( β = 0.227 λm = 1, δm = 0.0298, λh = 0.732, µ = 0.329) and the mosquito
recruitment rate Λm = 86.634. When the initial conditions are Nm = 148.352,
Sm = 118.352, Im = 30, Nh = 76963 Sh = 76963 Ih = 0, that produces a ρ > 1 and an
epidemic peak. When the initial conditions are Nm = 148.352, Sm = 118.352, Im = 0,
Nh = 76963, Sh = 76928, Ih = 35, that results in a ρ < 1 and thus the number of
infected decreases to zero.

2.2 SIR-SI model with human mobility.

The SIR-SI can be modified to account for the impact of recurrent human mobility
patterns. For this purpose, let us assume that each individual has his/her residence
located inside a given patch but can move to other destination, identified as the
workplace for instance. In the absence of data, we assume these movements to be
governed by a fully-connected weighted matrix Υ. We construct this matrix
synthetically by assuming that 90% of the population inside each patch remain there
whereas 10% of the population move to another area. We compute the flows
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connecting different patches following the gravity model [39], implying that the
number of connections between two patches i and j, hereinafter denoted by Wij , can
be expressed as:

Wij =
N i

hN
j
h

dij
2

(7)

Taking into account the flows distribution, the elements of the mobility matrix Υ read:

Υ =
Wij

∑n
l=1 Wil

(8)

Agents’ movements between patches i and j cause a redistribution of the
population across the system; therefore it is necessary to adjust the equations (1) to
account for the actual number of people that are in any patch i at any given time. In
particular, the effective population of patch i is defined as:

N i
he =

∑n
j=1 ΥjiN

j
h , (9)

which accounts for the distribution of the residential population ~N and the mobility
patterns of the individuals of the metapopulation Υ. Likewise, mobility also changes
the effective number of infected individuals in each patch i, which now reads:

Iihe =
∑n

j=1 ΥjiI
j
h (10)

Finally, we assume that mosquitoes stay inside their associated area. To model the
spatio-temporal evolution of the disease, we define the quantity xi(t) as the occupation
of each compartment (x ∈ {Sh, Ih, Rh, Sm, Im}) inside each patch i. Following the
assumptions of the model, the time evolution of these quantities is given by:

˙
Sm

i = Λm
i − βiλm

iIhe
i

Nhe
i

Sm
i − δm

iSm
i

˙
Im

i =
βiλm

iIhe
i

Nhe
i

Sm
i − δm

iIm
i

˙
Sh

i = Λh
i − βiλi

hSh
i

n
∑

j=1

Υij

Ijm

N
j
he

− δihSh
i

˙
Ih

i = βiλi
hSh

i

n
∑

j=1

Υij

Im
j

Nhe
j
− (µ+ δh

i)Ih
i

˙
Rh

i = µIh
i − δh

iRh
i

(11)

In Fig. 3 we show an scheme of the metapopulation model in which the SIR-SI
compartmental model is integrated with human mobility flows.

3 Results

Once presented the general formalism to tackle the dissemination of dengue fever
across a metapopulation we now apply it to particular scenarios. We first address the
analysis of three simple cases that illustrate how mobility between a small set of
patches have profound implications in the overall extent of dengue cases. Then, we
present our main case study: the spread of dengue fever in the department of Caldas
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(b)

i

j

k

Υik

Υki

Υji

Υij

Υkj

S I R

SI

(a)

λh

λm

μ

Υjk

Fig 3. Schematic view of the SIR-SI metapopulation model. (a) shows the
compartmental dynamics of the SIR-SI model with cross-infections between vectors
and humans while panel (b) shows a toy metapopulation of 3 patches connected
through links whose weights are given by matrix Υ.

(CO). We describe the main attributes of the department, their map into the
metapopulation framework, and the parametrization of the model according to
observed dengue cases. Finally, this section presents the results of two different
mobility restriction and show their impact on the total dengue fever cases.

3.1 Mobility effects over dengue cases in simple

metapopulations

We start by developing the analysis of three very simple metapopulations to unveil the
effect of mobility on the spread of dengue. To this aim, we define three case examples
in which the distance between nodes is set as a control parameter so that its increase
implies, according to the gravity model, the decrease of mobility. The three scenarios
are sketched in Fig. 4.

3.1.1 Case A

As sketched in Fig. 4.a this case example corresponds to a patch (node 1) with zero
incidence connected to an endemic patch (node 2). The model parameters used to
simulate this example are shown in Table 10(a). In Fig 5a, we show the evolution of
dengue cases in both patches as the distance increases. This graph shows that
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i

Node 1

Node 1 Node 2

Node 2

Node 1

Node 2

Node 3

(a)

(b)

(c)

Fig 4. Schematic plot of the three simple metapopulations covered as case

examples. In panel (a), corresponding to case A, node 1 is a zero-incidence node, i.e.,
there are no mosquitoes on it, however in node 2, there are environmental conditions
for vector breeding and the disease is present. Panel (b) corresponds to case B. In this
case node 1 is defined as endemic and is connected to a non-endemic node. Note that
in both nodes the disease is present, but in node 1 the vector breeding conditions are
better, so there is a wider spread of the disease than in node 2. Finally in panel (c) we
define case C for which there are three equidistant connected nodes. Node 1 has zero
incidence and its population is the largest while nodes 2 and 3 have characteristics of
endemic regions. However, node 2 has more inhabitants than node 3 and, therefore,
the probability of infection in node 3 is larger than in the other two patches.

increasing the distance between patches, i.e. reducing mobility between patches, leads
to an overall reduction in the total number of cases. Note however that the effects of
increasing distance (reducing mobility) for both patches are opposite. In particular,
while increasing mobility increase the exposure of individuals from non-endemic areas
leading to a higher incidence, movement across patches is beneficial for the population
in endemic areas, decreasing the total incidence of the virus on this population.

3.1.2 Case B

In this example, node 1 is a patch with high disease presence and node 2 a patch where
there are fewer dengue cases (see Table 11(a) for the parameters used in this case). In
Fig. 5b, we observe a qualitatively similar pattern to the one described before but
much less pronounced due to the higher similarity among the connected patches.
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Fig 5. Evolution of dengue cases in patches as the distance increases when connecting
a) High and a zero incidence node. b) High and medium incidence node. c) High,
medium and zero incidence node. The green line shows the denge cases in the zero
incidence node, the blue line shows the cases in the medium incidence node and the
red line shows the cases in the high incidence node. The black line is used for the total
number of cases.

3.1.3 Case C

In this example three equidistant nodes are connected. According to the parameters
chosen in Table 12, node 1 has zero incidence and the largest population, node 2 has a
larger population than node 3, but the latter has a higher incidence of the disease
(97.5 cases per thousand inhabitants versus 75.2 for node 2) when patches are isolated.
The results of this case are shown in Fig. 5 Case C. Again geographical location, i.e.
the increase of the distance between patches, allows for a reduction in the total
number of cases. However, locally,the situation of node 3 (zero incidence) worsens
when the distance is reduced, while for the medium and high incidence nodes,
proximity reduces the number of dengue cases by up to 50%.

The results of the former cases clearly show that mobility restrictions have a great
impact on reducing the number of cases, although locally the epidemiological situation
can worsen as a byproduct of this contention measures. Motivated by these results we
now propose scenarios to evaluate the effect of applying mobility restrictions in a more
complex metapopulation inspired in the municipalities of department of Caldas (CO).

3.2 Defining the metapopulation of the department of Caldas

The department of Caldas is located in the central west of the Colombian Andean
region. It is crossed by the Central and Western mountain ranges, which makes it a
department of mountainous topography. It has an area of 7888 km2 and a population
of 987991 inhabitants [45], while its elevation above sea level ranges between 5400
masl and 170 masl. The department has 27 municipalities, ten of which have direct
communication with 6 other municipalities in neighboring departments. To apply our
SIR-SI model to the department of Caldas, we define a metapopulation with 33
patches, each with a number of residents equal to that reported by the census. The
connections (links) between patches are calculated as a function of the road distance
between them, resulting in the Υ matrix containing the transition rates between pairs
of municipalities. This matrix does not take into consideration whether the
municipalities belong to the department of Caldas or they are external municipalities
that by proximity have a relationship with the previous ones. The precise transition
rates between the 33 municipalities (patches) are reported in Table 5).

For the numerical simulations, the parameters β, λh, λm and δm are calculated
with the procedure mentioned in section 2.1.1 and shown in Table 3 for each of the

January 10, 2023 10/25

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted January 12, 2023. ; https://doi.org/10.1101/2023.01.10.23284416doi: medRxiv preprint 

https://doi.org/10.1101/2023.01.10.23284416
http://creativecommons.org/licenses/by/4.0/


Real cases Model

101 102
Model

101

102

Re
al
 c
as
es

R2=0.76

1 10 100

Fig 6. On the left, cases of dengue fever occurred in the department of Caldas during
one year (2015). On the right, dengue cases predicted by the model during the same
year. Below correlation between both variables.

analyzed municipalities. The estimations are based on the average temperature value
in each of them (see Table 2). In turn, the recruitment rate for humans is calculated
with the value of life expectancy (EVH = 74.64), defined in public health records
whereas humans mortality rate is obtained from DANE statistics.

With the demographic, epidemiological and mobility parameters, initial conditions
were set for each municipality (presented in Table 4). To calibrate the model to
capture the number of dengue cases historically occurred in the department of Caldas
(CO) during some outbreaks in the last decade, periodic perturbations in the number
of infected mosquitoes during two rainy seasons in a year were introduced. As a
necessary simplification, we only considered one dengue serotype; this assumption
implies that individuals can only be infected once. The model was adjusted by
minimizing the error between simulated and real cases. In particular, the SIR-SI
simulation model with the 33 municipalities connected after calibration yields 1099
cases of dengue in Caldas (see Table 6).

The agreement between real cases and those obtained after the SIR-SI model has
been calibrated is shown in Fig. 6. In particular the map on the left shows the dengue
cases reported by the health entities and on the right the dengue cases estimated with
the model. It can be seen at the bottom that there is a correlation of 0.76 between the
data estimated with the model and the cases occurred in the department of Caldas
during 2015.
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Fig 7. Variation of dengue cases in the department Caldas according to mobility
restrictions when: i) no foreigners are allowed to enter the municipality (blue), no
inhabitants can leave the municipality (green), the municipality is totally isolated
(orange).

3.3 Control Scenario 1: Mobility restrictions focused on high

incidence nodes

The purpose with this scenario is to get some insights on the contribution to the total
number of dengue cases in the network, after applying mobility constraints to the five
most affected cities (one at a time). We analyze the variation of dengue cases
according to mobility constraints when: i) Access: No foreigners are allowed to enter
the municipality, ii) Exit: no inhabitants can leave the municipality , iii) Isolation: No
entry or exit allowed for residents or visitors. These control measures were applied in
simulations for the five municipalities with the highest number of dengue cases during
during the period 2015− 2019 according to the public health office of Caldas [46].
These municipalities are La Dorada, Norcasia, Marmato, Chinchiná and Manizales.
Fig. 7 shows the variation of the total number of dengue cases in the department of
Caldas when the three mobility control measures proposed in this work are applied in
the five municipalities mentioned. In Fig.7 it can be seen that the total number of
dengue cases in the department varies as mobility in each municipality is reduced.

3.3.1 Access

This control measure, when applied in each of the five municipalities with the highest
burden of the disease, reduces the total number of dengue cases in the department. In
Fig 7 it can be seen that the most significant reduction occurs when this control
measure is applied in La Dorada and Marmato, with a decrease of 159 and 210,
respectively. These values indicate that completely restricting access to this endemic
municipality has a positive effect on reducing the total number of dengue cases in the
department.

3.3.2 Exit

When the exit of the inhabitants of the municipality of La Dorada is restricted, but the
entry of foreigners is allowed, the number of dengue cases increase in 20 with respect
to the free mobility scenario. This same behavior occurs when the control measure is
applied in Norcasia and Marmato where the increase of 9 and 5 dengue cases. When
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the control measure is applied in Manizales, dengue cases are reduced by 247. This is
due to the fact that its inhabitants are infected when traveling to endemic areas.

3.3.3 Isolation

Isolating a municipality in this study means limiting mobility to zero, therefore its
inhabitants cannot travel to other municipalities and people are not allowed to enter.
Applying this control measure in La Dorada, Norcasia, Chinchiná and Manizales
reduces the total number of dengue cases in the department by 139, 90, 51 and 270,
respectively. The opposite occurs when applied in Marmato, where dengue cases
increase by 46.

3.4 Control scenario 2: Confinement

During the COVID-19 pandemic, governmental entities with the objective of
containing the spread of the virus have opted to isolate neighborhoods, even entire
countries. In this work we simulate the effect of confining the municipalities in order to
analyze how this restriction influences the total number of dengue cases. Confinement
consists of limiting the exit of inhabitants and entry of foreigners to each municipality.
When confinement is applied, 630 cases occur, which implies a reduction of 42.67%
with respect to the 1099 dengue cases that occurred when there are no restrictions.
The dengue cases before and after confinement are shown in Table 8, where it can be
seen that mobility affects each municipality differently. The column (variation of
cases) shows positive values when the mobility restriction reduces dengue cases and
negative values when there is an inverse effect. It can be observed that in the
municipalities of Manzanares, Salamina, Aguadas, Risaralda, Aranzazu, La Merced
and Pácora, confining population reduces dengue cases to zero. Confinement reduces
dengue cases in the municipalities of La Dorada, Victoria and Riosucio, where a higher
percentage of travelers go to areas with a higher incidence of dengue. A similar
phenomenon occurs in Norcasia, Marmato and Palestina, but in the opposite direction,
with the highest percentage of travelers from these three municipalities going to areas
with lower incidence. The percentages of travelers to municipalities of zero, lower and
higher incidence than the municipality of residence can be seen in Table 9. The results
obtained in this scenario coincide with those obtained by Conceição in his study
conducted in Sao Paulo [47] where there was a reduction in dengue cases as a collateral
result of population confinement to hinder the advance of COVID-19 pandemic.

4 Discussion

Several scenarios were analyzed to provide policy makers with insight into the
implementation of control measures to mitigate the spread of dengue in the
department of Caldas. The study used a compartmental model at each node of a
network and investigated the effects on the total number of dengue cases when
applying mobility control measures such as Access: No foreigners are allowed to enter
the municipality, Isolation: No residents or visitors are allowed to enter or leave, and
Exit: No inhabitant is allowed to leave the municipality. The results obtained explain
phenomena that have been observed in the historical data, and the coexistence of
different types of trends according to local conditions and connectivity. Such is the
case of the capital Manizales (zero incidence since environmental conditions are not
suitable for the mosquito), which has reported cases of the disease in the health
system. The inhabitants of this municipality contract the disease when moving to
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areas where dengue fever is present. The simulations show this phenomenon and it is
observed that limiting mobility from nodes of zero incidence to nodes with the
presence of the disease prevents the spread of the disease. The results obtained in this
study are similar to those obtained by Jassen, who showed that bans on international
air travel during the COVID-19 pandemic led to a sharp decrease in dengue cases in
Australia, where the disease is predominantly imported [48]. Another phenomenon
observed was that the isolation of Marmato (a node with a high incidence of the
disease) generates an increase in dengue cases. Given that when human movements
are limited to one’s own home and its surroundings, contact between people and
vectors may increase, resulting in a higher risk of exposure and transmission of the
virus, as occurred in Thailand where the isolation generated by COVID-19 generated
an increase in dengue cases [49]. On the contrary, when residents of Marmato travel to
nearby municipalities with a lower incidence of the disease, the probability of
contagion is reduced with displacement. In the case of La Dorada, which is also a
municipality with a high incidence, the increase in cases is generated by the departure
of its inhabitants. This is due to the fact that most people move to areas with a higher
incidence of the disease, which increases the probability of infection and, therefore, the
number of infected people. This phenomenon was evidenced in Singapore where the
mobility of inhabitants was limited to public spaces, such as workplaces or schools,
where the density of mosquitoes was high, which led to a decrease in dengue
transmission during the COVID-19 quarantine [50]. Therefore, in La Dorada or any
municipality with these mobility characteristics, the control measure that generates
the greatest impact on the reduction of dengue cases is to limit the exit of its
inhabitants. In this study it was observed that the reduction of dengue cases after
applying quarantine is not significantly higher than applying other measures, which is
why it is suggested to control entities analyze the relevance of this measure when
making decisions since, as has been observed in the current pandemic, isolation has a
negative influence on people. It causes alterations in eating habits [51], increases the
use of drugs [52], has negative psychological [53, 54], and economic [55] effects on
people around the world. The analysis carried out in this study can be used, both in
the department of Caldas as well as in any other region, to design mobility reduction
strategies to control or mitigate a dengue outbreak.

5 Conclusion

The model presented in this study makes it possible to analyze the effect of applying
control measures to reduce dengue cases in a region. By comparing the results of the
model with the actual cases, it has been established that the estimated values have a
realistic correspondence. Based on the results, it is recommended that health experts
and administrative authorities limit mobility to areas with high incidence of the
disease during dengue outbreaks in order to prevent its spread. This model can be
extrapolated to any region, if the average temperature, altitude, number of
inhabitants, human vital statistics and aedic records are known. Moreover, the
mobility control measures here discussed can be taken into account for the
development of public health policies in endemic regions.
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21. Sepúlveda LS. Manejo óptimo y viable en modelos epidemiológicos del dengue.
Universidad Autónoma de Occidente; 2015.

22. Lopez Montenegro LE. Modelos y Control Optimo Poblacional del Aedes
aegypti con Retardos de Tiempo. Universidad Nacional de Colombia sede
Manizales; 2012.

23. Reyna-Lara A, Soriano-Paños D, Arias-Castro J, Mart́ınez H, Gómez-Gardeñes
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Table 2. Average altitude and temperature of the municipalities of the department of Caldas. Source: Caldas Health
Observatory Indicator Booklets.

Municipe Altitude [masl] T Average [◦C] Municipe Altitude [masl] T Average [◦C] Municipe Altitude [masl] T Average [◦C]
Aguadas 2214 18.5 Manzanares 1871 21.1 Riosucio 1380 20.2
Anserma 1720 19.4 Marmato 1370 22.1 Risaralda 1743 19
Aranzazu 1960 18 Marquetalia 1600 20.5 Salamina 1775 22
Belalcazar 1632 20.2 Marulanda 2825 13 Samaná 1460 19.8
Chinchiná 1380 20.3 Neira 1969 18 San José 1710 18
Filadelf́ıa 1620 20 Norcasia 700 25 Suṕıa 1183 21.6
La Dorada 178 31 Pacora 1819 18.4 Victoria 710 26
La Merced 1819 23 Palestina 1630 21.8 Villamaŕıa 1920 18
Manizales 2150 19.9 Pensilvania 2100 19.7 Viterbo 998 24

Table 3. Estimated values of the model parameters.

MunicipE δh β λm λh δm µ Λh Λm min Λm max
Aguadas 2, 55ǫ−5 0,17 0,44 0,45 0,04 0.329 0 0 0
Anserma 3ǫ−5 0,18 0,51 0,52 0,04 0.329 36,7 30 300
Aranzazu 2, 3ǫ−5 0,17 0,41 0,41 0,03 0.329 0 0 0
Belalcazar 1, 8ǫ−5 0,18 0,57 0,58 0,04 0,329 19,45 13,66 147,36
Chinchiná 2, 52ǫ−5 0,18 0,58 0,59 0,04 0,329 50,88 48,63 533,08
Filadelf́ıa 3, 45ǫ−5 0,18 0,55 0,57 0,04 0.329 7,45 2 83,3
La Dorada 1, 58ǫ−5 0,23 1,36 0,73 0,03 0.329 354,7 86,6 821,3
La Merced 3, 67ǫ−5 0,19 0,77 0,79 0,03 0.329 0 0 0
Manizales 2, 79ǫ−5 0,18 0,55 0,56 0,04 0.329 0 0 0
Manzanares 2, 49ǫ−5 0,18 0,63 0,65 0,04 0.329 0 0 0
Marmato 1, 49ǫ−5 0,19 0,71 0,73 0,04 0.329 19,25 15,88 277,58

Marquetalia 2, 26ǫ−5 0,18 0,59 0,61 0,04 0.329 48,9 33,9 339
Marulanda 3, 34ǫ−5 0,15 0,04 0,04 0,05 0.329 0 0 0

Neira 2, 92ǫ−5 0,17 0,41 0,41 0,03 0.329 29,66 3,65 40,72
Norcasia 2, 29ǫ−5 0,2 0,92 0,91 0,03 0.329 7,16 6,32 112,71
Pacora 2, 84ǫ−5 0,17 0,44 0,44 0,04 0.329 0 0 0

Palestina 4, 50ǫ−5 0,19 0,69 0,71 0,04 0.329 19,872 9,3 497
Pensilvania 2, 85ǫ−5 0,18 0,53 0,54 0,04 0.329 3,46 1,65 36,5
Riosucio 2, 64ǫ−5 0,18 0,57 0,58 0,04 0.329 13,94 3,94 139,38
Risaralda 2, 67ǫ−5 0,18 0,48 0,49 0,04 0.329 0 0 0
Salamina 3, 37ǫ−5 0,19 0,70 0,72 0,04 0.329 0 0 0
Samaná 2, 76ǫ−5 0,18 0,54 0,55 0,04 0.329 16,9 6,9 169
San José 2, 624ǫ−5 0,17 0,41 0,41 0,03 0.329 14,41 4,41 44,1
Suṕıa 2, 07ǫ−5 0,187 0,67 0,69 0,04 0.329 16,03 5,64 204,57

Victoria 2, 66ǫ−5 0,21 0,99 0,95 0,03 0.329 5,69 4,39 44
Villamaŕıa 2, 24ǫ−5 0,17 0,41 0,41 0,03 0,32 6,58 3,65 36,5
Viterbo 2, 52ǫ−5 0,19 0,85 0,85 0,03 0,35 23,73 15,71 308,05
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Table 4. Model initial conditions

Municipe Sm(0) ImRain(0) ImDrynees(0) Sh(0) Ih(0) Rh(0)
Aguadas 0 0 0,001 22081 0 0
Anserma 37,704 4,189 0,001 33792 0 0
Aranzazu 0 0 0,001 11422 0 0
Belalcazar 17,167 1,907 0,001 10863 0 0
Chinchiná 38,763 4,307 0,001 51492 0 0
Filadelf́ıa 5,553 0,617 0,001 11034 0 0
La Dorada 57,411 6,379 0,001 76963 0 0
La Merced 0 0 0,001 5508 0 0
Manizales 0 0 0,001 396075 0 0
Manzanares 0 0 0,001 23274 0 0
Marmato 165,579 18,398 0,001 9096 0 0

Marquetalia 18,520 2,058 0,001 14992 0 0
Marulanda 0 0 0,001 3406 0 0

Neira 3,713 0,413 0,001 30513 0 0
Norcasia 62,603 6,956 0,001 6374 0 0
Pácora 0 0 0,001 11952 0 0
Palestina 79,036 8,782 0,001 17760 0 0
Pensilvania 50,405 5,601 0,001 26361 0 0
Riosucio 34,613 3,846 0,001 61535 0 0
Risaralda 0 0 0,001 9583 0 0
Salamina 0 0 0,001 16635 0 0
Samaná 63,076 7,008 0,001 25777 0 0
San José 5,549 0,617 0,001 7588 0 0
Suṕıa 14,036 1,560 0,001 26728 0 0

Victoria 5,253 0,584 0,001 8415 0 0
Villamaŕıa 9,283 1,031 0,001 56303 0 0
Viterbo 10,244 1,138 0,001 12469 0 0
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Table 5. Matrix Υ. Each cell represents the probability that an inhabitant of a municipality moves to another one.
Aguadas Anserma Aranzazu Belalcazar Chinchiná Filadelf́ıa LaDorada LaMerced Manizales Manzanares Marmato Marquetalia Marulanda Neira Norcasia

Aguadas 0.90000 0.00105 0.00150 0.00030 0.00152 0.00092 0.00091 0.00034 0.01838 0.00112 0.00085 0.00049 0.00037 0.00198 0.00020
Anserma 0.00039 0.90000 0.00030 0.00176 0.00518 0.00052 0.00051 0.00038 0.02998 0.00028 0.00054 0.00014 0.00005 0.00145 0.00003
Aranzazu 0.00126 0.00068 0.90000 0.00023 0.00283 0.00945 0.00046 0.00140 0.04795 0.00027 0.00076 0.00013 0.00016 0.00961 0.00003
Belalcazar 0.00035 0.00554 0.00033 0.90000 0.00584 0.00033 0.00053 0.00030 0.03334 0.00030 0.00044 0.00015 0.00004 0.00159 0.00003
Chinchiná 0.00006 0.00058 0.00014 0.00021 0.90000 0.00014 0.00013 0.00006 0.04482 0.00009 0.00008 0.00004 0.00001 0.00109 0.00001
Filadelf́ıa 0.00070 0.00104 0.00849 0.00021 0.00262 0.90000 0.00041 0.00572 0.04586 0.00025 0.00138 0.00012 0.00009 0.00979 0.00002
La Dorada 0.00064 0.00096 0.00039 0.00032 0.00225 0.00038 0.90000 0.00017 0.02169 0.00394 0.00022 0.00456 0.00022 0.00140 0.00569
La Merced 0.00066 0.00197 0.00328 0.00050 0.00275 0.01491 0.00046 0.90000 0.03356 0.00020 0.00210 0.00010 0.00017 0.00526 0.00002
Manizales 0.00011 0.00049 0.00035 0.00017 0.00654 0.00037 0.00019 0.00010 0.90000 0.00014 0.00008 0.00006 0.00002 0.00622 0.00001
Manzanares 0.00129 0.00087 0.00038 0.00029 0.00245 0.00037 0.00640 0.00012 0.02656 0.90000 0.00018 0.01827 0.00170 0.00154 0.00019
Marmato 0.00211 0.00360 0.00225 0.00092 0.00505 0.00456 0.00077 0.00266 0.03104 0.00040 0.90000 0.00020 0.00016 0.00168 0.00005
Marquetalia 0.00090 0.00068 0.00029 0.00023 0.00176 0.00028 0.01189 0.00010 0.01800 0.02930 0.00015 0.90000 0.00065 0.00109 0.00039
Marulanda 0.00412 0.00157 0.00216 0.00033 0.00260 0.00137 0.00344 0.00095 0.02819 0.01623 0.00073 0.00387 0.90000 0.00298 0.00018
Neira 0.00017 0.00032 0.00096 0.00011 0.00219 0.00109 0.00017 0.00022 0.08549 0.00011 0.00006 0.00005 0.00002 0.90000 0.00001
Norcasia 0.00141 0.00056 0.00022 0.00018 0.00123 0.00022 0.05574 0.00008 0.01133 0.00114 0.00013 0.00148 0.00011 0.00075 0.90000
Pacora 0.05402 0.00068 0.00189 0.00019 0.00163 0.00104 0.00082 0.00082 0.01880 0.00114 0.00048 0.00047 0.00044 0.00217 0.00013
Palestina 0.00006 0.00071 0.00012 0.00026 0.06369 0.00012 0.00012 0.00005 0.02721 0.00008 0.00007 0.00004 0.00001 0.00081 0.00001
Pensilvania 0.00134 0.00104 0.00043 0.00034 0.00264 0.00043 0.00673 0.00014 0.02676 0.03356 0.00023 0.00775 0.00091 0.00164 0.00031
Riosucio 0.00057 0.01135 0.00095 0.00057 0.00243 0.00180 0.00038 0.00102 0.01500 0.00020 0.00134 0.00010 0.00008 0.00195 0.00002
Risaralda 0.00023 0.03218 0.00023 0.00383 0.00514 0.00041 0.00033 0.00022 0.02689 0.00019 0.00022 0.00009 0.00002 0.00118 0.00001
Salamina 0.00471 0.00166 0.01119 0.00028 0.00286 0.00334 0.00066 0.00398 0.03896 0.00130 0.00111 0.00052 0.00057 0.00561 0.00004
Samaná 0.00102 0.00550 0.00039 0.00032 0.00227 0.00039 0.01912 0.00014 0.02183 0.00746 0.00022 0.01121 0.00045 0.00139 0.00424
San José 0.00026 0.00471 0.00025 0.02234 0.00490 0.00044 0.00039 0.00023 0.02684 0.00022 0.00034 0.00011 0.00003 0.00125 0.00002
Suṕıa 0.00043 0.00336 0.00087 0.00036 0.00198 0.00201 0.00025 0.00121 0.01182 0.00013 0.00145 0.00007 0.00006 0.00168 0.00002
Victoria 0.00053 0.00055 0.00023 0.00018 0.00141 0.00023 0.02520 0.00008 0.01437 0.00581 0.00012 0.01347 0.00027 0.00088 0.00056
Villamaŕıa 0.00002 0.00007 0.00004 0.00003 0.00082 0.00005 0.00003 0.00001 0.09789 0.00002 0.00001 0.00001 0.00000 0.00052 0.00000
Viterbo 0.00032 0.01523 0.00035 0.00996 0.00384 0.00042 0.00060 0.00022 0.03323 0.00033 0.00034 0.00016 0.00004 0.00097 0.00004
Honda 0 0 0 0 0.0 0 0.08983 0 0 0 0 0 0 0 0
Marsella 0 0 0 0 0.07525 0 0 0 0 0 0 0 0 0 0
StaRosaCabal 0 0 0 0 0.10000 0 0 0 0 0 0 0 0 0 0
Jard́ın 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
La pintada 0.08699 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Sonson 0.09634 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Pacora Palestina Pensilvania Riosucio Risaralda Salamina Samaná San José Suṕıa Victoria Villamaŕıa Viterbo Honda Marsella StaRosaCabal Jard́ın La pintada Sonson

Aguadas 0.03711 0.00050 0.00080 0.00311 0.00030 0.00471 0.00048 0.00022 0.00170 0.00019 0.00230 0.00026 0 0 0 0 0.0023 0.0161
Anserma 0.00017 0.00231 0.00023 0.02305 0.01615 0.00062 0.00096 0.00148 0.00498 0.00008 0.00385 0.00461 0 0 0 0 0 0
Aranzazu 0.00109 0.00085 0.00022 0.00434 0.00026 0.00940 0.00015 0.00018 0.00290 0.00007 0.00507 0.00024 0 0 0 0 0 0
Belalcazar 0.00016 0.00265 0.00024 0.00367 0.00605 0.00033 0.00018 0.02213 0.00167 0.00008 0.00426 0.00950 0 0 0 0 0 0
Chinchiná 0.00005 0.02304 0.00007 0.00055 0.00029 0.00012 0.00004 0.00017 0.00033 0.00002 0.00473 0.00013 0 0.0018 0.0212 0 0 0
Filadelf́ıa 0.00054 0.00078 0.00019 0.00735 0.00042 0.00252 0.00014 0.00028 0.00600 0.00006 0.00479 0.00026 0 0 0 0 0 0
La Dorada 0.00040 0.00074 0.00287 0.00146 0.00031 0.00047 0.00634 0.00023 0.00070 0.00658 0.00315 0.00035 0.0336 0 0 0 0 0
La Merced 0.00111 0.00085 0.00017 0.01092 0.00059 0.00783 0.00013 0.00039 0.00946 0.00006 0.00220 0.00036 0 0 0 0 0 0
Manizales 0.00008 0.00144 0.00010 0.00050 0.00022 0.00024 0.00006 0.00014 0.00028 0.00003 0.08192 0.00016 0 0 0 0 0 0
Manzanares 0.00090 0.00078 0.02321 0.00123 0.00029 0.00150 0.00402 0.00021 0.00061 0.00247 0.00386 0.00031 0 0 0 0 0 0
Marmato 0.00083 0.00157 0.00034 0.01814 0.00072 0.00278 0.00025 0.00071 0.01430 0.00011 0.00411 0.00068 0 0 0 0 0 0
Marquetalia 0.00060 0.00057 0.00860 0.00100 0.00023 0.00096 0.00968 0.00017 0.00049 0.00918 0.00260 0.00024 0 0 0 0 0 0
Marulanda 0.00333 0.00083 0.00601 0.00451 0.00033 0.00624 0.00232 0.00024 0.00242 0.00111 0.00354 0.00040 0 0 0 0 0 0
Neira 0.00012 0.00059 0.00008 0.00088 0.00013 0.00047 0.00005 0.00009 0.00056 0.00003 0.00596 0.00007 0 0 0 0 0 0
Norcasia 0.00063 0.00041 0.00128 0.00087 0.00014 0.00027 0.01376 0.00013 0.00041 0.00143 0.00164 0.00020 0 0 0 0 0 0.0042
Pacora 0.90000 0.00052 0.00077 0.00193 0.00030 0.00749 0.00044 0.00014 0.00103 0.00018 0.00230 0.00018 0 0 0 0 0 0
Palestina 0.00004 0.90000 0.00006 0.00052 0.00039 0.00010 0.00004 0.00022 0.00028 0.00002 0.00315 0.00023 0 0.0016 0 0 0 0
Pensilvania 0.00088 0.00085 0.90000 0.00152 0.00034 0.00141 0.00365 0.00025 0.00074 0.00187 0.00386 0.00037 0 0 0 0 0 0
Riosucio 0.00024 0.00083 0.00017 0.90000 0.00149 0.00119 0.00013 0.00073 0.05068 0.00005 0.00199 0.00104 0 0 0 0.0037 0 0
Risaralda 0.00015 0.00249 0.00015 0.00602 0.90000 0.00022 0.00011 0.00935 0.00159 0.00005 0.00336 0.00507 0 0 0 0 0.0003 0
Salamina 0.00514 0.00088 0.00084 0.00643 0.00030 0.90000 0.00047 0.00021 0.00413 0.00010 0.00450 0.00021 0 0 0 0 0 0
Samaná 0.00065 0.00074 0.00468 0.00146 0.00031 0.00100 0.90000 0.00023 0.00070 0.01076 0.00318 0.00035 0 0 0 0 0 0
San José 0.00012 0.00226 0.00018 0.00469 0.01493 0.00025 0.00013 0.90000 0.00136 0.00006 0.00340 0.01029 0 0 0 0 0 0
Suṕıa 0.00018 0.00060 0.00011 0.06945 0.00054 0.00104 0.00008 0.00029 0.90000 0.00004 0.00154 0.00042 0 0 0 0 0 0
Victoria 0.00034 0.00046 0.00304 0.00081 0.00018 0.00027 0.01365 0.00013 0.00039 0.90000 0.00210 0.00020 0.0146 0 0 0 0 0
Villamaŕıa 0.00001 0.00020 0.00002 0.00008 0.00003 0.00003 0.00001 0.00002 0.00004 0.00001 0.90000 0.00001 0 0 0 0 0 0
Viterbo 0.00015 0.00251 0.00028 0.00698 0.00840 0.00026 0.00020 0.01067 0.00208 0.00009 0.00233 0.90000 0 0 0 0 0 0
Honda 0 0 0 0 0 0 0 0 0 0 0 0 0.9 0 0 0 0 0
Marsella 0 0 0 0 0 0 0 0 0 0 0 0 0 0.9 0 0 0 0
StaRosaCabal 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.9 0 0 0
Jard́ın 0 0 0 0.10000 0 0 0 0 0 0 0 0 0 0 0 0.9 0 0
La pintada 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.9 0
Sonson 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.9
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Table 6. Dengue cases full conection

Municipe # cases Municipe # cases Municipe # cases
Aguadas 1 Manzanares 2 Riosucio 41
Anserma 16 Marmato 204.8 Risaralda 0.4
Aranzazu 0.4 Marquetalia 14.2 Salamina 1.4
Belalcazar 9.4 Marulanda 0.0 Samaná 41.8
Chinchiná 128.2 Neira 2.8 San José 3.1
Filadelf́ıa 4.5 Norcasia 129.9 Suṕıa 46.7
La Dorada 481.0 Pacora 0.0 Victoria 13.4
La Merced 0.4 Palestina 47.3 Villamaŕıa 9.4
Manizales 312.0 Pensilvania 25.2 Viterbo 22.4
Total
cases
Caldas

1099

Table 7. Dengue incidence rate per 100 000 inhabitants, by municipality of origin. Source: Public Health Observatory.

Municipe 2015 2016 2017 2018 2019 2020 Total municipe

Marmato 2836,4 571,7 120,9 55,0 77,0 22,0 3682,9
Norcasia 2682,8 47,1 0,0 31,4 627,5 31,4 3420,1
Viterbo 248,6 200,5 24,1 0,0 312,8 24,1 810,0
Risaralda 20,9 427,8 41,7 20,9 0,0 167,0 678,3
La Dorada 157,2 46,8 7,8 18,2 283,3 52,0 565,2

Suṕıa 138,4 396,6 7,5 3,7 7,5 3,7 557,5
Palestina 264,6 163,3 28,2 5,6 39,4 28,2 529,3
Chinchiná 112,6 324,3 33,0 5,8 21,4 25,2 522,4
Victoria 83,2 11,9 11,9 23,8 118,8 154,5 404,0

Marquetalia 73,4 186,8 33,4 0,0 66,7 13,3 373,5
Filadelf́ıa 9,1 308,1 0,0 0,0 0,0 0,0 317,2
Samaná 120,3 42,7 3,9 11,6 42,7 7,8 228,9
Anserma 50,3 115,4 3,0 0,0 0,0 8,9 177,6
Riosucio 37,4 134,9 1,6 0,0 1,6 1,6 177,1
Aguadas 122,3 13,6 27,2 0,0 0,0 0,0 163,0
Belalcazar 73,6 46,0 0,0 0,0 0,0 9,2 128,9
Pensilvania 98,6 19,0 0,0 3,8 0,0 0,0 121,4
Salamina 18,0 72,1 6,0 0,0 0,0 6,0 102,2
La Merced 36,3 36,3 0,0 0,0 0,0 0,0 72,6
Manizales 38,1 2,3 3,0 0,3 0,0 1,5 45,2
Villamaŕıa 7,1 14,2 3,6 0,0 1,8 0,0 26,6
San José 13,2 13,2 0,0 0,0 0,0 0,0 26,4
Neira 3,3 3,3 3,3 0,0 0,0 3,3 13,1
Pácora 8,4 0,0 0,0 0,0 0,0 0,0 8,4

Manzanares 0,0 0,0 0,0 0,0 4,3 0,0 4,3
Aranzazu 0,0 0,0 0,0 0,0 0,0 0,0 0,0
Marulanda 0,0 0,0 0,0 0,0 0,0 0,0 0,0

Total 7254,1 3197,8 359,9 180,1 1604,7 559,6
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Table 8. Dengue cases with and without mobility restrictions. Negative number
means increase and positive number represents reduce after applying the mobility
control measure (quarantine).

Municipe Unrestricted
mobility

Restricted
mobility

Variation in
dengue cases

% of varia-
tion

Manizales 270 0 +270 270.0
La Dorada 217 72 +145 201.3
Chinchina 78 27 +51 185.5
Riosucio 41 13 +28 213.3
Supia 33 15 +18 115.3

Villamaria 6 1 +5 566.1
Anserma 16 14 +2 13.0
Victoria 5 3 +2 51.4

Manzanares 2 0 +2 2.0
Salamina 1 0 +1 1.0
Filadelfia 2 1 +1 144.6
Neira 2 1 +1 141.3

Aguadas 1 0 +1 1.0
La Merced 0 0 0 0
Aranzazu 0 0 0 0
Samana 30 29 +1 1
Risaralda 0 0 0 0.0
Pacora 0 0 0 0.0
San Jose 2 2 0 0
Marulanda 0 0 0 0.0
Marquetalia 9 9 0 0
Belalcazar 7 7 0 0
Pensilvania 19 20 -1 6.5
Palestina 34 36 -2 4.9
Viterbo 18 20 -2 10.4
Norcasia 79 97 -18 18.5
Marmato 226 261 -35 13.5
Total 1099 630 +469 74.5
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Table 9. Percentage of travelers to 0, lower and higher incidence areas than their city
of residence.

Municipe Incidence
when mo-
bility is
restricted

% of pop-
ulation
traveling
to munici-
palities of
incidence
0

% of pop-
ulation
traveling
to mu-
nicipality
lower
incidence

% of pop-
ulation
traveling
to mu-
nicipality
higher
incidence

Norcasia 4687 1,53 8,04 0
Marmato 4147 4,30 5,70 0,0047
Viterbo 395 4,33 5,63 0,0372
Palestina 343 2,81 7 0,0314
La Dorada 246 2,82 3,12 4,0575
Samaná 176 3,32 4,21 2,4671
Suṕıa 149 1,63 8,09 0,2824

Chinchiná 146 4,56 0,76 2,3761
Victoria 145 2,21 2,14 5,6534

Marquetalia 118 5,10 1,47 3,4342
Pensilvania 112 6,58 0,91 2,5139
Belalcazar 105 4,12 3,75 2,1300
Anserma 71 62,98 3,03 2,1326
San José 45 4,31 0,98 4,7087
Riosucio 40 2,07 0,57 6,9826
Filadelf́ıa 38 6,46 1,46 2,0850
Villamaŕıa 8 9,81 0,05 0,1417

Neira 6 8,77 0,00 1,2300

Table 10. Example A.

Node/parameter β λm λh δm µ Nm Λh δh Nh

Node 1 0.172 0.408 0.408 0.035 0.329 0 14.554 0.0000278673 396075
Node 2 0.228 1 0.732 0.029 0.329 2899.52 2.828 0.0000158242 76963

(a) Model parameters

Distance 50.00 100.00 150.00 200.00 250.00 300.00 350.00 400.00 NC
Zero incidence node 111.52 59.59 36.08 23.45 16.19 11.75 8.87 6.92 0.00
Endemic node 29.38 62.79 85.51 98.79 106.56 111.33 114.43 116.53 123.97
Total 140.90 122.38 121.59 122.24 122.74 123.08 123.30 123.45 123.97

(b) Distance between nodes and total number of people infected with dengue by connecting zero incidence node with an
endemic node located at different distances. The last row (NC) cases of dengue when the nodes are not connected.

Table 11. Example B.

Node/parameter β λm λh δm µ Nm Λh δh Nh

Node 1 0.172 0.408 0.732 0.036 0.329 849.76 14.554 0.0000158242 76963
Node 2 0.189 0.707 0.729 0.029 0.329 50.66 2.828 0.0000149736 9096

(a) Model parameters

Distance 50.00 100.00 150.00 200.00 250.00 300.00 350.00 400.00 NC
Endemic node 852.28 786.24 738.26 714.51 701.79 694.35 689.67 686.54 675.85
Non endemic node 59.50 66.71 73.13 76.53 78.40 79.50 80.21 80.68 82.31
Total 911.78 852.95 811.39 791.03 780.19 773.86 769.88 767.22 758.16

(b) Distance between nodes and total number of people infected with dengue by connecting endemic node with
non-endemic node located at different distances. The last row (NC) cases of dengue when the nodes are not connected.
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Table 12. Example C.

Node/parameter β λm h δm µ Nm Λh δh Nh

Zero incidence node 0.1717 0.4085 0.408 0.035 0.329 0 14.554 0.0000278673 396075
Endemic node 0.2276 1 0.732 0.029 0.329 2899.52 2.828 0.0000158242 76963

Non endemic node 0.2018 0.9188 0.906 0.032 0.329 2.719 0.2342 0.0000228696 6374
(a) Model parameters

Distance 50 100 150 200 250 300 350 400 NC
Zero incidence node 1526.58 823.44 523.78 353.03 249.31 183.50 139.87 109.76 0.00
Endemic node 184.23 166.07 155.57 147.23 141.19 137.00 134.08 131.99 123.97
No endemic node 30.23 69.35 101.70 123.13 136.58 145.17 150.88 154.82 169.16
Total 1741.04 1058.86 781.05 623.40 527.08 465.67 424.83 396.57 293.13

(b) Distance between nodes and total number of people infected with dengue by connecting zero incidence node, endemic
node and non endemic node. Located at different distances. The last column (NC) cases of dengue when the nodes are not
connected.
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